1
|
Sewid AH, Ramos JH, Dylewski HC, Castro GI, D’Souza DH, Eda S. Colorimetric dual DNAzyme reaction triggered by loop-mediated isothermal amplification for the visual detection of Shiga toxin-producing Escherichia coli in food matrices. PLoS One 2025; 20:e0320393. [PMID: 40267081 PMCID: PMC12017578 DOI: 10.1371/journal.pone.0320393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/17/2025] [Indexed: 04/25/2025] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is causing outbreaks worldwide and a rapid detection method is urgently needed. Loop-mediated isothermal amplification (LAMP) has attracted attention in the development of pathogen detection methods; however, current methods for the detection of LAMP amplicon suffer some drawbacks. In this study, we designed a new LAMP method by incorporating peroxidase-mimicking G-quadruplex DNAzyme for a simple colorimetric detection of the LAMP amplicon. As the new method produces LAMP amplicon containing two DNAzyme molecules per amplification unit, the method was termed colorimetric Dual DNAzyme LAMP (cDDLAMP). cDDLAMP was developed targeting 3 common STEC's virulence genes (stx1, stx2, and eae) that are associated with serious human illnesses such hemorrhagic colitis and hemolytic-uremic syndrome. Immunomagnetic enrichment was used for specific, ultrasensitive, and fast detection of STEC in food samples (leafy vegetables and milk). The sensitivity of cDDLAMP ranged from 1-100 CFU/mL in pure culture to 100-103 CFU/mL in spiked milk, and 104-109 CFU/25g of lettuce. No cross-reaction with other generic E. coli strains and non-E. coli bacteria was observed. The color signal could be observed by the naked eye or analyzed by either UV-Vis spectra or smartphone platforms. Therefore, the cDDLAMP assay is a cost-effective method for detecting STEC strains without expensive machines or extraction methods.
Collapse
Affiliation(s)
- Alaa H. Sewid
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Joseph H. Ramos
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Haley C. Dylewski
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Gillian I. Castro
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Doris H. D’Souza
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Shigetoshi Eda
- School of Natural Resources, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| |
Collapse
|
2
|
Cheong S, Aguirre-Siliezar K, Williams SR, Gaudin ACM, Pagliari P, Jay-Russell MT, Busch R, Maga EA, Pires AFA. Exploring the impact of grazing on fecal and soil microbiome dynamics in small ruminants in organic crop-livestock integration systems. PLoS One 2025; 20:e0316616. [PMID: 39823448 PMCID: PMC11741640 DOI: 10.1371/journal.pone.0316616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/19/2025] Open
Abstract
In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E. coli (gEc) in fecal and soil microbiomes. We collected samples from field trials of three treatments (fallow, a cover crop without grazing (non-graze CC), and a cover crop with grazing (graze CC)) grazed by sheep or goats between 2020 and 2022. No significant differences in non-O157 STEC prevalence were found between pre- and post-grazing fecal samples in either sheep or goats. However, gEc was more prevalent in graze CC soils compared to fallow or non-graze CC soils. Alpha diversity was influenced by the species of grazing animals and the region, as sheep fecal samples and soil from the California trials had greater alpha diversity than goat fecal samples and soil from the Minnesota trials. Beta diversity in sheep fecal samples differed by the presence or absence of non-O157 STEC, while in goat fecal samples, it differed between pre- and post-grazing events. Actinobacteria was negatively associated with non-O157 STEC presence in sheep fecal samples and decreased in post-grazing goat fecal samples. Grazing did not significantly affect soil microbial diversity or composition, and no interaction was observed between post-grazing fecal samples and the graze CC soil. The results suggest that soil contamination by foodborne pathogens and microbiome dynamics in ICLS are influenced by grazing animal species and regional factors, with interactions between fecal and soil microbial communities having minimal impact.
Collapse
Affiliation(s)
- Sejin Cheong
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America
| | - Kimberly Aguirre-Siliezar
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America
| | - Sequoia R. Williams
- Department of Plant Sciences, University of California-Davis, Davis, Davis, California, United States of America
| | - Amélie C. M. Gaudin
- Department of Plant Sciences, University of California-Davis, Davis, Davis, California, United States of America
| | - Paulo Pagliari
- Department of Soil, Water and Climate, College of Food, Agriculture and Natural Resources Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michele T. Jay-Russell
- Western Center for Food Safety, University of California-Davis, Davis, Davis, California, United States of America
| | - Roselle Busch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America
| | - Elizabeth A. Maga
- Department of Animal Science, University of California-Davis, Davis, Davis, California, United States of America
| | - Alda F. A. Pires
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America
| |
Collapse
|
3
|
Nawrocki EM, Kudva IT, Dudley EG. Investigating the adherence factors of Escherichia coli at the bovine recto-anal junction. Microbiol Spectr 2024; 12:e0127024. [PMID: 39329486 PMCID: PMC11540155 DOI: 10.1128/spectrum.01270-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are major foodborne pathogens that result in thousands of hospitalizations each year in the United States. Cattle, the natural reservoir, harbor STEC asymptomatically at the recto-anal junction (RAJ). The molecular mechanisms that allow STEC and non-STEC E. coli to adhere to the RAJ are not fully understood, in part because most adherence studies utilize human cell culture models. To identify a set of bovine-specific E. coli adherence factors, we used the primary RAJ squamous epithelial (RSE) cell-adherence assay to coculture RSE cells from healthy Holstein cattle with diverse E. coli strains from bovine and nonbovine sources. We hypothesized that a comparative genomic analysis of the strains would reveal factors associated with RSE adherence. After performing adherence assays with historical strains from the E. coli Reference Center (n = 62) and strains newly isolated from the RAJ (n = 15), we used the bioinformatic tool Roary to create a pangenome of this collection. We classified strains as either low or high adherence and using the Scoary program compiled a list of accessory genes correlated with the "high adherence" strains. While none of the correlations were statistically significant, several gene clusters were associated with the high-adherence phenotype, including two that encode uncharacterized proteins. We also demonstrated that non-STEC E. coli strains from the RAJ are more adherent than other isolates and can outcompete STEC in coculture with RSEs. Further analysis of adherence-associated gene clusters may lead to an improved understanding of the molecular mechanisms of RSE adherence and may help develop probiotics targeting STEC in cattle. IMPORTANCE E. coli strains that produce Shiga toxin cause foodborne illness in humans but colonize cattle asymptomatically. The molecular mechanisms that E. coli uses to adhere to cattle cells are largely unknown. Various strategies are used to control E. coli in livestock and limit the risk of outbreaks. These include vaccinating animals against common E. coli strains and supplementing their feed with probiotics to reduce the carriage of pathogens. No strategy is completely effective, and probiotics often fail to colonize the animals. We sought to clarify the genes required for E. coli adherence in cattle by quantifying the attachment to bovine cells in a diverse set of bacteria. We also isolated nonpathogenic E. coli from healthy cows and showed that a representative isolate could outcompete pathogenic strains in cocultures. We propose that the focused study of these strains and their adherence factors will better inform the design of probiotics and vaccines for livestock.
Collapse
Affiliation(s)
- Erin M. Nawrocki
- Department of Food
Science, The Pennsylvania State
University, University Park,
Pennsylvania, USA
| | - Indira T. Kudva
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agriculture Research Service, U.S. Department of
Agriculture, Ames,
Iowa, USA
| | - Edward G. Dudley
- Department of Food
Science, The Pennsylvania State
University, University Park,
Pennsylvania, USA
- E. coli Reference
Center, The Pennsylvania State
University, University Park,
Pennsylvania, USA
| |
Collapse
|
4
|
Ngoma NFN, Malahlela MN, Marufu MC, Cenci-Goga BT, Grispoldi L, Etter E, Kalake A, Karama M. Antimicrobial growth promoters approved in food-producing animals in South Africa induce shiga toxin-converting bacteriophages from Escherichia coli O157:H7. Gut Pathog 2023; 15:64. [PMID: 38057920 DOI: 10.1186/s13099-023-00590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
In this study, four antimicrobial growth promoters, including virginiamycin, josamycin, flavophospholipol, poly 2-propenal 2-propenoic acid and ultraviolet light, were tested for their capacity to induce stx-bacteriophages in 47 Shiga toxin-producing E. coli O157:H7 isolates. Induced bacteriophages were characterized for shiga toxin subtypes and structural genes by PCR, DNA restriction fragment length polymorphisms (RFLP) and morphological features by electron microscopy. Bacteriophages were induced from 72.3% (34/47) of the STEC O157:H7 isolates tested. Bacteriophage induction rates per induction method were as follows: ultraviolet light, 53.2% (25/47); poly 2-propenal 2-propenoic acid, 42.6% (20/47); virginiamycin, 34.0% (16/47); josamycin, 34.0% (16/47); and flavophospholipol, 29.8% (14/47). A total of 98 bacteriophages were isolated, but only 59 were digestible by NdeI, revealing 40 RFLP profiles which could be subdivided in 12 phylogenetic subgroups. Among the 98 bacteriophages, stx2a, stx2c and stx2d were present in 85.7%, 94.9% and 36.7% of bacteriophages, respectively. The Q, P, CIII, N1, N2 and IS1203 genes were found in 96.9%, 82.7%, 69.4%, 40.8%, 60.2% and 73.5% of the samples, respectively. Electron microscopy revealed four main representative morphologies which included three bacteriophages which all had long tails but different head morphologies: long hexagonal head, oval/oblong head and oval/circular head, and one bacteriophage with an icosahedral/hexagonal head with a short thick contractile tail. This study demonstrated that virginiamycin, josamycin, flavophospholipol and poly 2-propenal 2-propenoic acid induce genetically and morphologically diverse free stx-converting bacteriophages from STEC O157:H7. The possibility that these antimicrobial growth promoters may induce bacteriophages in vivo in animals and human hosts is a public health concern. Policies aimed at minimizing or banning the use of antimicrobial growth promoters should be promoted and implemented in countries where these compounds are still in use in animal agriculture.
Collapse
Affiliation(s)
- Nomonde F N Ngoma
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Mogaugedi N Malahlela
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Munyaradzi C Marufu
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Beniamino T Cenci-Goga
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
- Departimento di Medicina Veterinaria, Laboratorio di Ispezione Degli Alimenti di Origine Animale, University of Perugia, Perugia, 06126, Italy
| | - Luca Grispoldi
- Departimento di Medicina Veterinaria, Laboratorio di Ispezione Degli Alimenti di Origine Animale, University of Perugia, Perugia, 06126, Italy
| | - Eric Etter
- CIRAD, UMR ASTRE, Petit-Bourg, F-97170, France
- ASTRE, Université de Montpellier, CIRAD INRAE, Montpellier, France
| | - Alan Kalake
- Gauteng Department of Agriculture and Rural Development, Johannesburg, 2001, South Africa
| | - Musafiri Karama
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa.
| |
Collapse
|
5
|
Koyun OY, Balta I, Corcionivoschi N, Callaway TR. Disease Occurrence in- and the Transferal of Zoonotic Agents by North American Feedlot Cattle. Foods 2023; 12:904. [PMID: 36832978 PMCID: PMC9956193 DOI: 10.3390/foods12040904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
North America is a large producer of beef and contains approximately 12% of the world's cattle inventory. Feedlots are an integral part of modern cattle production in North America, producing a high-quality, wholesome protein food for humans. Cattle, during their final stage, are fed readily digestible high-energy density rations in feedlots. Cattle in feedlots are susceptible to certain zoonotic diseases that impact cattle health, growth performance, and carcass characteristics, as well as human health. Diseases are often transferred amongst pen-mates, but they can also originate from the environment and be spread by vectors or fomites. Pathogen carriage in the gastrointestinal tract of cattle often leads to direct or indirect contamination of foods and the feedlot environment. This leads to the recirculation of these pathogens that have fecal-oral transmission within a feedlot cattle population for an extended time. Salmonella, Shiga toxin-producing Escherichia coli, and Campylobacter are commonly associated with animal-derived foods and can be transferred to humans through several routes such as contact with infected cattle and the consumption of contaminated meat. Brucellosis, anthrax, and leptospirosis, significant but neglected zoonotic diseases with debilitating impacts on human and animal health, are also discussed.
Collapse
Affiliation(s)
- Osman Y. Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Lu YT, Ma Y, Wong CW, Wang S. Characterization and application of bacteriophages for the biocontrol of Shiga-toxin producing Escherichia coli in Romaine lettuce. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Projahn M, Lamparter MC, Ganas P, Goehler A, Lorenz-Wright SC, Maede D, Fruth A, Lang C, Schuh E. Genetic diversity and pathogenic potential of Shiga toxin-producing Escherichia coli (STEC) derived from German flour. Int J Food Microbiol 2021; 347:109197. [PMID: 33895597 DOI: 10.1016/j.ijfoodmicro.2021.109197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe human illness, which are frequently linked to the consumption of contaminated beef or dairy products. However, recent outbreaks associated with contaminated flour and undercooked dough in the United States and Canada, highlight the potential of plant based food as transmission routes for STEC. In Germany STEC has been isolated from flour, but no cases of illness have been linked to flour. In this study, we characterized 123 STEC strains isolated from flour and flour products collected between 2015 and 2019 across Germany. In addition to determination of serotype and Shiga toxin subtype, whole genome sequencing (WGS) was used for isolates collected in 2018 to determine phylogenetic relationships, sequence type (ST), and virulence-associated genes (VAGs). We found a high diversity of serotypes including those frequently associated with human illness and outbreaks, such as O157:H7 (stx2c/d, eae), O145:H28 (stx2a, eae), O146:H28 (stx2b), and O103:H2 (stx1a, eae). Serotypes O187:H28 (ST200, stx2g) and O154:H31 (ST1892, stx1d) were most prevalent, but are rarely linked to human cases. However, WGS analysis revealed that these strains, as well as, O156:H25 (ST300, stx1a) harbour high numbers of VAGs, including eae, nleB and est1a/sta1. Although STEC-contaminated flour products have yet not been epidemiologically linked to human clinical cases in Germany, this study revealed that flour can serve as a vector for STEC strains with a high pathogenic potential. Further investigation is needed to determine the sources of STEC contamination in flour and flour products particularly in regards to these rare serotypes.
Collapse
Affiliation(s)
- Michaela Projahn
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Marina C Lamparter
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Petra Ganas
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - André Goehler
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Sandra C Lorenz-Wright
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Dietrich Maede
- Institute for Consumer Protection Saxony-Anhalt, Halle, Germany
| | - Angelika Fruth
- Robert Koch Institute, Division of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Christina Lang
- Robert Koch Institute, Division of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Elisabeth Schuh
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany.
| |
Collapse
|
8
|
Brusa V, Restovich V, Galli L, Arias R, Linares L, Costa M, Díaz VR, Pugin D, Leotta G. Reduction of Shiga toxin-producing Escherichia coli in a beef abattoir. FOOD SCI TECHNOL INT 2021; 28:50-59. [PMID: 33554641 DOI: 10.1177/1082013221991258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this work was to reinforce actions tending to reduce Shiga toxin-producing Escherichia coli (STEC) in beef products from an Argentinean commercial abattoir implementing Hazard Analysis and Critical Control Point (HACCP) practices. An environmental stx map was built with 421 environmental samples from the slaughter, quartering, cool chamber and deboning sectors (February-May 2013). For stx determination, 125 carcass and 572 anatomical cut samples were used. Based on the environmental stx mapping results, improvement actions were designed and implemented (June and July 2013). After implementing improvement actions, 160 carcass and 477 anatomical cut samples were collected to identify stx and verify the impact of improvement actions (August-December 2013). Our results showed stx-positivity in pre-operational (10.1%) and operational (15.5%) environmental samples and in carcass and beef cut samples before (4.8 and 10.1%; p = 0.144) and after (1.2 and 4.8%; p = 0.0448) implementing improvement actions, respectively. Although improvement actions reduced stx in beef cuts, it is difficult to implement and sustain a system based on stx zero-tolerance only by reinforcing Good Manufacturing Practices, Sanitation Standard Operating Procedures and HACCP practices. The application of combined intervention strategies to reduce STEC in carcasses and beef cuts should be therefore considered.
Collapse
Affiliation(s)
- Victoria Brusa
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Viviana Restovich
- IPCVA - Instituto de Promoción de la Carne Vacuna Argentina, CABA, Argentina
| | - Lucía Galli
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Romina Arias
- IPCVA - Instituto de Promoción de la Carne Vacuna Argentina, CABA, Argentina
| | - Luciano Linares
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Magdalena Costa
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Vanesa Ruíz Díaz
- IPCVA - Instituto de Promoción de la Carne Vacuna Argentina, CABA, Argentina
| | - Daniela Pugin
- IPCVA - Instituto de Promoción de la Carne Vacuna Argentina, CABA, Argentina
| | - Gerardo Leotta
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| |
Collapse
|
9
|
Porto-Fett ACS, Shane LE, Shoyer BA, Osoria M, Jung Y, Luchansky JB. Inactivation of Shiga Toxin-Producing Escherichia coli and Listeria monocytogenes within Plant versus Beef Burgers in Response to High Pressure Processing. J Food Prot 2020; 83:865-873. [PMID: 32027738 DOI: 10.4315/jfp-19-558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/15/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT We evaluated high pressure processing to lower levels of Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes inoculated into samples of plant or beef burgers. Multistrain cocktails of STEC and L. monocytogenes were separately inoculated (∼7.0 log CFU/g) into plant burgers or ground beef. Refrigerated (i.e., 4°C) or frozen (i.e., -20°C) samples (25 g each) were subsequently exposed to 350 MPa for up to 9 or 18 min or 600 MPa for up to 4.5 or 12 min. When refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of STEC were reduced by ca. 0.7 to 1.3 log CFU/g. However, when refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of L. monocytogenes remained relatively unchanged (ca. ≤0.3-log CFU/g decrease) in plant burger samples but were reduced by ca. 0.3 to 2.0 log CFU/g in ground beef. When refrigerated plant or beef burger samples were treated at 600 MPa for up to 4.5 min, levels of STEC and L. monocytogenes were reduced by ca. 0.7 to 4.1 and ca. 0.3 to 5.6 log CFU/g, respectively. Similarly, when frozen plant and beef burger samples were treated at 350 MPa up to 18 min, reductions of ca. 1.7 to 3.6 and ca. 0.6 to 3.6 log CFU/g in STEC and L. monocytogenes numbers, respectively, were observed. Exposure of frozen plant or beef burger samples to 600 MPa for up to 12 min resulted in reductions of ca. 2.4 to 4.4 and ca. 1.8 to 3.4 log CFU/g in levels of STEC and L. monocytogenes, respectively. Via empirical observation, pressurization did not adversely affect the color of plant burger samples, whereas appreciable changes in color were observed in pressurized ground beef. These data confirm that time and pressure levels already validated for control of STEC and L. monocytogenes in ground beef will likely be equally effective toward these same pathogens in plant burgers without causing untoward effects on product color. HIGHLIGHTS
Collapse
Affiliation(s)
- Anna C S Porto-Fett
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - Laura E Shane
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - Bradley A Shoyer
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - Manuela Osoria
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - Yangjin Jung
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| | - John B Luchansky
- U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0002-2689-6402 [A.C.S.P.F.]; https://orcid.org/0000-0003-2377-8651 [J.B.L.])
| |
Collapse
|
10
|
Costa M, Sucari A, Epszteyn S, Oteiza J, Gentiluomo J, Melamed C, Figueroa Y, Mingorance S, Grisaro A, Spioussas S, Almeida MB, Caruso M, Pontoni A, Signorini M, Leotta G. Comparison of six commercial systems for the detection of non-O157 STEC in meat and vegetables. Food Microbiol 2019; 84:103273. [DOI: 10.1016/j.fm.2019.103273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
11
|
Response to Questions Posed by the Food and Drug Administration Regarding Virulence Factors and Attributes that Define Foodborne Shiga Toxin-Producing Escherichia coli (STEC) as Severe Human Pathogens †. J Food Prot 2019; 82:724-767. [PMID: 30969806 DOI: 10.4315/0362-028x.jfp-18-479] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
-
- NACMCF Executive Secretariat, * U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science, PP3, 9-178, 1400 Independence Avenue S.W., Washington, D.C. 20250-3700, USA
| |
Collapse
|
12
|
Yang SC, Lin CH, Aljuffali IA, Fang JY. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch Microbiol 2017; 199:811-825. [DOI: 10.1007/s00203-017-1393-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
|
13
|
Leonard SR, Mammel MK, Lacher DW, Elkins CA. Strain-Level Discrimination of Shiga Toxin-Producing Escherichia coli in Spinach Using Metagenomic Sequencing. PLoS One 2016; 11:e0167870. [PMID: 27930729 PMCID: PMC5145215 DOI: 10.1371/journal.pone.0167870] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022] Open
Abstract
Consumption of fresh bagged spinach contaminated with Shiga toxin-producing Escherichia coli (STEC) has led to severe illness and death; however current culture-based methods to detect foodborne STEC are time consuming. Since not all STEC strains are considered pathogenic to humans, it is crucial to incorporate virulence characterization of STEC in the detection method. In this study, we assess the comprehensiveness of utilizing a shotgun metagenomics approach for detection and strain-level identification by spiking spinach with a variety of genomically disparate STEC strains at a low contamination level of 0.1 CFU/g. Molecular serotyping, virulence gene characterization, microbial community analysis, and E. coli core gene single nucleotide polymorphism (SNP) analysis were performed on metagenomic sequence data from enriched samples. It was determined from bacterial community analysis that E. coli, which was classified at the phylogroup level, was a major component of the population in most samples. However, in over half the samples, molecular serotyping revealed the presence of indigenous E. coli which also contributed to the percent abundance of E. coli. Despite the presence of additional E. coli strains, the serotype and virulence genes of the spiked STEC, including correct Shiga toxin subtype, were detected in 94% of the samples with a total number of reads per sample averaging 2.4 million. Variation in STEC abundance and/or detection was observed in replicate spiked samples, indicating an effect from the indigenous microbiota during enrichment. SNP analysis of the metagenomic data correctly placed the spiked STEC in a phylogeny of related strains in cases where the indigenous E. coli did not predominate in the enriched sample. Also, for these samples, our analysis demonstrates that strain-level phylogenetic resolution is possible using shotgun metagenomic data for determining the genomic relatedness of a contaminating STEC strain to other closely related E. coli.
Collapse
Affiliation(s)
- Susan R. Leonard
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Mark K. Mammel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - David W. Lacher
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Christopher A. Elkins
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| |
Collapse
|
14
|
Molecular Profiling of Shiga Toxin-Producing Escherichia coli and Enteropathogenic E. coli Strains Isolated from French Coastal Environments. Appl Environ Microbiol 2016; 82:3913-3927. [PMID: 27107119 DOI: 10.1128/aem.00271-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/17/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) strains may be responsible for food-borne infections in humans. Twenty-eight STEC and 75 EPEC strains previously isolated from French shellfish-harvesting areas and their watersheds and belonging to 68 distinguishable serotypes were characterized in this study. High-throughput real-time PCR was used to search for the presence of 75 E. coli virulence-associated gene targets, and genes encoding Shiga toxin (stx) and intimin (eae) were subtyped using PCR tests and DNA sequencing, respectively. The results showed a high level of diversity between strains, with 17 unique virulence gene profiles for STEC and 56 for EPEC. Seven STEC and 15 EPEC strains were found to display a large number or a particular combination of genetic markers of virulence and the presence of stx and/or eae variants, suggesting their potential pathogenicity for humans. Among these, an O26:H11 stx1a eae-β1 strain was associated with a large number of virulence-associated genes (n = 47), including genes carried on the locus of enterocyte effacement (LEE) or other pathogenicity islands, such as OI-122, OI-71, OI-43/48, OI-50, OI-57, and the high-pathogenicity island (HPI). One O91:H21 STEC strain containing 4 stx variants (stx1a, stx2a, stx2c, and stx2d) was found to possess genes associated with pathogenicity islands OI-122, OI-43/48, and OI-15. Among EPEC strains harboring a large number of virulence genes (n, 34 to 50), eight belonged to serotype O26:H11, O103:H2, O103:H25, O145:H28, O157:H7, or O153:H2. IMPORTANCE The species E. coli includes a wide variety of strains, some of which may be responsible for severe infections. This study, a molecular risk assessment study of E. coli strains isolated from the coastal environment, was conducted to evaluate the potential risk for shellfish consumers. This report describes the characterization of virulence gene profiles and stx/eae polymorphisms of E. coli isolates and clearly highlights the finding that the majority of strains isolated from coastal environment are potentially weakly pathogenic, while some are likely to be more pathogenic.
Collapse
|
15
|
FDA Escherichia coli Identification (FDA-ECID) Microarray: a Pangenome Molecular Toolbox for Serotyping, Virulence Profiling, Molecular Epidemiology, and Phylogeny. Appl Environ Microbiol 2016; 82:3384-3394. [PMID: 27037122 PMCID: PMC4959244 DOI: 10.1128/aem.04077-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Most Escherichia coli strains are nonpathogenic. However, for clinical diagnosis and food safety analysis, current identification methods for pathogenic E. coli either are time-consuming and/or provide limited information. Here, we utilized a custom DNA microarray with informative genetic features extracted from 368 sequence sets for rapid and high-throughput pathogen identification. The FDA Escherichia coli Identification (FDA-ECID) platform contains three sets of molecularly informative features that together stratify strain identification and relatedness. First, 53 known flagellin alleles, 103 alleles of wzx and wzy, and 5 alleles of wzm provide molecular serotyping utility. Second, 41,932 probe sets representing the pan-genome of E. coli provide strain-level gene content information. Third, approximately 125,000 single nucleotide polymorphisms (SNPs) of available whole-genome sequences (WGS) were distilled to 9,984 SNPs capable of recapitulating the E. coli phylogeny. We analyzed 103 diverse E. coli strains with available WGS data, including those associated with past foodborne illnesses, to determine robustness and accuracy. The array was able to accurately identify the molecular O and H serotypes, potentially correcting serological failures and providing better resolution for H-nontypeable/nonmotile phenotypes. In addition, molecular risk assessment was possible with key virulence marker identifications. Epidemiologically, each strain had a unique comparative genomic fingerprint that was extended to an additional 507 food and clinical isolates. Finally, a 99.7% phylogenetic concordance was established between microarray analysis and WGS using SNP-level data for advanced genome typing. Our study demonstrates FDA-ECID as a powerful tool for epidemiology and molecular risk assessment with the capacity to profile the global landscape and diversity of E. coli. IMPORTANCE This study describes a robust, state-of-the-art platform developed from available whole-genome sequences of E. coli and Shigella spp. by distilling useful signatures for epidemiology and molecular risk assessment into one assay. The FDA-ECID microarray contains features that enable comprehensive molecular serotyping and virulence profiling along with genome-scale genotyping and SNP analysis. Hence, it is a molecular toolbox that stratifies strain identification and pathogenic potential in the contexts of epidemiology and phylogeny. We applied this tool to strains from food, environmental, and clinical sources, resulting in significantly greater phylogenetic and strain-specific resolution than previously reported for available typing methods.
Collapse
|
16
|
Baranzoni GM, Fratamico PM, Gangiredla J, Patel I, Bagi LK, Delannoy S, Fach P, Boccia F, Anastasio A, Pepe T. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli. Front Microbiol 2016; 7:574. [PMID: 27148249 PMCID: PMC4838603 DOI: 10.3389/fmicb.2016.00574] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.
Collapse
Affiliation(s)
- Gian Marco Baranzoni
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Pina M Fratamico
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Isha Patel
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Lori K Bagi
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Sabine Delannoy
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Patrick Fach
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Federica Boccia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| |
Collapse
|
17
|
Luedtke BE, Bosilevac JM, Harhay DM, Arthur TM. Effect of Direct-Fed Microbial Dosage on the Fecal Concentrations of EnterohemorrhagicEscherichia coliin Feedlot Cattle. Foodborne Pathog Dis 2016; 13:190-5. [DOI: 10.1089/fpd.2015.2063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Brandon E. Luedtke
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - Dayna M. Harhay
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - Terrance M. Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska
| |
Collapse
|
18
|
Kaper JB, O'Brien AD. Overview and Historical Perspectives. Microbiol Spectr 2014; 2:10.1128/microbiolspec.EHEC-0028-2014. [PMID: 25590020 PMCID: PMC4290666 DOI: 10.1128/microbiolspec.ehec-0028-2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 12/16/2022] Open
Abstract
In this overview, we describe the history of Shiga toxin (Stx)-producing Escherichia coli (STEC) in two phases. In phase one, between 1977 and 2011, we learned that E. coli could produce Shiga toxin and cause both hemorrhagic colitis and the hemolytic-uremic syndrome in humans and that the prototype STEC-E. coli O157:H7-adheres to and effaces intestinal epithelial cells by a mechanism similar to that of enteropathogenic E. coli. We also recognized that the genes for Stx are typically encoded on a lysogenic phage; that STEC O157:H7 harbors a large pathogenicity island that encodes the elements needed for the characteristic attaching and effacing lesion; and that the most severe cases of human disease are linked to production of Stx type 2a, not Stx type 1a. Phase two began with a large food-borne outbreak of hemorrhagic colitis and hemolytic-uremic syndrome in Germany in 2011. That outbreak was caused by a novel strain consisting of enteroaggregative E. coli O104:H4 transduced by a Stx2a-converting phage. From this outbreak we learned that any E. coli strain that can adhere tightly to the human bowel (either by a biofilm-like mechanism as in E. coli O104:H4 or by an attaching and effacing mechanism as in E. coli O157:H7) can cause severe diarrheal and systemic illness when it acquires the capacity to produce Stx2a. This overview provides the basis for the review of current information regarding these fascinating and complex pathogens.
Collapse
Affiliation(s)
- James B Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21122
| | - Alison D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|