1
|
Patel RR, Vidyasagar, Singh SK, Singh M. Recent advances in inhibitor development and metabolic targeting in tuberculosis therapy. Microb Pathog 2025; 203:107515. [PMID: 40154850 DOI: 10.1016/j.micpath.2025.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Despite being a preventable and treatable disease, tuberculosis (TB) remained the second leading infectious cause of death globally in 2022, surpassed only by COVID-19. The death rate from TB is influenced by numerous factors that include antibiotic drug resistance, noncompliance with chemotherapy by patients, concurrent infection with the human immunodeficiency virus, delayed diagnosis, varying effectiveness of the Bacille-Calmette-Guerin vaccine, and other factors. Even with the recent advances in our knowledge of Mycobacterium tuberculosis and the accessibility of advanced genomic tools such as proteomics and microarrays, alongside modern methodologies, the pursuit of next-generation inhibitors targeting distinct or multiple molecular pathways remains essential to combat the increasing antimicrobial resistance. Hence, there is an urgent need to identify and develop new drug targets against TB that have unique mechanisms. Novel therapeutic targets might encompass gene products associated with various aspects of mycobacterial biology, such as transcription, metabolism, cell wall formation, persistence, and pathogenesis. This review focuses on the present state of our knowledge and comprehension regarding various inhibitors targeting key metabolic pathways of M. tuberculosis. The discussion encompasses small molecule, synthetic, peptide, natural product and microbial inhibitors and navigates through promising candidates in different phases of clinical development. Additionally, we explore the crucial enzymes and targets involved in metabolic pathways, highlighting their inhibitors. The metabolic pathways explored include nucleotide synthesis, mycolic acid synthesis, peptidoglycan biosynthesis, and energy metabolism. Furthermore, advancements in genetic approaches like CRISPRi and conditional expression systems are discussed, focusing on their role in elucidating gene essentiality and vulnerability in Mycobacteria.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vidyasagar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sudhir Kumar Singh
- Virus Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Panda D, Maharana J, Sharma A, Wadavrao SB, Chowdhury A, Laskar MA, Modi MK, Choudhury MD. Identifying potent inhibitors for Mycobacterium tuberculosis MabA (FabG1). Mol Divers 2025:10.1007/s11030-025-11205-7. [PMID: 40358829 DOI: 10.1007/s11030-025-11205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
The surge in drug-resistant Mycobacterium tuberculosis (Mtb) strains poses formidable challenges for tuberculosis treatment, emphasizing the pressing need to explore novel therapeutic agents. Mycolic acids, essential for bacterial cell wall formation, are synthesized by two fatty acid synthase (FAS) systems: FAS-I and FAS-II. MabA, an enzyme in the FAS-II system, is vital in the second step of fatty acid biosynthesis and is responsible for the elongation of mycolic acids. In this study, we screened 1,792,771 compounds from seven different databases to screen prospective inhibitors of MabA, an emerging therapeutic target for Mtb. Using a combination of molecular docking, all-atom molecular dynamics simulations, and binding free energy calculations, we identified 48 novel lead compounds from five distinct classes that exhibit significant binding activity against MabA. Of these, 47 compounds demonstrated significantly higher MM/PBSA binding free energy than the only reported MabA inhibitor, compound 29. Altogether, our findings mark a significant advancement towards the rational design of novel therapeutics aimed at combating mycobacterial infections and overcoming drug resistance.
Collapse
Affiliation(s)
- Debashis Panda
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
- DBT-APSCS&T Centre of Excellence for Bioresources and Sustainable Development, Kimin, Arunachal Pradesh, 791121, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Jitendra Maharana
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Arjun Sharma
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA
| | - Sachin B Wadavrao
- OBC Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, 500007, India
| | - Abhishek Chowdhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Monjur Ahmed Laskar
- Bioinformatics and Computational Biology Centre, Assam University, Silchar, Assam, 788011, India
| | - Mahendra K Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Assam Down Town University, Guwahati, Assam, 781026, India
| | - Manabendra D Choudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
- Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
3
|
Chaudhary B, Kobakhidze G, Wachelder L, Mazumdar PA, Dong G, Madhurantakam C. Crystal structures of the mycolic acid methyl transferase 1 (MmaA1) from Mycobacterium tuberculosis in the apo-form and in complex with different cofactors reveal unique features for substrate binding. J Biomol Struct Dyn 2025:1-10. [PMID: 40411373 DOI: 10.1080/07391102.2025.2483952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/18/2025] [Indexed: 05/26/2025]
Abstract
Mycolic acid methyl transferase 1 (MmaA1) protein from Mycobacterium tuberculosis plays a crucial role in the biosynthesis of cell wall mycolic acids that aid in survival of the bacteria under adverse conditions. The enzyme converts a cis to a trans olefin and adds a methyl group at the proximal position of both methoxy and keto-mycolic acid chains. Here we report the crystal structures of apo-MmaA1 and complexes with the cofactor S-adenosylmethionine (SAM), the end-product of methylation reactions - S-adenosylhomocysteine (SAH), and the nucleoside analog Sinefungin (SFG) at 1.4-1.9 Å resolution. These structures reveal the typical seven-stranded α/β fold accompanied by other α-helical embellishments. A dynamic labile loop across the cofactor binding site in the apo-form became relatively rigid upon binding of SAM or SFG but remained labile in the SAH-bound form. A comprehensive analysis of the binding pattern of SAM with MmaA1 reveals critical residues involved in the hydrogen bond interactions with the cofactor, most of which are conserved across other methyltransferases. We also observed a highly conserved cysteine residue (C268) packed against the inner part of the substrate entry channel. C268 is in the reduced state in the SAM-bound but oxidized in the SAH-bound structure. The bulkier sidechain of the oxidized C268 significantly blocks the substrate-binding channel, which might serve as a regulator to control substrate binding and/or selectivity. This atomic view of this critical methyltransferase will build a basis for the identification of small molecule inhibitors against M. tuberculosis.
Collapse
Affiliation(s)
- Bhawna Chaudhary
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - George Kobakhidze
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Lynn Wachelder
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
- Academy of Life Science and Technology, Avans University of Applied Sciences, Breda, Netherlands
| | | | - Gang Dong
- Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
4
|
Rose JJA, Johnson MD, Reyhani M, Batinovic S, Seviour RJ, Ghosal D, Petrovski S. Mutations in Gordonia amarae mycolic acid biosynthetic pathway confer resistance to Patescibacteria parasite Mycosynbacter amalyticus. Nat Commun 2025; 16:2202. [PMID: 40038264 PMCID: PMC11880426 DOI: 10.1038/s41467-025-56933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
The obligate necrotrophic parasite, Candidatus Mycosynbacter amalyticus, a member of the Patescibacteria has been isolated from wastewater. Subsequent efforts have been directed toward unravelling its biological lifecycle and attachment mechanism facilitating infection and subsequent lysis of its Actinobacterial host, Gordonia amarae. Here, using electron cryo-tomography (CryoET), we reveal the molecular anatomy of parasitic Mycosynbacter amalyticus cells, uncovering an unusual infection process. Through laboratory-based evolution experiments, we generated eleven slow-growing independent spontaneous Gordonia amarae resistant mutants. Mycolic acids (MA) are key components of the outer cellular envelope of G. amarae and other Actinobacteria, with MA being the physical attribute implicated in G. amarae associated wastewater foaming. CryoET and genome sequencing exposed absence of intact MA and an associated suite of mutations predominantly occurring within the pks13 and pptT genes of the MA biosynthetic pathway. Our findings suggest that MA structural integrity is critical for attachment of Ca. Mycosynbacter amalyticus to its host.
Collapse
Affiliation(s)
- Jayson J A Rose
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bundoora, VIC, Australia
| | - Matthew D Johnson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Milad Reyhani
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Steven Batinovic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia.
- La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
5
|
Lee MA, Woerde DJ, Reagan KL, Wolf TG, Sykes JE. Mycobacterium porcinum panniculitis in a cat from northern California. JFMS Open Rep 2025; 11:20551169241298058. [PMID: 39834656 PMCID: PMC11744623 DOI: 10.1177/20551169241298058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Case summary A 9-year-old male castrated domestic shorthair cat from northern California was evaluated for a 12-month history of dermal and subcutaneous dermatitis in the inguinal region. Histopathologic examination of a biopsy revealed severe, chronic, multifocal to coalescing pyogranulomatous dermatitis and panniculitis, accompanied by ulceration and central necrosis. Aerobic bacterial culture of lesions yielded mycobacterial growth. Empiric antimicrobial therapy was initiated with doxycycline and marbofloxacin pending culture and susceptibility. Culture of a biopsy followed by rpoB gene sequencing at a mycobacterial reference laboratory yielded Mycobacterium porcinum after 6 weeks. Ten months after initial antimicrobial administration, the lesions resolved. Relevance and novel information To date, in cats, M porcinum panniculitis has been reported from Ohio, Massachusetts and British Columbia in North America; two additional cases were reported from southeastern Australia. In humans, M porcinum infections have been reported from several states in the USA, predominantly in the Midwest and coastal south, but not from the west. This report extends the known spatial distribution of M porcinum to the western USA and strengthens its association with panniculitis in cats. It also demonstrates the need for prolonged incubation for diagnosis of some rapidly growing mycobacteria infections using culture.
Collapse
Affiliation(s)
- Mary Ann Lee
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, CA, USA
| | - Dennis J Woerde
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, CA, USA
| | - Krystle L Reagan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, CA, USA
| | | | - Jane E Sykes
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, CA, USA
| |
Collapse
|
6
|
Megalizzi V, Tanina A, Grosse C, Mirgaux M, Legrand P, Dias Mirandela G, Wohlkönig A, Bifani P, Wintjens R. Domain architecture of the Mycobacterium tuberculosis MabR ( Rv2242), a member of the PucR transcription factor family. Heliyon 2024; 10:e40494. [PMID: 39641026 PMCID: PMC11617747 DOI: 10.1016/j.heliyon.2024.e40494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
MabR (Rv2242), a PucR-type transcription factor, plays a crucial role in regulating mycolic acid biosynthesis in Mycobacterium tuberculosis. To understand its regulatory mechanisms, we determined the crystal structures of its N-terminal and C-terminal domains. The N-terminal domain adopts a globin-like fold, while the C-terminal domain comprises an α/β GGDEF domain and an all-α effector domain with a helix-turn-helix DNA-binding motif. This unique domain combination is specific to Actinomycetes. Biochemical and computational studies suggest that full-length MabR forms both dimeric and tetrameric assemblies in solution. Structural analysis revealed two distinct dimerization interfaces within the N- and C-terminal domains, further supporting a tetrameric organization. These findings provide valuable insights into the domain architecture, oligomeric state, and potential regulatory mechanisms of MabR.
Collapse
Affiliation(s)
- Véronique Megalizzi
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| | - Abdalkarim Tanina
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| | - Camille Grosse
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| | - Manon Mirgaux
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
- Laboratoire de Chimie Biologique Structurale (CBS), Unité de Chimie Physique Théorique et Structurale (UCPTS), Department of Chemistry, Faculty of Sciences, University of Namur, Belgium
- Center of Microscopy and Molecular Imaging (CMMI), Biopark Charleroi, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Gaëtan Dias Mirandela
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Faculty of Sciences, Université Libre de Bruxelles, Belgium
| | - Alexandre Wohlkönig
- Center for Structural Biology, Vlaams Institute voor Biotechnology (VIB), Brussels, Belgium
| | - Pablo Bifani
- A∗STAR Infectious Diseases Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - René Wintjens
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| |
Collapse
|
7
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
8
|
Alcaraz M, Edwards TE, Kremer L. New therapeutic strategies for Mycobacterium abscessus pulmonary diseases - untapping the mycolic acid pathway. Expert Rev Anti Infect Ther 2023; 21:813-829. [PMID: 37314394 PMCID: PMC10529309 DOI: 10.1080/14787210.2023.2224563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Treatment options against Mycobacterium abscessus infections are very limited. New compounds are needed to cure M. abscessus pulmonary diseases. While the mycolic acid biosynthetic pathway has been largely exploited for the treatment of tuberculosis, this metabolic process has been overlooked in M. abscessus, although it offers many potential drug targets for the treatment of this opportunistic pathogen. AREAS COVERED Herein, the authors review the role of the MmpL3 membrane protein and the enoyl-ACP reductase InhA involved in the transport and synthesis of mycolic acids, respectively. They discuss their importance as two major vulnerable drug targets in M. abscessus and report the activity of MmpL3 and InhA inhibitors. In particular, they focus on NITD-916, a direct InhA inhibitor against M. abscessus, particularly warranted in the context of multidrug resistance. EXPERT OPINION There is an increasing body of evidence validating the mycolic acid pathway as an attractive drug target to be further exploited for M. abscessus lung disease treatments. The NITD-916 studies provide a proof-of-concept that direct inhibitors of InhA are efficient in vitro, in macrophages and in zebrafish. Future work is now required to improve the activity and pharmacological properties of these inhibitors and their evaluation in pre-clinical models.
Collapse
Affiliation(s)
- Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Thomas E. Edwards
- UCB BioSciences, Bainbridge Island, WA 98109 USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109 USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
9
|
Wang K, Deng Y, Cui X, Chen M, Ou Y, Li D, Guo M, Li W. PatA Regulates Isoniazid Resistance by Mediating Mycolic Acid Synthesis and Controls Biofilm Formation by Affecting Lipid Synthesis in Mycobacteria. Microbiol Spectr 2023; 11:e0092823. [PMID: 37212713 PMCID: PMC10269662 DOI: 10.1128/spectrum.00928-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023] Open
Abstract
Lipids are prominent components of the mycobacterial cell wall, and they play critical roles not only in maintaining biofilm formation but also in resisting environmental stress, including drug resistance. However, information regarding the mechanism mediating mycobacterial lipid synthesis remains limited. PatA is a membrane-associated acyltransferase and synthesizes phosphatidyl-myo-inositol mannosides (PIMs) in mycobacteria. Here, we found that PatA could regulate the synthesis of lipids (except mycolic acids) to maintain biofilm formation and environmental stress resistance in Mycolicibacterium smegmatis. Interestingly, the deletion of patA significantly enhanced isoniazid (INH) resistance in M. smegmatis, although it reduced bacterial biofilm formation. This might be due to the fact that the patA deletion promoted the synthesis of mycolic acids through an unknown synthesis pathway other than the reported fatty acid synthase (FAS) pathway, which could effectively counteract the inhibition by INH of mycolic acid synthesis in mycobacteria. Furthermore, the amino acid sequences and physiological functions of PatA were highly conserved in mycobacteria. Therefore, we found a mycolic acid synthesis pathway regulated by PatA in mycobacteria. In addition, PatA also affected biofilm formation and environmental stress resistance by regulating the synthesis of lipids (except mycolic acids) in mycobacteria. IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, leads to a large number of human deaths every year. This is so serious, which is due mainly to the drug resistance of mycobacteria. INH kills M. tuberculosis by inhibiting the synthesis of mycolic acids, which are synthesized by the FAS pathway. However, whether there is another mycolic acid synthesis pathway is unknown. In this study, we found a PatA-mediated mycolic acid synthesis pathway that led to INH resistance of in patA-deleted mutant. In addition, we first report the regulatory effect of PatA on mycobacterial biofilm formation, which could affect the bacterial response to environmental stress. Our findings represent a new model for regulating biofilm formation by mycobacteria. More importantly, the discovery of the PatA-mediated mycolic acid synthesis pathway indicates that the study of mycobacterial lipids has entered a new stage, and the enzymes might be new targets of antituberculosis drugs.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yimin Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xujie Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Mengli Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yanzhe Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Danting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Minhao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Hailu E, Cantillon D, Madrazo C, Rose G, Wheeler PR, Golby P, Adnew B, Gagneux S, Aseffa A, Gordon SV, Comas I, Young DB, Waddell SJ, Larrouy-Maumus G, Berg S. Lack of methoxy-mycolates characterizes the geographically restricted lineage 7 of Mycobacterium tuberculosis complex. Microb Genom 2023; 9:mgen001011. [PMID: 37171244 PMCID: PMC10272862 DOI: 10.1099/mgen.0.001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 05/13/2023] Open
Abstract
Lineage 7 (L7) emerged in the phylogeny of the Mycobacterium tuberculosis complex (MTBC) subsequent to the branching of 'ancient' lineage 1 and prior to the Eurasian dispersal of 'modern' lineages 2, 3 and 4. In contrast to the major MTBC lineages, the current epidemiology suggests that prevalence of L7 is highly confined to the Ethiopian population, or when identified outside of Ethiopia, it has mainly been in patients of Ethiopian origin. To search for microbiological factors that may contribute to its restricted distribution, we compared the genome of L7 to the genomes of globally dispersed MTBC lineages. The frequency of predicted functional mutations in L7 was similar to that documented in other lineages. These include mutations characteristic of modern lineages - such as constitutive expression of nitrate reductase - as well as mutations in the VirS locus that are commonly found in ancient lineages. We also identified and characterized multiple lineage-specific mutations in L7 in biosynthesis pathways of cell wall lipids, including confirmed deficiency of methoxy-mycolic acids due to a stop-gain mutation in the mmaA3 gene that encodes a methoxy-mycolic acid synthase. We show that the abolished biosynthesis of methoxy-mycolates of L7 alters the cell structure and colony morphology on selected growth media and impacts biofilm formation. The loss of these mycolic acid moieties may change the host-pathogen dynamic for L7 isolates, explaining the limited geographical distribution of L7 and contributing to further understanding the spread of MTBC lineages across the globe.
Collapse
Affiliation(s)
- Elena Hailu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Daire Cantillon
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
- Present address: Department of Tropical Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carlos Madrazo
- Biomedicine Institute of Valencia, Spanish Research Council (IBV-CSIC), Valencia, Spain
| | - Graham Rose
- Francis Crick Institute, London, UK
- Present address: North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children, London, UK
| | | | - Paul Golby
- Animal and Plant Health Agency, Weybridge, UK
| | | | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Stephen V. Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Iñaki Comas
- Biomedicine Institute of Valencia, Spanish Research Council (IBV-CSIC), Valencia, Spain
| | - Douglas B. Young
- Francis Crick Institute, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Simon J. Waddell
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Stefan Berg
- Animal and Plant Health Agency, Weybridge, UK
- Present address: Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
11
|
Roquet-Banères F, Alcaraz M, Hamela C, Abendroth J, Edwards TE, Kremer L. In Vitro and In Vivo Efficacy of NITD-916 against Mycobacterium fortuitum. Antimicrob Agents Chemother 2023; 67:e0160722. [PMID: 36920188 PMCID: PMC10112203 DOI: 10.1128/aac.01607-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
Mycobacterium fortuitum represents one of the most clinically relevant rapid-growing mycobacterial species. Treatments are complex due to antibiotic resistance and to severe side effects of effective drugs, prolonged time of treatment, and co-infection with other pathogens. Herein, we explored the activity of NITD-916, a direct inhibitor of the enoyl-ACP reductase InhA of the type II fatty acid synthase in Mycobacterium tuberculosis. We found that this compound displayed very low MIC values against a panel of M. fortuitum clinical strains and exerted potent antimicrobial activity against M. fortuitum in macrophages. Remarkably, the compound was also highly efficacious in a zebrafish model of infection. Short duration treatments were sufficient to significantly protect the infected larvae from M. fortuitum-induced killing, which correlated with reduced bacterial burdens and abscesses. Biochemical analyses demonstrated an inhibition of de novo synthesis of mycolic acids. Resolving the crystal structure of the InhAMFO in complex with NAD and NITD-916 confirmed that NITD-916 is a direct inhibitor of InhAMFO. Importantly, single nucleotide polymorphism leading to a G96S substitution in InhAMFO conferred high resistance levels to NITD-916, thus resolving its target in M. fortuitum. Overall, these findings indicate that NITD-916 is highly active against M. fortuitum both in vitro and in vivo and should be considered in future preclinical evaluations for the treatment of M. fortuitum pulmonary diseases.
Collapse
Affiliation(s)
- Françoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, Washington, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Thomas E. Edwards
- UCB BioSciences, Bainbridge Island, Washington, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
12
|
Mishra A, Das A, Banerjee T. Designing New Magic Bullets to Penetrate the Mycobacterial Shield: An Arduous Quest for Promising Therapeutic Candidates. Microb Drug Resist 2023; 29:213-227. [PMID: 37015080 DOI: 10.1089/mdr.2021.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Mycobacterium spp. intimidated mankind since time immemorial. The triumph over this organism was anticipated with the introduction of potent antimicrobials in the mid-20th century. However, the emergence of drug resistance in mycobacteria, Mycobacterium tuberculosis, in particular, caused great concern for the treatment. With the enemy growing stronger, there is an immediate need to equip the therapeutic arsenal with novel and potent chemotherapeutic agents. The task seems intricating as our understanding of the dynamic nature of the mycobacteria requires intense experimentation and research. Targeting the mycobacterial cell envelope appears promising, but its versatility allows it to escape the lethal effect of the molecules acting on it. The unique ability of hiding (inactivity during latency) also assists the bacterium to survive in a drug-rich environment. The drug delivery systems also require upgradation to allow better bioavailability and tolerance in patients. Although the resistance to the novel drugs is inevitable, our commitment to the research in this area will ensure the discovery of effective weapons against this formidable opponent.
Collapse
Affiliation(s)
- Anwita Mishra
- Department of Microbiology, Mahamana Pandit Madan Mohan Malviya Cancer Centre and Homi Bhabha Cancer Hospital, Varanasi, India
| | - Arghya Das
- Department of Microbiology, National Cancer Institute, All India Institute of Medical Sciences, New Delhi, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| |
Collapse
|
13
|
Sangboonruang S, Semakul N, Suriyaprom S, Kitidee K, Khantipongse J, Intorasoot S, Tharinjaroen CS, Wattananandkul U, Butr-Indr B, Phunpae P, Tragoolpua K. Nano-Delivery System of Ethanolic Extract of Propolis Targeting Mycobacterium tuberculosis via Aptamer-Modified-Niosomes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020269. [PMID: 36678022 PMCID: PMC9861461 DOI: 10.3390/nano13020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 05/14/2023]
Abstract
Tuberculosis (TB) therapy requires long-course multidrug regimens leading to the emergence of drug-resistant TB and increased public health burden worldwide. As the treatment strategy is more challenging, seeking a potent non-antibiotic agent has been raised. Propolis serve as a natural source of bioactive molecules. It has been evidenced to eliminate various microbial pathogens including Mycobacterium tuberculosis (Mtb). In this study, we fabricated the niosome-based drug delivery platform for ethanolic extract of propolis (EEP) using thin film hydration method with Ag85A aptamer surface modification (Apt-PEGNio/EEP) to target Mtb. Physicochemical characterization of PEGNio/EEP indicated approximately -20 mV of zeta potential, 180 nm of spherical nanoparticles, 80% of entrapment efficiency, and the sustained release profile. The Apt-PEGNio/EEP and PEGNio/EEP showed no difference in these characteristics. The chemical composition in the nanostructure was confirmed by Fourier transform infrared spectrometry. Apt-PEGNio/EEP showed specific binding to Mycobacterium expressing Ag85 membrane-bound protein by confocal laser scanning microscope. It strongly inhibited Mtb in vitro and exhibited non-toxicity on alveolar macrophages. These findings indicate that the Apt-PEGNio/EEP acts as an antimycobacterial nanoparticle and might be a promising innovative targeted treatment. Further application of this smart nano-delivery system will lead to effective TB management.
Collapse
Affiliation(s)
- Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kuntida Kitidee
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | | | - Sorasak Intorasoot
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayada Sitthidet Tharinjaroen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Usanee Wattananandkul
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
14
|
Xu Y, Yang J, Li W, Song S, Shi Y, Wu L, Sun J, Hou M, Wang J, Jia X, Zhang H, Huang M, Lu T, Gan J, Feng Y. Three enigmatic BioH isoenzymes are programmed in the early stage of mycobacterial biotin synthesis, an attractive anti-TB drug target. PLoS Pathog 2022; 18:e1010615. [PMID: 35816546 PMCID: PMC9302846 DOI: 10.1371/journal.ppat.1010615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) is one of the leading infectious diseases of global concern, and one quarter of the world’s population are TB carriers. Biotin metabolism appears to be an attractive anti-TB drug target. However, the first-stage of mycobacterial biotin synthesis is fragmentarily understood. Here we report that three evolutionarily-distinct BioH isoenzymes (BioH1 to BioH3) are programmed in biotin synthesis of Mycobacterium smegmatis. Expression of an individual bioH isoform is sufficient to allow the growth of an Escherichia coli ΔbioH mutant on the non-permissive condition lacking biotin. The enzymatic activity in vitro combined with biotin bioassay in vivo reveals that BioH2 and BioH3 are capable of removing methyl moiety from pimeloyl-ACP methyl ester to give pimeloyl-ACP, a cognate precursor for biotin synthesis. In particular, we determine the crystal structure of dimeric BioH3 at 2.27Å, featuring a unique lid domain. Apart from its catalytic triad, we also dissect the substrate recognition of BioH3 by pimeloyl-ACP methyl ester. The removal of triple bioH isoforms (ΔbioH1/2/3) renders M. smegmatis biotin auxotrophic. Along with the newly-identified Tam/BioC, the discovery of three unusual BioH isoforms defines an atypical ‘BioC-BioH(3)’ paradigm for the first-stage of mycobacterial biotin synthesis. This study solves a long-standing puzzle in mycobacterial nutritional immunity, providing an alternative anti-TB drug target.
Collapse
Affiliation(s)
- Yongchang Xu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, The People’s Republic of China
| | - Shuaijie Song
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Yu Shi
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Lihan Wu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jingdu Sun
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
| | - Mengyun Hou
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jinzi Wang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources & Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, The People’s Republic of China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Man Huang
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
- * E-mail: (JG); (YF)
| | - Youjun Feng
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
- * E-mail: (JG); (YF)
| |
Collapse
|
15
|
de Sousa-d'Auria C, Constantinesco F, Bayan N, Constant P, Tropis M, Daffé M, Graille M, Houssin C. Cg1246, a new player in mycolic acid biosynthesis in Corynebacterium glutamicum. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394419 DOI: 10.1099/mic.0.001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycolic acids are key components of the complex cell envelope of Corynebacteriales. These fatty acids, conjugated to trehalose or to arabinogalactan form the backbone of the mycomembrane. While mycolic acids are essential to the survival of some species, such as Mycobacterium tuberculosis, their absence is not lethal for Corynebacterium glutamicum, which has been extensively used as a model to depict their biosynthesis. Mycolic acids are first synthesized on the cytoplasmic side of the inner membrane and transferred onto trehalose to give trehalose monomycolate (TMM). TMM is subsequently transported to the periplasm by dedicated transporters and used by mycoloyltransferase enzymes to synthesize all the other mycolate-containing compounds. Using a random transposition mutagenesis, we recently identified a new uncharacterized protein (Cg1246) involved in mycolic acid metabolism. Cg1246 belongs to the DUF402 protein family that contains some previously characterized nucleoside phosphatases. In this study, we performed a functional and structural characterization of Cg1246. We showed that absence of the protein led to a significant reduction in the pool of TMM in C. glutamicum, resulting in a decrease in all other mycolate-containing compounds. We found that, in vitro, Cg1246 has phosphatase activity on organic pyrophosphate substrates but is most likely not a nucleoside phosphatase. Using a computational approach, we identified important residues for phosphatase activity and constructed the corresponding variants in C. glutamicum. Surprisingly complementation with these non-functional proteins fully restored the defect in TMM of the Δcg1246 mutant strain, suggesting that in vivo, the phosphatase activity is not involved in mycolic acid biosynthesis.
Collapse
Affiliation(s)
- Célia de Sousa-d'Auria
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Florence Constantinesco
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Patricia Constant
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maryelle Tropis
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau Cedex, Paris, France
| | - Christine Houssin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
16
|
Medeiros TF, Scheffer MC, Verza M, Salvato RS, Schörner MA, Barazzetti FH, Rovaris DB, Bazzo ML. Genomic characterization of variants on mycolic acid metabolism genes in Mycobacterium tuberculosis isolates from Santa Catarina, Southern Brazil. INFECTION GENETICS AND EVOLUTION 2021; 96:105107. [PMID: 34634381 DOI: 10.1016/j.meegid.2021.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis has a complex cell wall containing mycolic acids (MA), which play an important role in pathogenesis, virulence, and survival by protecting the cell against harsh environments. Studies have shown that genes encoding enzymes involved in MA synthesis are essential to mycobacterial functionality. Here, we used whole-genome sequencing to evaluate mutations in genes related to MA metabolism in M. tuberculosis isolates from pulmonary tuberculosis patients of the Florianópolis Metropolitan Area, Santa Catarina, Brazil, and assessed associations with clinical, epidemiological, and genotypic data. The mutations Rv3057c Asp112Ala (104/151), Rv3720 His70Arg (104/151), and Rv3802c Val50Phe (105/151) were identified in about 69% of the isolates and were related to the LAM lineage. SIT 216/LAM5 (13.2%, 20/151) had the highest frequency and presented the mutations accD2 Lys23Glu, kasA Gly269Ser, mmaA4 Asn165Ser, otsB1 Asp617Asn, Rv3057c Asp112Ala, Rv3720 His70Arg, Rv3802c Val50Phe, and tgs4 Ala216Glu. All SIT 73/T isolates (6.6%, 10/151) showed a characteristic and exclusive gene mutation pattern: amiD Rv3376 3790075G > A, fbpA-aftB 4266941G > A, echA11 Asn220fs, and otsB2 Ser110Arg. SITs 20/LAM1, 64/LAM6, 50/H3, 137/X2, and 119/X1 were also related to specific mutations. SITs from the LAM lineage differed in mutation profile from those of the T, Haarlem, and X lineages. Isolates from patients who had treatment failure showed mutations that do not seem to have a pattern related to this outcome. It was possible to identify a broad repertoire of single-nucleotide polymorphisms in genes related to MA metabolism in M. tuberculosis isolates. This study also described, for the first time, the variability between different SITs/sublineages of Lineage 4 circulating in Florianópolis Metropolitan Area.
Collapse
Affiliation(s)
- Taiane Freitas Medeiros
- Programa de Pós-graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil; Laboratório de Biologia Molecular, Microbiologia e Sorologia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Mara Cristina Scheffer
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Mirela Verza
- Programa de Pós-graduação em Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Richard Steiner Salvato
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcos André Schörner
- Programa de Pós-graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil; Laboratório de Biologia Molecular, Microbiologia e Sorologia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Fernando Hartmann Barazzetti
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Darcita Buerger Rovaris
- Setor de Bacteriologia da Tuberculose, Laboratório Central do Estado de Santa Catarina (LACEN-SC), Florianópolis, Santa Catarina, Brazil
| | - Maria Luiza Bazzo
- Programa de Pós-graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil; Laboratório de Biologia Molecular, Microbiologia e Sorologia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
17
|
Gomes NGM, Madureira-Carvalho Á, Dias-da-Silva D, Valentão P, Andrade PB. Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomed Pharmacother 2021; 140:111756. [PMID: 34051618 DOI: 10.1016/j.biopha.2021.111756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the increasing number of novel marine natural products being reported from fungi in the last three decades, to date only the broad-spectrum cephalosporin C can be tracked back as marine fungal-derived drug. Cephalosporins were isolated in the early 1940s from a strain of Acremonium chrysogenum obtained in a sample collected in sewage water in the Sardinian coast, preliminary findings allowing the discovery of cephalosporin C. Since then, bioprospection of marine fungi has been enabling the identification of several metabolites with antibacterial effects, many of which proving to be active against multi-drug resistant strains, available data suggesting also that some might fuel the pharmaceutical firepower towards some of the bacterial pathogens classified as a priority by the World Health Organization. Considering the success of their terrestrial counterparts on the discovery and development of several antibiotics that are nowadays used in the clinical setting, marine fungi obviously come into mind as producers of new prototypes to counteract antibiotic-resistant bacteria that are no longer responding to available treatments. We mainly aim to provide a snapshot on those metabolites that are likely to proceed to advanced preclinical development, not only based on their antibacterial potency, but also considering their targets and modes of action, and activity against priority pathogens.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Áurea Madureira-Carvalho
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.
| | - Diana Dias-da-Silva
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|
18
|
Mallick I, Santucci P, Poncin I, Point V, Kremer L, Cavalier JF, Canaan S. Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis? FEMS Microbiol Rev 2021; 45:6283747. [PMID: 34036305 DOI: 10.1093/femsre/fuab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols under the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial lifecycle. However, despite of their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization, and current knowledge regarding the micro-environmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding to the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discuss.
Collapse
Affiliation(s)
- Ivy Mallick
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.,IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| |
Collapse
|
19
|
Dow A, Sule P, O’Donnell TJ, Burger A, Mattila JT, Antonio B, Vergara K, Marcantonio E, Adams LG, James N, Williams PG, Cirillo JD, Prisic S. Zinc limitation triggers anticipatory adaptations in Mycobacterium tuberculosis. PLoS Pathog 2021; 17:e1009570. [PMID: 33989345 PMCID: PMC8121289 DOI: 10.1371/journal.ppat.1009570] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn2+) availability as a likely driver of bacterial phenotypic heterogeneity in vivo. Zn2+ sequestration is part of "nutritional immunity", where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn2+-limitation is an environmental cue sensed by Mtb, as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn2+-limited Mtb in vivo. Prolonged Zn2+ limitation leads to numerous physiological changes in vitro, including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn2+-limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn2+-limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn2+ availability likely plays a key role during early interactions with host cells.
Collapse
Affiliation(s)
- Allexa Dow
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Preeti Sule
- Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, Texas, United States of America
| | - Timothy J. O’Donnell
- Department of Chemistry, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Andrew Burger
- School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Brandi Antonio
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Kevin Vergara
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Endrei Marcantonio
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Philip G. Williams
- Department of Chemistry, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Jeffrey D. Cirillo
- Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, Texas, United States of America
| | - Sladjana Prisic
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
20
|
Therapeutic potential of coumestan Pks13 inhibitors for tuberculosis. Antimicrob Agents Chemother 2021; 95:AAC.02190-20. [PMID: 33558290 PMCID: PMC8092898 DOI: 10.1128/aac.02190-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polyketide synthase 13 (Pks13) is an important enzyme found in Mycobacterium tuberculosis (M. tuberculosis) that condenses two fatty acyl chains to produce α-alkyl β-ketoesters, which in turn serve as the precursors for the synthesis of mycolic acids that are essential building blocks for maintaining the cell wall integrity of M. tuberculosis Coumestan derivatives have recently been identified in our group as a new chemotype that exert their antitubercular effects via targeting of Pks13. These compounds were active on both drug-susceptible and drug-resistant strains of M. tuberculosis as well as showing low cytotoxicity to healthy cells and a promising selectivity profile. No cross-resistance was found between the coumestan derivatives and first-line TB drugs. Here we report that treatment of M. tuberculosis bacilli with 15 times the MIC of compound 1, an optimized lead coumestan compound, resulted in a colony forming unit (CFU) reduction from 6.0 log10 units to below the limit of detection (1.0 log10 units) per mL culture, demonstrating a bactericidal mechanism of action. Single dose (10 mg/kg) pharmacokinetic studies revealed favorable parameters with a relative bioavailability of 19.4%. In a mouse infection and chemotherapy model, treatment with 1 showed dose-dependent mono-therapeutic activity, whereas treatment with 1 in combination with rifampin showed clear synergistic effects. Together these data suggest that coumestan derivatives are promising agents for further TB drug development.
Collapse
|
21
|
Sharma A, De Rosa M, Singla N, Singh G, Barnwal RP, Pandey A. Tuberculosis: An Overview of the Immunogenic Response, Disease Progression, and Medicinal Chemistry Efforts in the Last Decade toward the Development of Potential Drugs for Extensively Drug-Resistant Tuberculosis Strains. J Med Chem 2021; 64:4359-4395. [PMID: 33826327 DOI: 10.1021/acs.jmedchem.0c01833] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is a slow growing, potentially debilitating disease that has plagued humanity for centuries and has claimed numerous lives across the globe. Concerted efforts by researchers have culminated in the development of various strategies to combat this malady. This review aims to raise awareness of the rapidly increasing incidences of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, highlighting the significant modifications that were introduced in the TB treatment regimen over the past decade. A description of the role of pathogen-host immune mechanisms together with strategies for prevention of the disease is discussed. The struggle to develop novel drug therapies has continued in an effort to reduce the treatment duration, improve patient compliance and outcomes, and circumvent TB resistance mechanisms. Herein, we give an overview of the extensive medicinal chemistry efforts made during the past decade toward the discovery of new chemotypes, which are potentially active against TB-resistant strains.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India.,UIPS, Panjab University, Chandigarh 160014, India
| | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- UIPS, Panjab University, Chandigarh 160014, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
22
|
Tewari U, Sharma D, Srivastava S, Kumar BK, Faheem, Murugesan S. Anti‐Tubercular Insights of Carbolines – A Decade Critique. ChemistrySelect 2021. [DOI: 10.1002/slct.202100181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Upasana Tewari
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Divya Sharma
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Shrey Srivastava
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Faheem
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| |
Collapse
|
23
|
Antimicrobial activity of IDD-B40 against drug-resistant Mycobacterium tuberculosis. Sci Rep 2021; 11:740. [PMID: 33436895 PMCID: PMC7804135 DOI: 10.1038/s41598-020-80227-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
The emergence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis creates the urgency for new anti-tuberculosis drugs to improve the efficiency of current tuberculosis treatment. In the search for a new potential tuberculosis drug, we synthesized an isoindole based chemical library and screened a potential candidate with significant anti-tuberculosis activity. The compound named 2-hydroxy-4-(4-nitro-1,3-dioxoisoindolin-2-yl) benzoic acid (IDD-B40) showed strong activity against all the tested drug-susceptible and drug-resistant strains of M. tuberculosis, with the 50% minimum inhibitory concentrations (MIC50) of 0.39 μg/ml both in culture broth and inside Raw 264.7 cells. Also, IDD-B40, in combination with rifampicin, exhibited a direct synergistic effect against both XDR and H37Rv M. tuberculosis. Besides, IDD-B40 showed a better post-antibiotic effect (PAE) than did some first-line drugs and showed no significant cytotoxicity to any cell line tested, with a selectivity index of ≥ 128. Although IDD-B40 showed a result similar to isoniazid in the preliminary mycolic acid inhibition assay, it did not exhibit any effect against other mycolic acid-producing nontuberculous mycobacterial strains (NTM), and different non-mycobacterial pathogenic strains, so further studies are required to confirm the mode of action of IDD-B40. Considering its results against M. tuberculosis, IDD-B40 is a potential anti-tuberculosis drug candidate. However, further studies are required to evaluate its potential in vivo effect and therapeutic potential.
Collapse
|
24
|
Khusro A, Aarti C, Elghandour MM, Salem AZ. Potential targets in quest for new antitubercular drugs: Implications of computational approaches for end-TB strategy. A MECHANISTIC APPROACH TO MEDICINES FOR TUBERCULOSIS NANOTHERAPY 2021:229-260. [DOI: 10.1016/b978-0-12-819985-5.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Xu H, Su Z, Li W, Deng Y, He ZG. MmbR, a master transcription regulator that controls fatty acid β-oxidation genes in Mycolicibacterium smegmatis. Environ Microbiol 2020; 23:1096-1114. [PMID: 32985741 DOI: 10.1111/1462-2920.15249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
An unusually high lipid content and a complex lipid profile are the most distinctive features of the mycobacterial cell envelope. However, our understanding of the regulatory mechanism underlying mycobacterial lipid metabolism is limited, and the major regulators responsible for lipid homeostasis remain to be characterized. Here, we identified MmbR as a novel master regulator that is essential for maintaining lipid homeostasis in Mycolicibacterium smegmatis. We found that MmbR controls fatty acid β-oxidation and modulates biofilm formation in Mycolicibacterium smegmatis. Although MmbR possesses the properties of nucleoid-associated proteins, it acts as a TetR-like transcription factor, directly regulating and intensively repressing the expression of a group of core genes involved in fatty acid β-oxidation. Furthermore, both long-chain acyl-Coenzyme A and fatty acids appear to regulate the signal molecules modulated by MmbR. The deletion of mmbR led to a significant reduction in intracellular fatty acid content and a decrease in the relative lipid composition of the biofilm. The lack of mmbR led to morphological changes in the mycobacterial colony, defects in biofilm formation and enhanced sensitivity to anti-tuberculosis drugs. Our study is the first to establish a link between the transcriptional regulation of fatty acid β-oxidation genes and lipid homeostasis in mycobacteria.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yimin Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Guo He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
26
|
Wang J, Ye X, Yang X, Cai Y, Wang S, Tang J, Sachdeva M, Qian Y, Hu W, Leeds JA, Yuan Y. Discovery of Novel Antibiotics as Covalent Inhibitors of Fatty Acid Synthesis. ACS Chem Biol 2020; 15:1826-1834. [PMID: 32568510 DOI: 10.1021/acschembio.9b00982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The steady increase in the prevalence of multidrug-resistant Staphylococcus aureus has made the search for novel antibiotics to combat this clinically important pathogen an urgent matter. In an effort to discover antibacterials with new chemical structures and mechanisms, we performed a growth inhibition screen of a synthetic library against S. aureus and discovered a promising scaffold with a 1,3,5-oxadiazin-2-one core. These compounds are potent against both methicillin-sensitive and methicillin-resistant S. aureus strains. Isolation of compound-resistant strains followed by whole genome sequencing revealed its cellular target as FabH, a key enzyme in bacterial fatty acid synthesis. Detailed mechanism of action studies suggested the compounds inhibit FabH activity by covalently modifying its active site cysteine residue with high selectivity. A crystal structure of FabH protein modified by a selected compound Oxa1 further confirmed covalency and suggested a possible mechanism for reaction. Moreover, the structural snapshot provided an explanation for compound selectivity. On the basis of the structure, we designed and synthesized Oxa1 derivatives and evaluated their antibacterial activity. The structure-activity relationship supports the hypothesis that noncovalent recognition between compounds and FabH is critical for the activity of these covalent inhibitors. We believe further optimization of the current scaffold could lead to an antibacterial with potential to treat drug-resistant bacteria in the clinic.
Collapse
Affiliation(s)
- Jia Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoping Ye
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Youyan Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shengjun Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jieyu Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meena Sachdeva
- Novartis Institutes for Biomedical Research, Inc., Infectious Diseases Area, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Yu Qian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jennifer A. Leeds
- Novartis Institutes for Biomedical Research, Inc., Infectious Diseases Area, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510990, China
| |
Collapse
|
27
|
Abstract
Pyrazinamide (PZA) is a cornerstone antimicrobial drug used exclusively for the treatment of tuberculosis (TB). Due to its ability to shorten drug therapy by 3 months and reduce disease relapse rates, PZA is considered an irreplaceable component of standard first-line short-course therapy for drug-susceptible TB and second-line treatment regimens for multidrug-resistant TB. Despite over 60 years of research on PZA and its crucial role in current and future TB treatment regimens, the mode of action of this unique drug remains unclear. Defining the mode of action for PZA will open new avenues for rational design of novel therapeutic approaches for the treatment of TB. In this review, we discuss the four prevailing models for PZA action, recent developments in modulation of PZA susceptibility and resistance, and outlooks for future research and drug development.
Collapse
|
28
|
1 H-Benzo[ d]Imidazole Derivatives Affect MmpL3 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.00441-19. [PMID: 31332069 DOI: 10.1128/aac.00441-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
1H-benzo[d]imidazole derivatives exhibit antitubercular activity in vitro at a nanomolar range of concentrations and are not toxic to human cells, but their mode of action remains unknown. Here, we showed that these compounds are active against intracellular Mycobacterium tuberculosis To identify their target, we selected drug-resistant M. tuberculosis mutants and then used whole-genome sequencing to unravel mutations in the essential mmpL3 gene, which encodes the integral membrane protein that catalyzes the export of trehalose monomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. The drug-resistant phenotype was also observed in the parental strain overexpressing the mmpL3 alleles carrying the mutations identified in the resistors. However, no cross-resistance was observed between 1H-benzo[d]imidazole derivatives and SQ109, another MmpL3 inhibitor, or other first-line antitubercular drugs. Metabolic labeling and quantitative thin-layer chromatography (TLC) analysis of radiolabeled lipids from M. tuberculosis cultures treated with the benzoimidazoles indicated an inhibition of trehalose dimycolate (TDM) synthesis, as well as reduced levels of mycolylated arabinogalactan, in agreement with the inhibition of MmpL3 activity. Overall, this study emphasizes the pronounced activity of 1H-benzo[d]imidazole derivatives in interfering with mycolic acid metabolism and their potential for therapeutic application in the fight against tuberculosis.
Collapse
|
29
|
Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules 2019; 24:molecules24132449. [PMID: 31277371 PMCID: PMC6651284 DOI: 10.3390/molecules24132449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) remains one of the deadliest, infectious diseases worldwide. The detrimental effects caused by the existing anti-TB drugs to TB patients and the emergence of resistance strains of M. tuberculosis has driven efforts from natural products researchers around the globe in discovering novel anti-TB drugs that are more efficacious and with less side effects. There were eleven main review publications that focused on natural products with anti-TB potentials. However, none of them specifically emphasized antimycobacterial phenolic compounds. Thus, the current review’s main objective is to highlight and summarize phenolic compounds found active against mycobacteria from 2000 to 2017. Based on the past studies in the electronic databases, the present review also focuses on several test organisms used in TB researches and their different distinct properties, a few types of in vitro TB bioassay and comparison between their strengths and drawbacks, different methods of extraction, fractionation and isolation, ways of characterizing and identifying isolated compounds and the mechanism of actions of anti-TB phenolic compounds as reported in the literature.
Collapse
Affiliation(s)
- Muhamad Harith Mazlun
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
| | - Siti Fatimah Sabran
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia.
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia.
| | - Maryati Mohamed
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
| | - Mohd Fadzelly Abu Bakar
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
| | - Zunoliza Abdullah
- Natural Products Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Selangor, Malaysia
| |
Collapse
|
30
|
LipG a bifunctional phospholipase/thioesterase involved in mycobacterial envelope remodeling. Biosci Rep 2018; 38:BSR20181953. [PMID: 30487163 PMCID: PMC6435540 DOI: 10.1042/bsr20181953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis is currently one of the leading causes of death from an infectious agent. The main difficulties encountered in eradicating this bacteria are mainly related to (i) a very complex lipid composition of the bacillus cell wall, (ii) its ability to hide from the immune system inside the granulomas, and (iii) the increasing number of resistant strains. In this context, we were interested in the Rv0646c (lipGMTB ) gene located upstream to the mmaA cluster which is described as being crucial for the production of cell wall components and required for the bacilli adaptation and survival in mouse macrophages. Using biochemical experiments combined with the construction of deletion and overexpression mutant strains in Mycobacterium smegmatis, we found that LipGMTB is a cytoplasmic membrane-associated enzyme that displays both phospholipase and thioesterase activities. Overproduction of LipGMTB decreases the glycopeptidolipids (GPL) level concomitantly to an increase in phosphatidylinositol (PI) which is the precursor of the PI mannoside (PIM), an essential lipid component of the bacterial cell wall. Conversely, deletion of the lipGMS gene in M. smegmatis leads to an overproduction of GPL, and subsequently decreases the strain susceptibility to various antibiotics. All these findings demonstrate that LipG is involved in cell envelope biosynthesis/remodeling, and consequently this enzyme may thus play an important role in mycobacterial physiology.
Collapse
|
31
|
Di Capua CB, Belardinelli JM, Buchieri MV, Bortolotti A, Franceschelli JJ, Morbidoni HR. Deletion of MSMEG_1350 in Mycobacterium smegmatis causes loss of epoxy-mycolic acids, fitness alteration at low temperature and resistance to a set of mycobacteriophages. MICROBIOLOGY-SGM 2018; 164:1567-1582. [PMID: 30311878 DOI: 10.1099/mic.0.000734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mycobacterium smegmatis is intrinsically resistant to thiacetazone, an anti-tubercular thiourea; however we report here that it causes a mild inhibition in growth in liquid medium. Since mycolic acid biosynthesis was affected, we cloned and expressed Mycobacterium smegmatis mycolic acid methyltransferases, postulated as targets for thiacetazone in other mycobacterial species. During this analysis we identified MSMEG_1350 as the methyltransferase involved in epoxy mycolic acid synthesis since its deletion led to their total loss. Phenotypic characterization of the mutant strain showed colony morphology alterations at all temperatures, reduced growth and a slightly increased susceptibility to SDS, lipophilic and large hydrophilic drugs at 20 °C with little effect at 37 °C. No changes were detected between parental and mutant strains in biofilm formation, sliding motility or sedimentation rate. Intriguingly, we found that several mycobacteriophages severely decreased their ability to form plaques in the mutant strain. Taken together our results prove that, in spite of being a minor component of the mycolic acid pool, epoxy-mycolates are required for a proper assembly and functioning of the cell envelope. Further studies are warranted to decipher the role of epoxy-mycolates in the M. smegmatis cell envelope.
Collapse
Affiliation(s)
- Cecilia B Di Capua
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan M Belardinelli
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,‡Present address: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - María V Buchieri
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ana Bortolotti
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina J Franceschelli
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
32
|
Kim S, Seo H, Mahmud HA, Islam MI, Lee BE, Cho ML, Song HY. In vitro activity of collinin isolated from the leaves of Zanthoxylum schinifolium against multidrug- and extensively drug-resistant Mycobacterium tuberculosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:104-110. [PMID: 30097109 DOI: 10.1016/j.phymed.2018.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/14/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tuberculosis is a very serious infectious disease that threatens humanity, and the emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR) strains resistant to drugs suggests that new drug development is urgent. In order to develop new tuberculosis drug, we have conducted in vitro anti-tubercular tests on thousands of plant-derived substances and finally found collinin extracted from the leaves of Zanthoxylum schinifolium, which has an excellent anti-tuberculosis effect. PURPOSE To isolate an anti-tubercular bioactive compound from the leaves of Z. schinifolium and evaluate whether this agent demonstrates any potential in vitro characteristics suitable for the development of future anti-tubercular drugs to treat MDR and XDR Mycobacterium tuberculosis. METHODS The methanolic extracts of the leaves of Z. schinifolium were subjected to bioassay-guided fractionation against M. tuberculosis using a microbial cell viability assay. In addition, following cell cytotoxicity assay, an intracellular anti-mycobacterial activity of the most active anti-tubercular compound was investigated after it was purified. RESULTS The active compound with anti-tubercular activity isolated from leaves of Z. schinifolium was identified as a collinin. The extracted collinin showed anti-tubercular activity against both drug-susceptible and -resistant strains of M. tuberculosis at 50% minimum inhibitory concentrations (MIC50s) of 3.13-6.25 µg/ml in culture broth and MIC50s of 6.25-12.50 µg/ml inside Raw264.7 and A549 cells. Collinin had no cytotoxicity against human lung pneumocytes up to a concentration of 100 µg/ml (selectivity index > 16-32). CONCLUSIONS Collinin extracted from the leaves of Z. schinifolium significantly inhibits the growth of MDR and XDR M. tuberculosis in the culture broth. In addition, it also inhibits the growth of intracellular drug-susceptible and drug-resistant tuberculosis in Raw264.7 and A549 cells. To our knowledge, this is the first report on the in vitro anti-tubercular activity of collinin, and our data suggest collinin as a potential drug to treat drug-resistant tuberculosis. Further studies are warranted to assess the in vivo efficacy and therapeutic potential of collinin.
Collapse
Affiliation(s)
- Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea
| | - Hafij Al Mahmud
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea
| | - Md Imtiazul Islam
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea
| | - Byung-Eui Lee
- Department of Chemistry, School of Life Sciences, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Myoung-Lae Cho
- National Development Institute of Korean Medicine, Gyeongsan, Gyeongnam 38540, South Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea.
| |
Collapse
|
33
|
Küssau T, Flipo M, Van Wyk N, Viljoen A, Olieric V, Kremer L, Blaise M. Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:383-393. [PMID: 29717709 DOI: 10.1107/s2059798318002917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022]
Abstract
In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP+-bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP+-bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.
Collapse
Affiliation(s)
- Tanja Küssau
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Marion Flipo
- Université de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, 59000 Lille, France
| | - Niel Van Wyk
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| |
Collapse
|
34
|
Szulc-Kielbik I, Pawelczyk J, Kielbik M, Kremer L, Dziadek J, Klink M. Severe inhibition of lipooligosaccharide synthesis induces TLR2-dependent elimination of Mycobacterium marinum from THP1-derived macrophages. Microb Cell Fact 2017; 16:217. [PMID: 29183333 PMCID: PMC5706390 DOI: 10.1186/s12934-017-0829-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although mycobacterial glycolipids are among the first-line molecules involved in host-pathogen interactions, their contribution in virulence remains incomplete. Mycobacterium marinum is a waterborne pathogen of fish and other ectotherms, closely related to Mycobacterium tuberculosis. Since it causes tuberculosis-like systemic infection it is widely used as a model organism for studying the pathogenesis of tuberculosis. It is also an occasional opportunistic human pathogen. The M. marinum surface-exposed lipooligosaccharides (LOS) are immunogenic molecules that participate in the early interactions with macrophages and modulate the host immune system. Four major LOS species, designated LOS-I to LOS-IV, have been identified and characterized in M. marinum. Herein, we investigated the interactions between a panel of defined M. marinum LOS mutants that exhibited various degrees of truncation in the LOS structure, and human-derived THP-1 macrophages to address the potential of LOSs to act as pro- or avirulence factors. RESULTS A moderately truncated LOS structure did not interfere with M. marinum invasion. However, a deeper shortening of the LOS structure was associated with increased entry of M. marinum into host cells and increased elimination of the bacilli by the macrophages. These effects were dependent on Toll-like receptor 2. CONCLUSION We provide the first evidence that LOSs inhibit the interaction between mycobacterial cell wall ligands and appropriate macrophage pattern recognition receptors, affecting uptake and elimination of the bacteria by host phagocytes.
Collapse
Affiliation(s)
- Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Jakub Pawelczyk
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Laurent Kremer
- IRIM (ex-CPBS)-UMR 9004, Research Institute of Infectiology of Montpellier, Université de Montpellier, CNRS, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| |
Collapse
|
35
|
Bennett M, Högbom M. Crystal structure of the essential biotin-dependent carboxylase AccA3 from Mycobacterium tuberculosis. FEBS Open Bio 2017; 7:620-626. [PMID: 28469974 PMCID: PMC5407890 DOI: 10.1002/2211-5463.12212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/10/2022] Open
Abstract
Biotin‐dependent acetyl‐CoA carboxylases catalyze the committed step in type II fatty acid biosynthesis, the main route for production of membrane phospholipids in bacteria, and are considered a key target for antibacterial drug discovery. Here we describe the first structure of AccA3, an essential component of the acetyl‐CoA carboxylase system in Mycobacterium tuberculosis (MTb). The structure, sequence comparisons, and modeling of ligand‐bound states reveal that the ATP cosubstrate‐binding site shows distinct differences compared to other bacterial and eukaryotic biotin carboxylases, including all human homologs. This suggests the possibility to design MTb AccA3 subtype‐specific inhibitors. Database Coordinates and structure factors have been deposited in the Protein Data Bank with the accession number 5MLK.
Collapse
Affiliation(s)
- Matthew Bennett
- Department of Biochemistry and Biophysics; Arrhenius Laboratories for Natural Sciences; Stockholm University; Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics; Arrhenius Laboratories for Natural Sciences; Stockholm University; Sweden
| |
Collapse
|
36
|
Fedrizzi T, Meehan CJ, Grottola A, Giacobazzi E, Fregni Serpini G, Tagliazucchi S, Fabio A, Bettua C, Bertorelli R, De Sanctis V, Rumpianesi F, Pecorari M, Jousson O, Tortoli E, Segata N. Genomic characterization of Nontuberculous Mycobacteria. Sci Rep 2017; 7:45258. [PMID: 28345639 PMCID: PMC5366915 DOI: 10.1038/srep45258] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis and Mycobacterium leprae have remained, for many years, the primary species of the genus Mycobacterium of clinical and microbiological interest. The other members of the genus, referred to as nontuberculous mycobacteria (NTM), have long been underinvestigated. In the last decades, however, the number of reports linking various NTM species with human diseases has steadily increased and treatment difficulties have emerged. Despite the availability of whole genome sequencing technologies, limited effort has been devoted to the genetic characterization of NTM species. As a consequence, the taxonomic and phylogenetic structure of the genus remains unsettled and genomic information is lacking to support the identification of these organisms in a clinical setting. In this work, we widen the knowledge of NTMs by reconstructing and analyzing the genomes of 41 previously uncharacterized NTM species. We provide the first comprehensive characterization of the genomic diversity of NTMs and open new venues for the clinical identification of opportunistic pathogens from this genus.
Collapse
Affiliation(s)
| | - Conor J Meehan
- Mycobacteriology unit, Department of Biomedical Science, Institute of Tropical Medicine, Antwerp, Belgium
| | - Antonella Grottola
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | | | | | - Sara Tagliazucchi
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - Anna Fabio
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - Clotilde Bettua
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Roberto Bertorelli
- NGS Facility, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Centre for Integrative Biology, University of Trento, Italy
| | - Veronica De Sanctis
- NGS Facility, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Centre for Integrative Biology, University of Trento, Italy
| | - Fabio Rumpianesi
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - Monica Pecorari
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Enrico Tortoli
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
37
|
Binding of NADP + triggers an open-to-closed transition in a mycobacterial FabG β-ketoacyl-ACP reductase. Biochem J 2017; 474:907-921. [PMID: 28126742 DOI: 10.1042/bcj20161052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 02/07/2023]
Abstract
The ketoacyl-acyl carrier protein (ACP) reductase FabG catalyzes the NADPH/NADH dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products, the first reductive step in the fatty acid biosynthesis elongation cycle. FabG proteins are ubiquitous in bacteria and are part of the type II fatty acid synthase system. Mining the Mycobacterium smegmatis genome uncovered several putative FabG-like proteins. Among them, we identified M. smegmatis MSMEG_6753 whose gene was found adjacent to MSMEG_6754, encoding a recently characterized enoyl-CoA dehydratase, and to MSMEG_6755, encoding another potential reductase. Recombinantly expressed and purified MSMEG_6753 exhibits ketoacyl reductase activity in the presence of acetoacetyl-CoA and NADPH. This activity was subsequently confirmed by functional complementation studies in a fabG thermosensitive Escherichia coli mutant. Furthermore, comparison of the apo and the NADP+-bound MSMEG_6753 crystal structures showed that cofactor binding induces a closed conformation of the protein. A ΔMSMEG_6753 deletion mutant could be generated in M. smegmatis, indicating that this gene is dispensable for mycobacterial growth. Overall, these results showcase the diversity of FabG-like proteins in mycobacteria and new structural features regarding the catalytic mechanism of this important family of enzymes that may be of importance for the rational design of specific FabG inhibitors.
Collapse
|
38
|
Vilchèze C, Kremer L. Acid-Fast Positive and Acid-Fast Negative Mycobacterium tuberculosis: The Koch Paradox. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0003-2015. [PMID: 28337966 PMCID: PMC11687472 DOI: 10.1128/microbiolspec.tbtb2-0003-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Acid-fast (AF) staining, also known as Ziehl-Neelsen stain microscopic detection, developed over a century ago, is even today the most widely used diagnostic method for tuberculosis. Herein we present a short historical review of the evolution of AF staining methods and discuss Koch's paradox, in which non-AF tubercle bacilli can be detected in tuberculosis patients or in experimentally infected animals. The conversion of Mycobacterium tuberculosis from an actively growing, AF-positive form to a nonreplicating, AF-negative form during the course of infection is now well documented. The mechanisms of loss of acid-fastness are not fully understood but involve important metabolic processes, such as the accumulation of triacylglycerol-containing intracellular inclusions and changes in the composition and spatial architecture of the cell wall. Although the precise component(s) responsible for the AF staining method remains largely unknown, analysis of a series of genetically defined M. tuberculosis mutants, which are attenuated in mice, pointed to the primary role of mycolic acids and other cell wall-associated (glyco)lipids as molecular markers responsible for the AF property of mycobacteria. Further studies are now required to better describe the cell wall reorganization that occurs during dormancy and to develop new staining procedures that are not affected by such cell wall alterations and that are capable of detecting AF-negative cells.
Collapse
Affiliation(s)
- Catherine Vilchèze
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Laurent Kremer
- IRIM (ex-CPBS) UMR 9004, Infectious Disease Research Institute of Montpellier (IDRIM), Université de Montpellier, CNRS, 34293 Montpellier, France
| |
Collapse
|
39
|
Pawelczyk J, Viljoen A, Kremer L, Dziadek J. The influence of AccD5 on AccD6 carboxyltransferase essentiality in pathogenic and non-pathogenic Mycobacterium. Sci Rep 2017; 7:42692. [PMID: 28205597 PMCID: PMC5311964 DOI: 10.1038/srep42692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/12/2017] [Indexed: 01/27/2023] Open
Abstract
Malonyl-coenzyme A (CoA) is a crucial extender unit for the synthesis of mycolic and other fatty acids in mycobacteria, generated in a reaction catalyzed by acetyl-CoA carboxylase. We previously reported on the essentiality of accD6Mtb encoding the functional acetyl-CoA carboxylase subunit in Mycobacterium tuberculosis. Strikingly, the homologous gene in the fast-growing, non-pathogenic Mycobacterium smegmatis - (accD6Msm) appeared to be dispensable, and its deletion did not influence the cell lipid content. Herein, we demonstrate that, despite the difference in essentiality, accD6Msm and accD6Mtb encode proteins of convergent catalytic activity in vivo. To identify an alternative, AccD6-independent, malonyl-CoA synthesis pathway in M. smegmatis, a complex genetic approach combined with lipid analysis was applied to screen all five remaining carboxyltransferase genes (accD1-accD5) with respect to their involvement in mycolic acid biosynthesis and ability to utilize acetyl-CoA as the substrate for carboxylation. This approach revealed that AccD1Msm, AccD2Msm and AccD3Msm are not essential for mycolic acid biosynthesis. Furthermore, we confirmed in vivo the function of AccD4Msm as an essential, long-chain acyl-CoA carboxyltransferase, unable to carboxylate short-chain substrate. Finally, our comparative studies unambiguously demonstrated between-species difference in in vivo ability of AccD5 carboxyltransferase to utilize acetyl-CoA that influences AccD6 essentiality in pathogenic and non-pathogenic mycobacteria.
Collapse
Affiliation(s)
- Jakub Pawelczyk
- Institute for Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, Montpellier, France.,INSERM, CPBS, 34293 Montpellier, France
| | - Jaroslaw Dziadek
- Institute for Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
40
|
Fratz-Berilla EJ, Breydo L, Gouya L, Puy H, Uversky VN, Ferreira GC. Isoniazid inhibits human erythroid 5-aminolevulinate synthase: Molecular mechanism and tolerance study with four X-linked protoporphyria patients. Biochim Biophys Acta Mol Basis Dis 2017; 1863:428-439. [DOI: 10.1016/j.bbadis.2016.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
41
|
Adamska A, Rumijowska-Galewicz A, Ruszczynska A, Studzińska M, Jabłońska A, Paradowska E, Bulska E, Munier-Lehmann H, Dziadek J, Leśnikowski ZJ, Olejniczak AB. Anti-mycobacterial activity of thymine derivatives bearing boron clusters. Eur J Med Chem 2016; 121:71-81. [DOI: 10.1016/j.ejmech.2016.05.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
42
|
Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent. Proc Natl Acad Sci U S A 2016; 113:E4228-37. [PMID: 27385830 PMCID: PMC4961194 DOI: 10.1073/pnas.1605477113] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the β-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors.
Collapse
|
43
|
Li Q, Zhou M, Fan X, Yan J, Li W, Xie J. Mycobacteriophage SWU1 gp39 can potentiate multiple antibiotics against Mycobacterium via altering the cell wall permeability. Sci Rep 2016; 6:28701. [PMID: 27350398 PMCID: PMC4923848 DOI: 10.1038/srep28701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
M. tuberculosis is intrinsically tolerant to many antibiotics largely due to the imperviousness of its unusual mycolic acid-containing cell wall to most antimicrobials. The emergence and increasingly widespread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) revitalized keen interest in phage-inspired therapy. SWU1gp39 is a novel gene from mycobacteriophage SWU1 with unknown function. SWU1gp39 expressed in M. smegmatis conferred the host cell increased susceptibility to multiple antibiotics, including isoniazid, erythromycin, norfloxacin, ampicillin, ciprofloxacin, ofloxacin, rifampicin and vancomycin, and multiple environment stresses such as H2O2, heat shock, low pH and SDS. By using EtBr/Nile red uptake assays, WT-pAL-gp39 strain showed higher cell wall permeability than control strain WT-pAL. Moreover, the WT-pAL-gp39 strain produced more reactive oxygen species and reduced NAD(+)/NADH ratio. RNA-Seq transcriptomes of the WT-pAL-gp39 and WT-pAL revealed that the transcription of 867 genes was differentially regulated, including genes associated with lipid metabolism. Taken together, our results implicated that SWU1gp39, a novel gene from mycobacteriophage, disrupted the lipid metabolism of host and increased cell wall permeability, ultimately potentiated the efficacy of multiple antibiotics and stresses against mycobacteria.
Collapse
Affiliation(s)
- Qiming Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Mingliang Zhou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
- School of Biological Science and Technology, University of Jinan, Shandong 250022, China
| | - Jianlong Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Key laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
44
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|