1
|
Tang W, Fei S, Zhao J, Zhao R, Shu J, Hu W, Zhu G. Characterization of five Neisseria homoserine dehydrogenases with diverse coenzyme specificities reveals adaptive evolution of the hom6 genes. Int J Biol Macromol 2025; 308:142603. [PMID: 40157687 DOI: 10.1016/j.ijbiomac.2025.142603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Several dehydrogenases using NAD+ or NADP+ as a coenzyme have been characterized, but the molecular evolutionary mechanisms underlying differential coenzyme preferences of these dehydrogenases are largely unknown. In this study, we performed biochemical, kinetic, and phylogenetic analyses of five monofunctional homoserine dehydrogenases (HSDs) encoded by hom6 genes from different Neisseria species (Neisseria elongata, Neisseria animalis, Neisseria dumasiana, Neisseria iguanae, and Neisseria shayeganii) with key amino acid substitutions related to coenzyme specificities. These HSDs were over-expressed in Escherichia coli and purified to apparent homogeneity. Kinetic analysis demonstrated that, in contrast to the NAD+-dependent Neisseria gonorrhoeae HSD (NgHSD), N. elongata HSD (NeHSD) was a NADP+-dependent enzyme, with an approximately 189-fold preference for NADP+ over NAD+. The other four HSDs exhibited NAD+/NADP+ dual coenzyme specificities. Furthermore, other biochemical properties of NeHSD were comparable to NgHSD, the NAD+-dependent homolog. Computational and site-directed mutagenesis studies suggested that Arg45 of NeHSD was a key residue for NADP+ binding. Phylogenetic analysis of Neisseria hom6 genes and positive selection analysis using the branch-site model resulted in the identification of at least four positively selected sites with Bayes empirical Bayes posterior probabilities >0.95. Among these, Leu45 (amino acid numbering according to NgHSD) was implicated in coenzyme specificity. Therefore, we concluded that the coenzyme specificity changes in the HSDs from different Neisseria species were driven by adaptive evolution. These findings significantly advance our understanding regarding the molecular evolution of hom6 genes from Neisseria and provide a foundation for investigating evolutionary mechanisms of coenzyme utilization in other dehydrogenase-coding genes.
Collapse
Affiliation(s)
- Wanggang Tang
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China.
| | - Shuping Fei
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Jiatong Zhao
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Ruirui Zhao
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Jingwen Shu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Wenxiu Hu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
2
|
Abitbol V, Martinón-Torres F, Taha MK, Nolan T, Muzzi A, Bambini S, Borrow R, Toneatto D, Serino L, Rappuoli R, Pizza M. 4CMenB journey to the 10-year anniversary and beyond. Hum Vaccin Immunother 2024; 20:2357924. [PMID: 38976659 PMCID: PMC11232649 DOI: 10.1080/21645515.2024.2357924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/17/2024] [Indexed: 07/10/2024] Open
Abstract
The 4-component meningococcal serogroup B (MenB) vaccine, 4CMenB, the first broadly protective, protein-based MenB vaccine to be licensed, is now registered in more than 50 countries worldwide. Real-world evidence (RWE) from the last decade confirms its effectiveness and impact, with infant immunization programs showing vaccine effectiveness of 71-95% against invasive MenB disease and cross-protection against non-B serogroups, including a 69% decrease in serogroup W cases in 4CMenB-eligible cohorts in England. RWE from different countries also demonstrates the potential for additional moderate protection against gonorrhea in adolescents. The real-world safety profile of 4CMenB is consistent with prelicensure reports. Use of the endogenous complement human serum bactericidal antibody (enc-hSBA) assay against 110 MenB strains may enable assessment of the immunological effectiveness of multicomponent MenB vaccines in clinical trial settings. Equitable access to 4CMenB vaccination is required to better protect all age groups, including older adults, and vulnerable groups through comprehensive immunization policies.
Collapse
Affiliation(s)
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidad de, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Muhamed-Kheir Taha
- Institut Pasteur, Université Paris Cité, Invasive Bacterial Infections Unit, National Reference Center for Meningococci and Haemophilus influenzae, Paris, France
| | - Terry Nolan
- Peter Doherty Institute for Infection & Immunity at University of Melbourne and Murdoch Children’s Research Institute, Melbourne, Australia
| | | | | | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, UK
| | | | | | | | | |
Collapse
|
3
|
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. EcoSal Plus 2024; 12:eesp00032023. [PMID: 38294234 PMCID: PMC11636386 DOI: 10.1128/ecosalplus.esp-0003-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Type IV pili (T4Ps) are surface filaments widely distributed among bacteria and archaea. T4Ps are involved in many cellular functions and contribute to virulence in some species of bacteria. Due to the diversity of T4Ps, different properties have been observed for homologous proteins that make up T4Ps in various organisms. In this review, we highlight the essential components of T4Ps, their functions, and similarities to related systems. We emphasize the unique T4Ps of enteric pathogens within the Enterobacteriaceae family, which includes pathogenic strains of Escherichia coli and Salmonella. These include the bundle-forming pilus (BFP) of enteropathogenic E. coli (EPEC), longus (Lng) and colonization factor III (CFA/III) of enterotoxigenic E. coli (ETEC), T4P of Salmonella enterica serovar Typhi, Colonization Factor Citrobacter (CFC) of Citrobacter rodentium, T4P of Yersinia pseudotuberculosis, a ubiquitous T4P that was characterized in enterohemorrhagic E. coli (EHEC), and the R64 plasmid thin pilus. Finally, we highlight areas for further study.
Collapse
Affiliation(s)
- Janay I. Little
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pradip K. Singh
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinlei Zhao
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shakeera Dunn
- Internal Medicine Residency, Bayhealth Medical Center, Dover, Delaware, USA
| | - Hanover Matz
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
4
|
Santiago-Frangos A, Henriques WS, Wiegand T, Gauvin CC, Buyukyoruk M, Graham AB, Wilkinson RA, Triem L, Neselu K, Eng ET, Lander GC, Wiedenheft B. Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays. Nat Struct Mol Biol 2023; 30:1675-1685. [PMID: 37710013 PMCID: PMC10872659 DOI: 10.1038/s41594-023-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Bacteria and archaea acquire resistance to viruses and plasmids by integrating fragments of foreign DNA into the first repeat of a CRISPR array. However, the mechanism of site-specific integration remains poorly understood. Here, we determine a 560-kDa integration complex structure that explains how Pseudomonas aeruginosa Cas (Cas1-Cas2/3) and non-Cas proteins (for example, integration host factor) fold 150 base pairs of host DNA into a U-shaped bend and a loop that protrude from Cas1-2/3 at right angles. The U-shaped bend traps foreign DNA on one face of the Cas1-2/3 integrase, while the loop places the first CRISPR repeat in the Cas1 active site. Both Cas3 proteins rotate 100 degrees to expose DNA-binding sites on either side of the Cas2 homodimer, which each bind an inverted repeat motif in the leader. Leader sequence motifs direct Cas1-2/3-mediated integration to diverse repeat sequences that have a 5'-GT. Collectively, this work reveals new DNA-binding surfaces on Cas2 that are critical for DNA folding and site-specific delivery of foreign DNA.
Collapse
Affiliation(s)
| | - William S Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Colin C Gauvin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Ava B Graham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lenny Triem
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Kasahun Neselu
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
5
|
Chanin RB, West PT, Park RM, Wirbel J, Green GZM, Miklos AM, Gill MO, Hickey AS, Brooks EF, Bhatt AS. Intragenic DNA inversions expand bacterial coding capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532203. [PMID: 36945655 PMCID: PMC10028968 DOI: 10.1101/2023.03.11.532203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Bacterial populations that originate from a single bacterium are not strictly clonal. Often, they contain subgroups with distinct phenotypes. Bacteria can generate heterogeneity through phase variation: a preprogrammed, reversible mechanism that alters gene expression levels across a population. One well studied type of phase variation involves enzyme-mediated inversion of specific intergenic regions of genomic DNA. Frequently, these DNA inversions flip the orientation of promoters, turning ON or OFF adjacent coding regions within otherwise isogenic populations. Through this mechanism, inversion can affect fitness, survival, or group dynamics. Here, we develop and apply bioinformatic approaches to discover thousands of previously undescribed phase-variable regions in prokaryotes using long-read datasets. We identify 'intragenic invertons', a surprising new class of invertible elements found entirely within genes, in bacteria and archaea. To date, inversions within single genes have not been described. Intragenic invertons allow a gene to encode two or more versions of a protein by flipping a DNA sequence within the coding region, thereby increasing coding capacity without increasing genome size. We experimentally characterize specific intragenic invertons in the gut commensal Bacteroides thetaiotaomicron, presenting a 'roadmap' for investigating this new gene-diversifying phenomenon.
Collapse
Affiliation(s)
- Rachael B. Chanin
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Patrick T. West
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Ryan M. Park
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Jakob Wirbel
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Gabriella Z. M. Green
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Arjun M. Miklos
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | | | | | - Erin F. Brooks
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Ami S. Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
- Department of Genetics, Stanford University; Stanford, USA
| |
Collapse
|
6
|
Van Dijck C, Laumen JGE, de Block T, Abdellati S, De Baetselier I, Tsoumanis A, Malhotra-Kumar S, Manoharan-Basil SS, Kenyon C, Xavier BB. The oropharynx of men using HIV pre-exposure prophylaxis is enriched with antibiotic resistance genes: A cross-sectional observational metagenomic study. J Infect 2023; 86:329-337. [PMID: 36764395 DOI: 10.1016/j.jinf.2023.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Phenotypic studies have found high levels of antimicrobial resistance to cephalosporins, macrolides and fluoroquinolones in commensal Neisseria species in the oropharynx of men who have sex with men (MSM) using HIV pre-exposure prophylaxis (PrEP). These species include Neisseria subflava and Neisseria mucosa. This may represent a risk to pathogens like Neisseria gonorrhoeae which tend to take up antibiotic resistance genes (ARGs) from other bacteria. We aimed to explore to what extent the oropharyngeal resistome of MSM using PrEP differed from the general population. METHODS We collected oropharyngeal swabs from 32 individuals of the general population and from 64 MSM using PrEP. Thirty-two MSM had consumed antibiotics in the previous six months, whereas none of the other participants had. Samples underwent shotgun metagenomic sequencing. Sequencing reads were mapped against MEGARes 2.0 to estimate ARG abundance. ARG abundance was compared between groups by zero-inflated negative binomial regression. FINDINGS ARG abundance was significantly lower in the general population than in MSM (ratio 0.41, 95% CI 0.26-0.65). More specifically, this was the case for fluoroquinolones (0.33, 95% CI 0.15-0.69), macrolides (0.37, 95% CI 0.25-0.56), tetracyclines (0.41, 95% CI 0.25-0.69), and multidrug efflux pumps (0.11, 95% CI 0.03-0.33), but not for beta-lactams (1.38, 95% CI 0.73-2.61). There were no significant differences in ARG abundance between MSM who had used antibiotics and those that had not. INTERPRETATION The resistome of MSM using PrEP is enriched with ARGs, independent of recent antibiotic use. Stewardship campaigns should aim to reduce antibiotic consumption in populations at high risk for STIs.
Collapse
Affiliation(s)
- Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium; Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium; Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Achilleas Tsoumanis
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium; University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
7
|
Borrow R, Martinón-Torres F, Abitbol V, Andani A, Preiss S, Muzzi A, Serino L, Sohn WY. Use of expanded Neisseria meningitidis serogroup B panels with the serum bactericidal antibody assay for the evaluation of meningococcal B vaccine effectiveness. Expert Rev Vaccines 2023; 22:738-748. [PMID: 37622470 DOI: 10.1080/14760584.2023.2244596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Neisseria meningitidis serogroup B (NmB) antigens are inherently diverse with variable expression among strains. Prediction of meningococcal B (MenB) vaccine effectiveness therefore requires an assay suitable for use against large panels of epidemiologically representative disease-causing NmB strains. Traditional serum bactericidal antibody assay using exogenous human complement (hSBA) is limited to the quantification of MenB vaccine immunogenicity on a small number of indicator strains. AREAS COVERED Additional and complementary methods for assessing strain coverage developed previously include the Meningococcal Antigen Typing System (MATS), Meningococcal Antigen Surface Expression (MEASURE) assay, and genotyping approaches, but these do not estimate vaccine effectiveness. We provide a narrative review of these methods, highlighting a more recent approach involving the hSBA assay in conjunction with expanded NmB strain panels: hSBA assay using endogenous complement in each vaccinated person's serum (enc-hSBA) against a 110-strain NmB panel and the traditional hSBA assay against 14 (4 + 10) NmB strains. EXPERT OPINION The enc-hSBA is a highly standardized, robust method that can be used in clinical trials to measure the immunological effectiveness of MenB vaccines under conditions that mimic real-world settings as closely as possible, through the use of endogenous complement and a diverse, epidemiologically representative panel of NmB strains.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Federico Martinón-Torres
- Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidad de Santiago de Compostela, Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Faria J, Briggs EM, Black JA, McCulloch R. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol 2022; 70:102209. [PMID: 36215868 DOI: 10.1016/j.mib.2022.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Survival of the African trypanosome within its mammalian hosts, and hence transmission between hosts, relies upon antigenic variation, where stochastic changes in the composition of their protective variant-surface glycoprotein (VSG) coat thwart effective removal of the pathogen by adaptive immunity. Antigenic variation has evolved remarkable mechanistic complexity in Trypanosoma brucei, with switching of the VSG coat executed by either transcriptional or recombination reactions. In the former, a single T. brucei cell selectively transcribes one telomeric VSG transcription site, termed the expression site (ES), from a pool of around 15. Silencing of the active ES and activation of one previously silent ES can lead to a co-ordinated VSG coat switch. Outside the ESs, the T. brucei genome contains an enormous archive of silent VSG genes and pseudogenes, which can be recombined into the ES to execute a coat switch. Most such recombination involves gene conversion, including copying of a complete VSG and more complex reactions where novel 'mosaic' VSGs are formed as patchworks of sequences from several silent (pseudo)genes. Understanding of the cellular machinery that directs transcriptional and recombination VSG switching is growing rapidly and the emerging picture is of the use of proteins, complexes and pathways that are not limited to trypanosomes, but are shared across the wider grouping of kinetoplastids and beyond, suggesting co-option of widely used, core cellular reactions. We will review what is known about the machinery of antigenic variation and discuss if there remains the possibility of trypanosome adaptations, or even trypanosome-specific machineries, that might offer opportunities to impair this crucial parasite-survival process.
Collapse
Affiliation(s)
- Joana Faria
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom.
| | - Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
9
|
Hughes-Games A, Davis SA, Hill DJ. Direct visualization of sequence-specific DNA binding by gonococcal type IV pili. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35920810 DOI: 10.1099/mic.0.001224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhoea, is a major burden on global healthcare systems, with an estimated ~80-90 million new global cases annually. This burden is exacerbated by increasing levels of antimicrobial resistance, which has greatly limited viable antimicrobial therapies. Decreasing gonococcal drug susceptibility has been driven largely by accumulation of chromosomal resistance determinants, which can be acquired through natural transformation, whereby DNA in the extracellular milieu is imported into cells and incorporated into the genome by homologous recombination. N. gonorrhoeae possesses a specialized system for DNA uptake, which strongly biases transformation in favour of DNA from closely related bacteria by recognizing a 10-12 bp DNA uptake sequence (DUS) motif, which is highly overrepresented in their chromosomal DNA. This process relies on numerous proteins, including the DUS-specific receptor ComP, which assemble retractile protein filaments termed type IV pili (T4P) extending from the cell surface, and one model for neisserial DNA uptake proposes that these filaments bind DNA in a DUS-dependent manner before retracting to transport DNA into the periplasm. However, conflicting evidence indicates that elongated pilus filaments may not have such a direct role in DNA binding uptake as this model suggests. Here, we quantitatively measured DNA binding to gonococcal T4P fibres by directly visualizing binding complexes with confocal fluorescence microscopy in order to confirm the sequence-specific, comP-dependent DNA binding capacity of elongated T4P fibres. This supports the idea that pilus filaments could be responsible for initially capturing DNA in the first step of sequence-specific DNA uptake.
Collapse
Affiliation(s)
- Alex Hughes-Games
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, UK.,School of Chemistry, University of Bristol, Bristol, UK
| | - Sean A Davis
- School of Chemistry, University of Bristol, Bristol, UK
| | - Darryl J Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Castellanos M, Verhey TB, Goldstein M, Chaconas G. The Putative Endonuclease Activity of MutL Is Required for the Segmental Gene Conversion Events That Drive Antigenic Variation of the Lyme Disease Spirochete. Front Microbiol 2022; 13:888494. [PMID: 35663861 PMCID: PMC9159922 DOI: 10.3389/fmicb.2022.888494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi, encodes an elaborate antigenic variation system that promotes the ongoing variation of a major surface lipoprotein, VlsE. Changes in VlsE are continual and always one step ahead of the host acquired immune system, which requires 1–2 weeks to generate specific antibodies. By the time this happens, new VlsE variants have arisen that escape immunosurveillance, providing an avenue for persistent infection. This antigenic variation system is driven by segmental gene conversion events that transfer information from a series of silent cassettes (vls2-16) to the expression locus, vlsE. The molecular details of this process remain elusive. Recombinational switching at vlsE is RecA-independent and the only required factor identified to date is the RuvAB branch migrase. In this work we have used next generation long-read sequencing to analyze the effect of several DNA replication/recombination/repair gene disruptions on the frequency of gene conversions at vlsE and report a requirement for the mismatch repair protein MutL. Site directed mutagenesis of mutL suggests that the putative MutL endonuclease activity is required for recombinational switching at vlsE. This is the first report of an unexpected essential role for MutL in a bacterial recombination system and expands the known function of this protein as well as our knowledge of the details of the novel recombinational switching mechanism for vlsE variation.
Collapse
Affiliation(s)
- Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Theodore B. Verhey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Madeleine Goldstein
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: George Chaconas,
| |
Collapse
|
11
|
MacAlasdair N, Pesonen M, Brynildsrud O, Eldholm V, Kristiansen PA, Corander J, Caugant DA, Bentley SD. The effect of recombination on the evolution of a population of Neisseria meningitidis. Genome Res 2021; 31:1258-1268. [PMID: 34108268 PMCID: PMC8256868 DOI: 10.1101/gr.264465.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/22/2021] [Indexed: 12/02/2022]
Abstract
Neisseria meningitidis (the meningococcus) is a major human pathogen with a history of high invasive disease burden, particularly in sub-Saharan Africa. Our current understanding of the evolution of meningococcal genomes is limited by the rarity of large-scale genomic population studies and lack of in-depth investigation of the genomic events associated with routine pathogen transmission. Here, we fill this knowledge gap by a detailed analysis of 2839 meningococcal genomes obtained through a carriage study of over 50,000 samples collected systematically in Burkina Faso, West Africa, before, during, and after the serogroup A vaccine rollout, 2009-2012. Our findings indicate that the meningococcal genome is highly dynamic, with highly recombinant loci and frequent gene sharing across deeply separated lineages in a structured population. Furthermore, our findings illustrate how population structure can correlate with genome flexibility, as some lineages in Burkina Faso are orders of magnitude more recombinant than others. We also examine the effect of selection on the population, in particular how it is correlated with recombination. We find that recombination principally acts to prevent the accumulation of deleterious mutations, although we do also find an example of recombination acting to speed the adaptation of a gene. In general, we show the importance of recombination in the evolution of a geographically expansive population with deep population structure in a short timescale. This has important consequences for our ability to both foresee the outcomes of vaccination programs and, using surveillance data, predict when lineages of the meningococcus are likely to become a public health concern.
Collapse
Affiliation(s)
- Neil MacAlasdair
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Maiju Pesonen
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Oslo University Hospital Research Support Services, Blindern, 0317 Oslo, Norway
| | - Ola Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, 0454 Oslo, Norway
| | - Vegard Eldholm
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Paul A Kristiansen
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
- University of Oslo, Department of Biostatistics, Blindern, 0317 Oslo, Norway
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Department of Community Medicine, Faculty of Medicine, University of Oslo, Blindern, 0316 Oslo, Norway
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
12
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
13
|
Huang X, Wang J, Li J, Liu Y, Liu X, Li Z, Kurniyati K, Deng Y, Wang G, Ralph JD, De Ste Croix M, Escobar-Gonzalez S, Roberts RJ, Veening JW, Lan X, Oggioni MR, Li C, Zhang JR. Prevalence of phase variable epigenetic invertons among host-associated bacteria. Nucleic Acids Res 2020; 48:11468-11485. [PMID: 33119758 PMCID: PMC7672463 DOI: 10.1093/nar/gkaa907] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.
Collapse
Affiliation(s)
- Xueting Huang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juanjuan Wang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Li
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanni Liu
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH 1015, Switzerland
| | - Zeyao Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kurni Kurniyati
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yijie Deng
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guilin Wang
- W. M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT 06520, USA
| | - Joseph D Ralph
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Sara Escobar-Gonzalez
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH 1015, Switzerland
| | - Xun Lan
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Chunhao Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jing-Ren Zhang
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Williamson A, Leiros HKS. Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res 2020; 48:8225-8242. [PMID: 32365176 PMCID: PMC7470946 DOI: 10.1093/nar/gkaa307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
DNA ligases are diverse enzymes with essential functions in replication and repair of DNA; here we review recent advances in their structure and distribution and discuss how this contributes to understanding their biological roles and technological potential. Recent high-resolution crystal structures of DNA ligases from different organisms, including DNA-bound states and reaction intermediates, have provided considerable insight into their enzymatic mechanism and substrate interactions. All cellular organisms possess at least one DNA ligase, but many species encode multiple forms some of which are modular multifunctional enzymes. New experimental evidence for participation of DNA ligases in pathways with additional DNA modifying enzymes is defining their participation in non-redundant repair processes enabling elucidation of their biological functions. Coupled with identification of a wealth of DNA ligase sequences through genomic data, our increased appreciation of the structural diversity and phylogenetic distribution of DNA ligases has the potential to uncover new biotechnological tools and provide new treatment options for bacterial pathogens.
Collapse
Affiliation(s)
- Adele Williamson
- School of Science, University of Waikato, Hamilton 3240, New Zealand.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø N-9037, Norway
| | | |
Collapse
|
15
|
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 2020; 295:301-313. [PMID: 31753921 PMCID: PMC6956529 DOI: 10.1074/jbc.rev119.008583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
16
|
Verhey TB, Castellanos M, Chaconas G. Antigenic Variation in the Lyme Spirochete: Insights into Recombinational Switching with a Suggested Role for Error-Prone Repair. Cell Rep 2019; 23:2595-2605. [PMID: 29847791 DOI: 10.1016/j.celrep.2018.04.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 01/14/2023] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
17
|
Novotny LA, Goodman SD, Bakaletz LO. Redirecting the immune response towards immunoprotective domains of a DNABII protein resolves experimental otitis media. NPJ Vaccines 2019; 4:43. [PMID: 31632744 PMCID: PMC6791836 DOI: 10.1038/s41541-019-0137-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
The chronicity and recurrence of many bacterial diseases is largely attributable to the presence of a biofilm, and eradication of these structures is confounded by an extracellular DNA-rich matrix. DNABII proteins, including integration host factor (IHF), are critical components of the matrix formed by all human pathogens tested to date. Whereas the natural adaptive immune response to IHF is against non-protective epitopes within the carboxyl-terminal region, antibodies against the DNA-binding “tips” induce biofilm collapse. We designed a “tip-chimer” immunogen to mimic the DNA-binding regions within the α-subunit and β-subunit of IHF from nontypeable Haemophilus influenzae (IHFNTHi). Re-direction of the natural adaptive immune response toward immunoprotective domains disrupted NTHi biofilms in vitro and in an experimental model of otitis media. Our data support the rational design of a powerful therapeutic approach, and also that of a DNABII-directed vaccine antigen that would avoid augmentation of any pre-existing natural, but nonprotective, immune response. Bacterial biofilms are characterized by the presence of a protective extracellular polymeric substance (EPS) that incorporates both eDNA and members of the DNABII family of bacterial DNA-binding proteins. Antibodies against the “tips” of these DNA binding-domains can cause biofilm collapse, but these epitopes are masked from the host adaptive immune system when bound to eDNA, making biofilm eradication difficult. Here, the team led by Lauren Bakaletz used a chimeric peptide to generate tip-specific antibodies against nontypeable Haemophilus influenzae to treat biofilms in vitro and in vivo. The “tip-chimer” contained the immunoprotective domains from the DNA-binding tips of a DNABII protein, integration host factor (IHF), expressed by nontypeable Haemophilus influenzae. The consequent antibodies disrupted H. influenzae biofilms in vitro and were used to treat a chinchilla model of experimental otitis media when inoculated directly into the middle ear, resulting in reduced bacterial load and clearance of already established mucosal biofilms. These findings suggest that redirecting the host adaptive immune response towards the immunoprotective tips of DNABII proteins could provide a strategy to eradicate biofilms caused by various pathogens that produce these proteins.
Collapse
Affiliation(s)
- L A Novotny
- 1Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205 USA
| | - S D Goodman
- 1Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205 USA.,2The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - L O Bakaletz
- 1Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205 USA.,2The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
18
|
New Zealand White Rabbits Effectively Clear Borrelia burgdorferi B31 despite the Bacterium's Functional vlsE Antigenic Variation System. Infect Immun 2019; 87:IAI.00164-19. [PMID: 30988058 DOI: 10.1128/iai.00164-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Borrelia burgdorferi is a tick-borne bacterium responsible for approximately 300,000 annual cases of Lyme disease (LD) in the United States, with increasing incidences in other parts of the world. The debilitating nature of LD is mainly attributed to the ability of B. burgdorferi to persist in patients for many years despite strong anti-Borrelia antibody responses. Antimicrobial treatment of persistent infection is challenging. Similar to infection of humans, B. burgdorferi establishes long-term infection in various experimental animal models except for New Zealand White (NZW) rabbits, which clear the spirochete within 4 to 12 weeks. LD spirochetes have a highly evolved antigenic variation vls system, on the lp28-1 plasmid, where gene conversion results in surface expression of the antigenically variable VlsE protein. VlsE is required for B. burgdorferi to establish persistent infection by continually evading otherwise potent antibodies. Since the clearance of B. burgdorferi is mediated by humoral immunity in NZW rabbits, the previously reported results that LD spirochetes lose lp28-1 during rabbit infection could potentially explain the failure of B. burgdorferi to persist. However, the present study unequivocally disproves that previous finding by demonstrating that LD spirochetes retain the vls system. However, despite the vls system being fully functional, the spirochete fails to evade anti-Borrelia antibodies of NZW rabbits. In addition to being protective against homologous and heterologous challenges, the rabbit antibodies significantly ameliorate LD-induced arthritis in persistently infected mice. Overall, the current data indicate that NZW rabbits develop a protective antibody repertoire, whose specificities, once defined, will identify potential candidates for a much-anticipated LD vaccine.
Collapse
|
19
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
20
|
Verhey TB, Castellanos M, Chaconas G. Antigenic variation in the Lyme spirochete: detailed functional assessment of recombinational switching at vlsE in the JD1 strain of Borrelia burgdorferi. Mol Microbiol 2019; 111:750-763. [PMID: 30580501 DOI: 10.1111/mmi.14189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 11/26/2022]
Abstract
Borrelia burgdorferi is a causative agent of Lyme disease and establishes long-term infection in mammalian hosts. Persistence is promoted by the VlsE antigenic variation system, which generates combinatorial diversity of VlsE through unidirectional, segmental gene conversion from an array of silent cassettes. Here we explore the variants generated by the vls system of strain JD1, which has divergent sequence and structural elements from the type strain B31, the only B. burgdorferi strain in which recombinational switching at vlsE has been studied in detail. We first completed the sequencing of the vls region in JD1, uncovering a previously unreported 114 bp inverted repeat sequence upstream of vlsE. A five-week infection of WT and SCID mice was used for PacBio long read sequencing along with our recently developed VAST pipeline to analyze recombinational switching at vlsE from 40,000 sequences comprising 226,000 inferred recombination events. We show that antigenic variation in B31 and JD1 is highly similar, despite the lack of 17 bp direct repeats in JD1, a somewhat different arrangement of the silent cassettes, divergent inverted repeat sequences and general divergence in the vls sequences. We also present data that strongly suggest that dimerization is required for in vivo functionality of VlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
21
|
Muschiol S, Aschtgen MS, Nannapaneni P, Henriques-Normark B. Gram-Positive Type IV Pili and Competence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0011-2018. [PMID: 30737914 PMCID: PMC11588153 DOI: 10.1128/microbiolspec.psib-0011-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (T4P) are remarkable bacterial surface appendages that carry out a range of functions. Various types of T4P have been identified in bacteria and archaea, making them almost universal structures in prokaryotes. T4P are best characterized in Gram-negative bacteria, in which pilus biogenesis and T4P-mediated functions have been studied for decades. Recent advances in microbial whole-genome sequencing have provided ample evidence for the existence of T4P also in many Gram-positive species. However, comparatively little is known, and T4P in Gram-positive bacteria are just beginning to be dissected. So far, they have mainly been studied in Clostridium and Streptococcus spp. and are involved in diverse cellular processes such as adhesion, motility, and horizontal gene transfer. Here we summarize the current understanding of T4P in Gram-positive species and their functions, with particular focus on the type IV competence pilus produced by the human pathogen Streptococcus pneumoniae and its role in natural transformation.
Collapse
Affiliation(s)
- Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Marie-Stephanie Aschtgen
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| |
Collapse
|
22
|
Briggs E, Crouch K, Lemgruber L, Lapsley C, McCulloch R. Ribonuclease H1-targeted R-loops in surface antigen gene expression sites can direct trypanosome immune evasion. PLoS Genet 2018; 14:e1007729. [PMID: 30543624 PMCID: PMC6292569 DOI: 10.1371/journal.pgen.1007729] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022] Open
Abstract
Switching of the Variant Surface Glycoprotein (VSG) in Trypanosoma brucei provides a crucial host immune evasion strategy that is catalysed both by transcription and recombination reactions, each operating within specialised telomeric VSG expression sites (ES). VSG switching is likely triggered by events focused on the single actively transcribed ES, from a repertoire of around 15, but the nature of such events is unclear. Here we show that RNA-DNA hybrids, called R-loops, form preferentially within sequences termed the 70 bp repeats in the actively transcribed ES, but spread throughout the active and inactive ES, in the absence of RNase H1, which degrades R-loops. Loss of RNase H1 also leads to increased levels of VSG coat switching and replication-associated genome damage, some of which accumulates within the active ES. This work indicates VSG ES architecture elicits R-loop formation, and that these RNA-DNA hybrids connect T. brucei immune evasion by transcription and recombination.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Kathryn Crouch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Leandro Lemgruber
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| |
Collapse
|
23
|
Analysis of Pilin Antigenic Variation in Neisseria meningitidis by Next-Generation Sequencing. J Bacteriol 2018; 200:JB.00465-18. [PMID: 30181126 DOI: 10.1128/jb.00465-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/29/2018] [Indexed: 01/07/2023] Open
Abstract
Many pathogenic microbes evade host immune surveillance by varying the surface antigens, a process termed antigenic variation. While the process of pilin antigenic variation has been extensively studied in the human pathogen Neisseria gonorrhoeae (gonococcus [Gc]), relatively few studies of pilin antigenic variation have been conducted with Neisseria meningitidis (meningococcus [Mc]). Mc is usually a commensal organism that colonizes the human nasopharynx, but when it translocates to the bloodstream or meninges, it results in the severe and often deadly meningococcal disease. The type IV pili of Mc isolates play a critical role in host surface adherence, and its major pilin component (PilE) can undergo antigenic variation. In this study, Roche 454 pyrosequencing was used to examine the pilin antigenic variation of Mc strain 8013, as well as 8013 recA, recX, recQ, rep, and recJ mutants, Gc orthologues which have been shown to play a role in pilin antigenic variation. This study confirms that the Mc recA, rep, and recJ genes are essential for pilin antigenic variation. While the Mc recQ and recX gene products contribute to normal frequencies of antigenic variation, the loss of these factors does not alter the types of pilin variants produced. Overall, this study shows that the mechanisms of pilin antigenic variation are conserved between Gc and Mc.IMPORTANCE Antigenic variation is a strategy used by many pathogens to escape host immune surveillance and establish persistent infections. This study successfully applies next-generation sequencing to study pilin antigenic variation in the human pathogen Neisseria meningitidis This assay provides an affordable and efficient solution for quantifying antigenic variation frequency in mutant strains and for defining the recombination products of the process. We determined that there is a nonuniformity of silent donor copies used during meningococcus antigenic variation, and by the analysis of selected mutants deficient for specific recombination pathways, we show for the first time that the processes are conserved between N. meningitidis and Neisseria gonorrhoeae.
Collapse
|
24
|
Castellanos M, Verhey TB, Chaconas G. A Borrelia burgdorferi mini-vls system that undergoes antigenic switching in mice: investigation of the role of plasmid topology and the long inverted repeat. Mol Microbiol 2018; 109:710-721. [PMID: 29995993 DOI: 10.1111/mmi.14071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 12/23/2022]
Abstract
Borrelia burgdorferi evades the host immune system by switching the surface antigen. VlsE, in a process known as antigenic variation. The DNA mechanisms and genetic elements present on the vls locus that participate in the switching process remain to be elucidated. Manipulating the vls locus has been difficult due to its instability on Escherichia coli plasmids. In this study, we generated for the first time a mini-vls system composed of a single silent vlsE variable region (silent cassette 2) through the vlsE gene by performing some cloning steps directly in a highly transformable B. burgdorferi strain. Variants of the mini system were constructed with or without the long inverted repeat (IR) located upstream of vlsE and on both circular and linear plasmids to investigate the importance of the IR and plasmid topology on recombinational switching at vlsE. Amplicon sequencing using PacBio long read technology and analysis of the data with our recently reported pipeline and VAST software showed that the system undergoes switching in mice in both linear and circular versions and that the presence of the hairpin does not seem to be crucial in the linear version, however it is required when the topology is circular.
Collapse
Affiliation(s)
- Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
25
|
Pathogenesis of Neisseria gonorrhoeae in the female reproductive tract: neutrophilic host response, sustained infection, and clinical sequelae. Curr Opin Hematol 2018; 25:13-21. [PMID: 29016383 DOI: 10.1097/moh.0000000000000394] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Gonorrhea is a major global health concern, caused by the bacterium Neisseria gonorrhoeae. The main clinical feature of acute gonorrhea is neutrophilic influx that is unable to clear infection. Women of reproductive age are predominantly at risk for serious sequelae of gonorrhea, including pelvic inflammatory disease, ectopic pregnancy, and infertility. This review will highlight how neutrophils are recruited to the female reproductive tract (FRT) in response to N. gonorrhoeae, how N. gonorrhoeae resists killing by neutrophils, and the connection between neutrophilic inflammation and cellular damage. RECENT FINDINGS Epithelial cells and immune cells of the FRT recognize and respond to N. gonorrhoeae lipid A and heptose bisphosphate of lipooligosaccharide, porin, lipoproteins, and peptidoglycan fragments. N. gonorrhoeae skews the resulting immune response toward a neutrophilic, Th17-like response. N. gonorrhoeae has multiple, nonredundant mechanisms to survive inside neutrophils and in neutrophil extracellular traps. Infection that ascends to the upper FRT induces the further release of inflammatory cytokines and matrix metalloproteinases, which cause epithelial damage. SUMMARY N. gonorrhoeae is remarkable in its ability to recruit neutrophils, yet survive in their midst. New models being developed for FRT infection with N. gonorrhoeae will be useful to reveal the mechanisms underlying these observations.
Collapse
|
26
|
Obergfell KP, Schaub RE, Priniski LL, Dillard JP, Seifert HS. The low-molecular-mass, penicillin-binding proteins DacB and DacC combine to modify peptidoglycan cross-linking and allow stable Type IV pilus expression in Neisseria gonorrhoeae. Mol Microbiol 2018; 109:135-149. [PMID: 29573486 PMCID: PMC6153085 DOI: 10.1111/mmi.13955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 11/28/2022]
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea and is adapted to survive in humans, its only host. The N. gonorrhoeae cell wall is critical for maintaining envelope integrity, resisting immune cell killing and production of cytotoxic peptidoglycan (PG) fragments. Deletion of the N. gonorrhoeae strain FA1090 genes encoding two predicted low-molecular-mass, penicillin-binding proteins (LMM PBPs), DacB and DacC, substantially altered the PG cross-linking. Loss of the DacB peptidase resulted in global alterations to the PG composition, while loss of the DacC protein affected a much narrower subset of PG peptide components. A double ΔdacB/ΔdacC mutant resembled the ΔdacB single mutant, but had an even greater level of cross-linked PG. While single ΔdacB or ΔdacC mutants did not show any major phenotypes, the ΔdacB/ΔdacC mutant displayed an altered cellular morphology, decreased resistance to antibiotics and increased sensitivity to detergent-mediated death. Loss of the two proteins also drastically reduced the number of Type IV pili (Tfp), a critical virulence factor. The decreased piliation reduced transformation efficiency and correlated with increased growth rate. While these two LMM PBPs differentially alter the PG composition, their overlapping effects are essential to proper envelope function and expression of factors critical for pathogenesis.
Collapse
Affiliation(s)
- Kyle P. Obergfell
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Lauren L. Priniski
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
27
|
Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 2018; 107:455-471. [PMID: 29235173 PMCID: PMC5796862 DOI: 10.1111/mmi.13896] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023]
Abstract
Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram-negative and Gram-positive bacteria. They play important roles through the contact-dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact-independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F-pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of 'paradigmatic' and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Beuth University of Applied Sciences Berlin, Life Sciences and Technology, D-13347 Berlin, Germany
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, USA
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom
| | - Steffen Backert
- Friedrich Alexander University Erlangen-Nuremberg, Department of Biology, Division of Microbiology, Staudtstrasse 5, D-91058 Erlangen, Germany
| |
Collapse
|
28
|
Verhey TB, Castellanos M, Chaconas G. Analysis of recombinational switching at the antigenic variation locus of the Lyme spirochete using a novel PacBio sequencing pipeline. Mol Microbiol 2017; 107:104-115. [PMID: 29105221 DOI: 10.1111/mmi.13873] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Abstract
The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Zhang A, Zhao P, Zhu B, Shi F, Xu L, Gao Y, Xie N, Shao Z. Characterization and Distribution of the autB Gene in Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:436. [PMID: 29057217 PMCID: PMC5635059 DOI: 10.3389/fcimb.2017.00436] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022] Open
Abstract
We aimed to investigate and understand the characterization and distribution of the autB gene in Neisseria meningitidis in China. autB is flanked by two conservative genes, smpB and glcD, and it can be present in the majority of meningococcal isolates, but not in 053442 of clonal complex 4821 (CC4821) which contains a 968 bp sequence. In this study, we sequenced the intervenient region between smpB and glcD in 178 Chinese N. meningitidis strains isolated from both patients and carriers. There were 110 serogroupable strains, other 68 were non-groupable (NG). Ninety nine of the 178 strains were clustered into 13 CCs, the remaining 79 were unassigned (UA). CC4821 is one of the dominant CCs in China. Forty of the 42 CC4821 strains and 26 of the 79 UA strains were autB-null, while the remaining 12 CCs were autB-positive. According to the N-terminal sequence, most (97/112) of the autB-positive strains were clustered into AutB1 and the remaining 15 were AutB2. The autB gene and its flanking intergenic sequences was superseded by a perfectly conservative sequence of an identical 968 bp in all of the autB-null N. meningitidis strains which had no identity with the relatively conservative intergenic sequences that flanked the autB gene in autB-positive strains. There was a 10 bp DNA uptake sequence (DUS) at the beginning of the interval 968 bp sequence in the autB-null strains while there was a 9 bp Haemophilus-specific uptake sequence (hUS) at the beginning of the partial holB gene and at the end of the partial tmk gene in autB-positive strains, holB and tmk gene were flanking the autB gene in Haemophilus. In conclusion, not all pathogenic N. meningitidis strains especially CC4821 possess the autB gene in China and the corresponding spacer region of the autB-null strains was not homologous to that found in autB-positive strains. There's a hypothesis that the DUS and hUS are likely to play a key part in the mechanism of uptake or loss of the autB gene.
Collapse
Affiliation(s)
- Aiyu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pan Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bingqing Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fenglin Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Na Xie
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
30
|
Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C, Vogel J. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res 2017; 45:6147-6167. [PMID: 28334889 PMCID: PMC5449619 DOI: 10.1093/nar/gkx168] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of −35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.
Collapse
Affiliation(s)
- Nadja Heidrich
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Saskia Bauriedl
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Lei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christoph Schoen
- Institute for Hygiene and Microbiology (IHM), University of Würzburg, D-97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), D-97080 Würzburg, Germany
| |
Collapse
|
31
|
Merda D, Briand M, Bosis E, Rousseau C, Portier P, Barret M, Jacques MA, Fischer-Le Saux M. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol Ecol 2017; 26:5939-5952. [PMID: 28869687 PMCID: PMC7168496 DOI: 10.1111/mec.14343] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
Abstract
Deciphering the evolutionary history and transmission patterns of virulence determinants is necessary to understand the emergence of novel pathogens. The main virulence determinant of most pathogenic proteobacteria is the type three secretion system (T3SS). The Xanthomonas genus includes bacteria responsible for numerous epidemics in agroecosystems worldwide and represents a major threat to plant health. The main virulence factor of Xanthomonas is the Hrp2 family T3SS; however, this system is not conserved in all strains and it has not been previously determined whether the distribution of T3SS in this bacterial genus has resulted from losses or independent acquisitions. Based on comparative genomics of 82 genome sequences representing the diversity of the genus, we have inferred three ancestral acquisitions of the Hrp2 cluster during Xanthomonas evolution followed by subsequent losses in some commensal strains and re‐acquisition in some species. While mutation was the main force driving polymorphism at the gene level, interspecies homologous recombination of large fragments expanding through several genes shaped Hrp2 cluster polymorphism. Horizontal gene transfer of the entire Hrp2 cluster also occurred. A reduced core effectome composed of xopF1, xopM, avrBs2 and xopR was identified that may allow commensal strains overcoming plant basal immunity. In contrast, stepwise accumulation of numerous type 3 effector genes was shown in successful pathogens responsible for epidemics. Our data suggest that capacity to intimately interact with plants through T3SS would be an ancestral trait of xanthomonads. Since its acquisition, T3SS has experienced a highly dynamic evolutionary history characterized by intense gene flux between species that may reflect its role in host adaptation.
Collapse
Affiliation(s)
- Déborah Merda
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Martial Briand
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Céline Rousseau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Perrine Portier
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Matthieu Barret
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | | |
Collapse
|
32
|
Opota O, Laurent S, Pillonel T, Léger M, Trachsel S, Prod'hom G, Jaton K, Greub G. Genomics of the new species Kingella negevensis: diagnostic issues and identification of a locus encoding a RTX toxin. Microbes Infect 2017; 19:546-552. [PMID: 28802585 DOI: 10.1016/j.micinf.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Kingella kingae, producing the cytotoxic RTX protein, is a causative agent of serious infections in humans such as bacteremia, endocarditis and osteoarticular infection, especially in young children. Recently, Kingella negevensis, a related species, has been isolated from the oral cavity of healthy children. In this study, we report the isolation of K. negevensis strain eburonensis, initially misidentified as K. kingae with MALDI-TOF MS, from a vaginal specimen of a patient suffering of vaginosis. The genome sequencing and analysis of this strain together with comparative genomics of the Kingella genus revealed that K. negevensis possesses a full homolog of the rtx operon of K. kingae involved in the synthesis of the RTX toxin. We report that a K. kingae specific diagnostic PCR, based on the rtxA gene, was positive when tested on K. negevensis strain eburonensis DNA. This cross-amplification, and risk of misidentification, was confirmed by in silico analysis of the target gene sequence. To overcome this major diagnostic issue we developed a duplex real-time PCR to detect and distinguish K. kingae and K. negevensis. In addition to this, the identification of K. negevensis raises a clinical issue in term of pathogenic potential given the production of a RTX hemolysin.
Collapse
Affiliation(s)
- Onya Opota
- Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Sacha Laurent
- Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marie Léger
- Établissements Hospitaliers du Nord Vaudois, Yverdon, Switzerland
| | - Sabrina Trachsel
- Établissements Hospitaliers du Nord Vaudois, Yverdon, Switzerland
| | - Guy Prod'hom
- Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Katia Jaton
- Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland; Infectious Diseases Service, University Hospital of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
33
|
Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery. Proc Natl Acad Sci U S A 2017; 114:E6632-E6641. [PMID: 28696280 PMCID: PMC5559034 DOI: 10.1073/pnas.1705508114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurrence, and resistance to treatment of multiple human respiratory tract diseases including otitis media, chronic rhinosinusitis, and exacerbations of both cystic fibrosis and chronic obstructive pulmonary disease. Extracellular DNA (eDNA) and associated DNABII proteins are essential to the overall architecture and structural integrity of biofilms formed by NTHI and all other bacterial pathogens tested to date. Although cell lysis and outer-membrane vesicle extrusion are possible means by which these canonically intracellular components might be released into the extracellular environment for incorporation into the biofilm matrix, we hypothesized that NTHI additionally used a mechanism of active DNA release. Herein, we describe a mechanism whereby DNA and associated DNABII proteins transit from the bacterial cytoplasm to the periplasm via an inner-membrane pore complex (TraC and TraG) with homology to type IV secretion-like systems. These components exit the bacterial cell through the ComE pore through which the NTHI type IV pilus is expressed. The described mechanism is independent of explosive cell lysis or cell death, and the release of DNA is confined to a discrete subpolar location, which suggests a novel form of DNA release from viable NTHI. Identification of the mechanisms and determination of the kinetics by which critical biofilm matrix-stabilizing components are released will aid in the design of novel biofilm-targeted therapeutic and preventative strategies for diseases caused by NTHI and many other human pathogens known to integrate eDNA and DNABII proteins into their biofilm matrix.
Collapse
Affiliation(s)
- Joseph A Jurcisek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Kenneth L Brockman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Laura A Novotny
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205;
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
34
|
Devlin R, Marques CA, McCulloch R. Does DNA replication direct locus-specific recombination during host immune evasion by antigenic variation in the African trypanosome? Curr Genet 2017; 63:441-449. [PMID: 27822899 PMCID: PMC5422504 DOI: 10.1007/s00294-016-0662-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
All pathogens must survive host immune attack and, amongst the survival strategies that have evolved, antigenic variation is a particularly widespread reaction to thwart adaptive immunity. Though the reactions that underlie antigenic variation are highly varied, recombination by gene conversion is a widespread approach to immune survival in bacterial and eukaryotic pathogens. In the African trypanosome, antigenic variation involves gene conversion-catalysed movement of a huge number of variant surface glycoprotein (VSG) genes into a few telomeric sites for VSG expression, amongst which only a single site is actively transcribed at one time. Genetic evidence indicates VSG gene conversion has co-opted the general genome maintenance reaction of homologous recombination, aligning the reaction strategy with targeted rearrangements found in many organisms. What is less clear is how gene conversion might be initiated within the locality of the VSG expression sites. Here, we discuss three emerging models for VSG switching initiation and ask how these compare with processes for adaptive genome change found in other organisms.
Collapse
Affiliation(s)
- Rebecca Devlin
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
35
|
Marin MA, Fonseca E, Encinas F, Freitas F, Camargo DA, Coimbra RS, de Filippis I, Vicente AC. The invasive Neisseria meningitidis MenC CC103 from Brazil is characterized by an accessory gene repertoire. Sci Rep 2017; 7:1617. [PMID: 28487566 PMCID: PMC5431661 DOI: 10.1038/s41598-017-01671-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Neisseria meningitidis infections are a major issue for global health. The invasive MenC ST-103 clonal complex (CC103) has been the most prevalent in meningococcal outbreaks in Brazil, occurring also in several countries worldwide. Here we have analysed the population structure and accessory genome of MenC CC103 strains from a global perspective. An in-depth phylogenomic analysis revealed a lineage of N. meningitidis causing meningitis in Brazil and the United Kingdom. This lineage was also characterized as harbouring a particular accessory genome composed of CRISPR/Cas and restriction modification systems. This lineage was also characterized by a genomic island resembling an integrative and conjugative element. This island carried genes potentially associated with virulence and fitness. We propose this accessory gene repertoire could be contributing to the spatial-temporal persistence of the invasive MenC CC103 lineage.
Collapse
Affiliation(s)
- Michel Abanto Marin
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil.
| | - Erica Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - Fernando Encinas
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - Fernanda Freitas
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil
| | | | - Roney Santos Coimbra
- Neurogenômica, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brazil
| | - Ivano de Filippis
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Ana Carolina Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria. PLoS Pathog 2016; 12:e1005925. [PMID: 27723824 PMCID: PMC5056734 DOI: 10.1371/journal.ppat.1005925] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/10/2016] [Indexed: 12/28/2022] Open
Abstract
Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. Bacterial pathogens often live in crowded communities where cells reside in close contact with one another. Many of these bacteria possess contact-dependent growth inhibition (CDI) systems, which allow cells to touch and inhibit each other using toxic CdiA proteins. CDI+ bacteria also produce immunity proteins that specifically protect the cell from the CdiA toxins of neighboring sibling cells. The CDI system from Escherichia coli EC93 was the first to be characterized and its CdiA toxin recognizes a receptor (BamA) that is identical in virtually all E. coli isolates. Here, we describe a different CDI system from uropathogenic E. coli 536, which causes urinary tract infections. In contrast to E. coli EC93, CdiA from E. coli 536 binds to receptor proteins (OmpC/OmpF) that vary widely between different E. coli isolates. Thus, uropathogenic E. coli preferentially bind and deliver toxins into sibling cells and other closely related E. coli strains. These results suggest that CDI systems distinguish between "self" and "non-self" cells. Moreover, because sibling cells are immune to CdiA-mediated growth inhibition, these findings raise the possibility that toxin exchange may be used for communication and cooperative behavior between genetically identical bacteria.
Collapse
|
37
|
Duffin PM, Barber DA. DprA is required for natural transformation and affects pilin variation in Neisseria gonorrhoeae. Microbiology (Reading) 2016; 162:1620-1628. [DOI: 10.1099/mic.0.000343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Paul M. Duffin
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, KY, USA
| | - Daniel A. Barber
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, KY, USA
| |
Collapse
|
38
|
Devlin R, Marques CA, Paape D, Prorocic M, Zurita-Leal AC, Campbell SJ, Lapsley C, Dickens N, McCulloch R. Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation. eLife 2016; 5:e12765. [PMID: 27228154 PMCID: PMC4946898 DOI: 10.7554/elife.12765] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/26/2016] [Indexed: 01/14/2023] Open
Abstract
Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating - a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility.
Collapse
Affiliation(s)
- Rebecca Devlin
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Paape
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marko Prorocic
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrea C Zurita-Leal
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Samantha J Campbell
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas Dickens
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
39
|
The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation. PLoS Genet 2016; 12:e1006069. [PMID: 27213957 PMCID: PMC4877100 DOI: 10.1371/journal.pgen.1006069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
The obligate human pathogen Neisseria gonorrhoeae is the sole aetiologic agent of the sexually transmitted infection, gonorrhea. Required for gonococcal infection, Type IV pili (Tfp) mediate many functions including adherence, twitching motility, defense against neutrophil killing, and natural transformation. Critical for immune escape, the gonococcal Tfp undergoes antigenic variation, a recombination event at the pilE locus that varies the surface exposed residues of the major pilus subunit PilE (pilin) in the pilus fiber. This programmed recombination system has the potential to produce thousands of pilin variants and can produce strains with unproductive pilin molecules that are completely unable to form Tfp. Saturating mutagenesis of the 3' third of the pilE gene identified 68 unique single nucleotide mutations that each resulted in an underpiliated colony morphology. Notably, all isolates, including those with undetectable levels of pilin protein and no observable surface-exposed pili, retained an intermediate level of transformation competence not exhibited in ΔpilE strains. Site-directed, nonsense mutations revealed that only the first 38 amino acids of the mature pilin N-terminus (the N-terminal domain or Ntd) are required for transformation competence, and microscopy, ELISAs and pilus purification demonstrate that extended Tfp are not required for competence. Transformation in strains producing only the pilin Ntd has the same genetic determinants as wild-type transformation. The Ntd corresponds to the alternative product of S-pilin cleavage, a specific proteolysis unique to pathogenic Neisseria. Mutation of the S-pilin cleavage site demonstrated that S-pilin cleavage mediated release of the Ntd is required for competence when a strain produces unproductive pilin molecules that cannot assemble into a Tfp through mutation or antigenic variation. We conclude that S-pilin cleavage evolved as a mechanism to maintain competence in nonpiliated antigenic variants and suggest there are alternate forms of the Tfp assembly apparatus that mediate various functions including transformation.
Collapse
|
40
|
Huang SH, Kobryn K. The Borrelia burgdorferi telomere resolvase, ResT, anneals ssDNA complexed with its cognate ssDNA-binding protein. Nucleic Acids Res 2016; 44:5288-98. [PMID: 27131360 PMCID: PMC4914115 DOI: 10.1093/nar/gkw344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/18/2016] [Indexed: 11/12/2022] Open
Abstract
Spirochetes of the genus Borrelia possess unusual genomes that consist in a linear chromosome and multiple linear and circular plasmids. The linear replicons are terminated by covalently closed hairpin ends, referred to as hairpin telomeres. The hairpin telomeres represent a simple solution to the end-replication problem. Deoxyribonucleic acid replication initiates internally and proceeds bidirectionally toward the hairpin telomeres. The telomere resolvase, ResT, forms the hairpin telomeres from replicated telomere intermediates in a reaction with similarities to those promoted by type IB topoisomerases and tyrosine recombinases. ResT has also been shown to possess DNA single-strand annealing activity. We report here that ResT promotes single-strand annealing of both free DNA strands and ssDNA complexed with single-stranded DNA binding protein (SSB). The annealing of complementary strands bound by SSB requires a ResT-SSB interaction that is mediated by the conserved amphipathic C-terminal tail of SSB. These properties of ResT are similar to those demonstrated for the recombination mediator protein, RecO, of the RecF pathway. Borrelia burgdorferi is unusual in lacking identifiable homologs of the RecFOR proteins. We propose that ResT may provide missing RecFOR functions.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Kerri Kobryn
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|