1
|
Sharma A, Singh N, Bhasin M, Tiwari P, Chopra P, Varadarajan R, Singh R. Deciphering the role of VapBC13 and VapBC26 toxin antitoxin systems in the pathophysiology of Mycobacterium tuberculosis. Commun Biol 2024; 7:1417. [PMID: 39478197 PMCID: PMC11525840 DOI: 10.1038/s42003-024-06998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The expansion of VapBC TA systems in M. tuberculosis has been linked with its fitness and survival upon exposure to stress conditions. Here, we have functionally characterized VapBC13 and VapBC26 TA modules of M. tuberculosis. We report that overexpression of VapC13 and VapC26 toxins in M. tuberculosis results in growth inhibition and transcriptional reprogramming. We have also identified various regulatory proteins as hub nodes in the top response network of VapC13 and VapC26 overexpression strains. Further, analysis of RNA protection ratios revealed potential tRNA targets for VapC13 and VapC26. Using in vitro ribonuclease assays, we demonstrate that VapC13 and VapC26 degrade serT and leuW tRNA, respectively. However, no significant changes in rRNA cleavage profiles were observed upon overexpression of VapC13 and VapC26 in M. tuberculosis. In order to delineate the role of these TA systems in M. tuberculosis physiology, various mutant strains were constructed. We show that in comparison to the parental strain, ΔvapBC13 and ΔvapBC26 strains were mildly susceptible to oxidative stress. Surprisingly, the growth patterns of parental and mutant strains were comparable in aerosol-infected guinea pigs. These observations imply that significant functional redundancy exists for some TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Arun Sharma
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabhakar Tiwari
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Pankaj Chopra
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Schneider RF, Hallstrom K, DeMott C, McDonough KA. Conditional protein splicing of the Mycobacterium tuberculosis RecA intein in its native host. Sci Rep 2024; 14:20664. [PMID: 39237639 PMCID: PMC11377839 DOI: 10.1038/s41598-024-71248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
The recA gene, encoding Recombinase A (RecA) is one of three Mycobacterium tuberculosis (Mtb) genes encoding an in-frame intervening protein sequence (intein) that must splice out of precursor host protein to produce functional protein. Ongoing debate about whether inteins function solely as selfish genetic elements or benefit their host cells requires understanding of interplay between inteins and their hosts. We measured environmental effects on native RecA intein splicing within Mtb using a combination of western blots and promoter reporter assays. RecA splicing was stimulated in bacteria exposed to DNA damaging agents or by treatment with copper in hypoxic, but not normoxic, conditions. Spliced RecA was processed by the Mtb proteasome, while free intein was degraded efficiently by other unknown mechanisms. Unspliced precursor protein was not observed within Mtb despite its accumulation during ectopic expression of Mtb recA within E. coli. Surprisingly, Mtb produced free N-extein in some conditions, and ectopic expression of Mtb N-extein activated LexA in E. coli. These results demonstrate that the bacterial environment greatly impacts RecA splicing in Mtb, underscoring the importance of studying intein splicing in native host environments and raising the exciting possibility of intein splicing as a novel regulatory mechanism in Mtb.
Collapse
Affiliation(s)
- Ryan F Schneider
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany, Albany, USA
| | - Kelly Hallstrom
- Wadsworth Center, New York Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Christopher DeMott
- Wadsworth Center, New York Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
- Regeneron Pharmaceuticals Inc, Albany, NY, USA
| | - Kathleen A McDonough
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany, Albany, USA.
- Wadsworth Center, New York Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
3
|
Schneider RF, Hallstrom K, DeMott C, McDonough KA. Conditional protein splicing of the Mycobacterium tuberculosis RecA intein in its native host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589443. [PMID: 38659745 PMCID: PMC11042385 DOI: 10.1101/2024.04.15.589443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The recA gene, encoding Recombinase A (RecA) is one of three Mycobacterium tuberculosis (Mtb) genes encoding an in-frame intervening protein sequence (intein) that must splice out of precursor host protein to produce functional protein. Ongoing debate about whether inteins function solely as selfish genetic elements or benefit their host cells requires understanding of interplay between inteins and their hosts. We measured environmental effects on native RecA intein splicing within Mtb using a combination of western blots and promoter reporter assays. RecA splicing was stimulated in bacteria exposed to DNA damaging agents or by treatment with copper in hypoxic, but not normoxic, conditions. Spliced RecA was processed by the Mtb proteasome, while free intein was degraded efficiently by other unknown mechanisms. Unspliced precursor protein was not observed within Mtb despite its accumulation during ectopic expression of Mtb recA within E. coli. Surprisingly, Mtb produced free N-extein in some conditions, and ectopic expression of Mtb N-extein activated LexA in E. coli. These results demonstrate that the bacterial environment greatly impacts RecA splicing in Mtb, underscoring the importance of studying intein splicing in native host environments and raising the exciting possibility of intein splicing as a novel regulatory mechanism in Mtb.
Collapse
Affiliation(s)
- Ryan F. Schneider
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany
| | | | | | - Kathleen A. McDonough
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany
- Wadsworth Center, New York Department of Health
| |
Collapse
|
4
|
Smiejkowska N, Oorts L, Van Calster K, De Vooght L, Geens R, Mattelaer HP, Augustyns K, Strelkov SV, Lamprecht D, Temmerman K, Sterckx YGJ, Cappoen D, Cos P. A high-throughput target-based screening approach for the identification and assessment of Mycobacterium tuberculosis mycothione reductase inhibitors. Microbiol Spectr 2024; 12:e0372323. [PMID: 38315026 PMCID: PMC10913476 DOI: 10.1128/spectrum.03723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
The World Health Organization's goal to combat tuberculosis (TB) is hindered by the emergence of anti-microbial resistance, therefore necessitating the exploration of new drug targets. Multidrug regimens are indispensable in TB therapy as they provide synergetic bactericidal effects, shorten treatment duration, and reduce the risk of resistance development. The research within our European RespiriTB consortium explores Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we describe the development and validation of a luminescence-coupled, target-based assay for the identification of novel compounds inhibiting Mycobacterium tuberculosis mycothione reductase (MtrMtb), an enzyme with a role in the protection against oxidative stress. Recombinant MtrMtb was employed for the development of a highly sensitive, robust high-throughput screening (HTS) assay by coupling enzyme activity to a bioluminescent readout. Its application in a semi-automated setting resulted in the screening of a diverse library of ~130,000 compounds, from which 19 hits were retained after an assessment of their potency, selectivity, and specificity. The selected hits formed two clusters and four fragment molecules, which were further evaluated in whole-cell and intracellular infection assays. The established HTS discovery pipeline offers an opportunity to deliver novel MtrMtb inhibitors and lays the foundation for future efforts in developing robust biochemical assays for the identification and triaging of inhibitors from high-throughput library screens. IMPORTANCE The growing anti-microbial resistance poses a global public health threat, impeding progress toward eradicating tuberculosis. Despite decades of active research, there is still a dire need for the discovery of drugs with novel modes of action and exploration of combination drug regimens. Within the European RespiriTB consortium, we explore Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we present the development of a high-throughput screening pipeline that led to the identification of M. tuberculosis mycothione reductase inhibitors.
Collapse
Affiliation(s)
- Natalia Smiejkowska
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Lauren Oorts
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Kevin Van Calster
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Rob Geens
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Henri-Philippe Mattelaer
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Sergei V. Strelkov
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| |
Collapse
|
5
|
Mycobacterium tuberculosis whiB3 and Lipid Metabolism Genes Are Regulated by Host Induced Oxidative Stress. Microorganisms 2022; 10:microorganisms10091821. [PMID: 36144423 PMCID: PMC9506551 DOI: 10.3390/microorganisms10091821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
The physiological state of the human macrophage may impact the metabolism and the persistence of Mycobacterium tuberculosis. This pathogen senses and counters the levels of O2, CO, reactive oxygen species (ROS), and pH in macrophages. M. tuberculosis responds to oxidative stress through WhiB3. The goal was to determine the effect of NADPH oxidase (NOX) modulation and oxidative agents on the expression of whiB3 and genes involved in lipid metabolism (lip-Y, Icl-1, and tgs-1) in intracellular mycobacteria. Human macrophages were first treated with NOX modulators such as DPI (ROS inhibitor) and PMA (ROS activator), or with oxidative agents (H2O2 and generator system O2•-), and then infected with mycobacteria. We determined ROS production, cell viability, and expression of whiB3, as well as genes involved in lipid metabolism. PMA, H2O2, and O2•- increased ROS production in human macrophages, generating oxidative stress in bacteria and augmented the gene expression of whiB3, lip-Y, Icl-1, and tgs-1. Our results suggest that ROS production in macrophages induces oxidative stress in intracellular bacteria inducing whiB3 expression. This factor may activate the synthesis of reserve lipids produced to survive in the latency state, which allows its persistence for long periods within the host.
Collapse
|
6
|
Wu M, Shan W, Zhao GP, Lyu LD. The H2O2 Concentration-Dependent Kinetics of Gene Expression: Linking the Intensity of Oxidative Stress and Mycobacterial Physiological Adaptation. Emerg Microbes Infect 2022; 11:573-584. [PMID: 35076334 PMCID: PMC8856045 DOI: 10.1080/22221751.2022.2034484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Defence against oxidative stress is crucial for Mycobacterium tuberculosis to survive and replicate within macrophages. Mycobacteria have evolved multilayer antioxidant systems, including scavenging enzymes, iron homeostasis, repair pathways, and metabolic adaptation, for coping with oxidative stress. How these systems are coordinated to enable the physiological adaptation to different intensities of oxidative stress, however, remains unclear. To address this, we investigated the expression kinetics of the well-characterized antioxidant genes at bacteriostatic H2O2 concentrations ranging from 1 mM to 10 mM employing Mycolicibacterium smegmatis as a model. Our results showed that most of the selected genes were expressed in a H2O2 concentration-dependent manner, whereas a subset exhibited sustained induction or repression without dose–effect, reflecting H2O2 concentration-dependent physiological adaptations. Through analyzing the dynamics of the coordinated gene expression, we demonstrated that the expressions of the H2O2 scavenging enzymes, DNA damage response, and Fe–S cluster repair function were strikingly correlated to the intensity of oxidative stress. The sustained induction of mbtB, irtA, and dnaE2 indicated that mycobacteria might deploy increased iron acquisition and error-prone lesion bypass function as fundamental strategies to counteract oxidative damages, which are distinct from the defence tactics of Escherichia coli characterized by shrinking the iron pool and delaying the DNA repair. Moreover, the distinct gene expression kinetics among the tricarboxylic acid cycle, glyoxylate shunt, and methylcitrate cycle suggested that mycobacteria could dynamically redirect its metabolic fluxes according to the intensity of oxidative stress. This work defines the H2O2 concentration-dependent gene expression kinetics and provides unique insights into mycobacterial antioxidant defence strategies.
Collapse
Affiliation(s)
- Mengying Wu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Wenyan Shan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Guo-Ping Zhao
- Department of Microbiology, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health (MOE/NHC), School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, 200433 Shanghai, China
| |
Collapse
|
7
|
Fridianto KT, Li M, Hards K, Negatu DA, Cook GM, Dick T, Lam Y, Go ML. Functionalized Dioxonaphthoimidazoliums: A Redox Cycling Chemotype with Potent Bactericidal Activities against Mycobacterium tuberculosis. J Med Chem 2021; 64:15991-16007. [PMID: 34706190 DOI: 10.1021/acs.jmedchem.1c01383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disruption of redox homeostasis in mycobacteria causes irreversible stress induction and cell death. Here, we report the dioxonaphthoimidazolium scaffold as a novel redox cycling antituberculosis chemotype with potent bactericidal activity against growing and nutrient-starved phenotypically drug-resistant nongrowing bacteria. Maximal potency was dependent on the activation of the redox cycling quinone by the positively charged scaffold and accessibility to the mycobacterial cell membrane as directed by the lipophilicity and conformational characteristics of the N-substituted side chains. Evidence from microbiological, biochemical, and genetic investigations implicates a redox-driven mode of action that is reliant on the reduction of the quinone by type II NADH dehydrogenase (NDH2) for the generation of bactericidal levels of the reactive oxygen species (ROS). The bactericidal profile of a potent water-soluble analogue 32 revealed good activity against nutrient-starved organisms in the Loebel model of dormancy, low spontaneous resistance mutation frequency, and synergy with isoniazid in the checkerboard assay.
Collapse
Affiliation(s)
| | | | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Dereje A Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health & Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey 07110, United States
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health & Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey 07110, United States.,Department of Microbiology and Immunology, Georgetown University, Washington, District of Columbia 20057, United States
| | | | | |
Collapse
|
8
|
Proteome remodeling in the Mycobacterium tuberculosis PknG knockout: Molecular evidence for the role of this kinase in cell envelope biogenesis and hypoxia response. J Proteomics 2021; 244:104276. [PMID: 34044169 DOI: 10.1016/j.jprot.2021.104276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis, is among the deadliest human pathogens. One of M. tuberculosis's pathogenic hallmarks is its ability to persist in a dormant state in the host. Thus, this pathogen has developed mechanisms to withstand stressful conditions found in the human host. Particularly, the Ser/Thr-protein kinase PknG has gained relevance since it regulates nitrogen metabolism and facilitates bacterial survival inside macrophages. Nevertheless, the molecular mechanisms underlying these effects are far from being elucidated. To further investigate these issues, we performed quantitative proteomic analyses of protein extracts from M. tuberculosis H37Rv and a mutant lacking pknG. We found that in the absence of PknG the mycobacterial proteome was remodeled since 5.7% of the proteins encoded by M. tuberculosis presented significant changes in its relative abundance compared with the wild-type. The main biological processes affected by pknG deletion were cell envelope components biosynthesis and response to hypoxia. Thirteen DosR-regulated proteins were underrepresented in the pknG deletion mutant, including Hrp-1, which was 12.5-fold decreased according to Parallel Reaction Monitoring experiments. Altogether, our results allow us to postulate that PknG regulation of bacterial adaptation to stress conditions might be an important mechanism underlying its reported effect on intracellular bacterial survival. SIGNIFICANCE: PknG is a Ser/Thr kinase from Mycobacterium tuberculosis with key roles in bacterial metabolism and bacterial survival within the host. However, at present the molecular mechanisms underlying these functions remain largely unknown. In this work, we evaluate the effect of pknG deletion on M. tuberculosis proteome using different approaches. Our results clearly show that the global proteome was remodeled in the absence of PknG and shed light on new molecular mechanism underlying PknG role. Altogether, this work contributes to a better understanding of the molecular bases of the adaptation of M. tuberculosis, one of the most deadly human pathogens, to its host.
Collapse
|
9
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
10
|
Ethanol in Combination with Oxidative Stress Significantly Impacts Mycobacterial Physiology. J Bacteriol 2020; 202:JB.00222-20. [PMID: 32928928 DOI: 10.1128/jb.00222-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022] Open
Abstract
Here, we investigate the mycobacterial response to the combined stress of an organic oxidant (cumene hydroperoxide [CHP]) and a solvent (ethanol). To understand the interaction between the two stressors, we treated Mycobacterium smegmatis cells to a range of ethanol concentrations (2.5% to 10% [vol/vol]) in combination with a subinhibitory concentration of 1 mM CHP. It was observed that the presence of CHP increases the efficacy of ethanol in inducing rapid cell death. The data further suggest that ethanol reacts with the alkoxy radicals to produce ethanol-derived peroxides. These radicals induce significant membrane damage and lead to cell lysis. The ethanol-derived radicals were primarily recognized by the cells as organic radicals, as was evident by the differential upregulation of the ohr-ohrR genes that function in cells treated with the combination of ethanol and CHP. The role of organic peroxide reductase, Ohr, was further confirmed by the significantly higher sensitivity of the deletion mutant to CHP and the combined stress treatment of CHP and ethanol. Moreover, we also observed the sigma factor σB to be important for the cells treated with ethanol alone as well as the aforementioned combination. A ΔsigB mutant strain had significantly higher susceptibility to the stress conditions. This finding was correlated with the σB-dependent transcriptional regulation of ohr and ohrR In summary, our data indicate that the combination of low levels of ethanol and organic peroxides induce ethanol-derived organic radicals that lead to significant oxidative stress on the cells in a concentration-dependent manner.IMPORTANCE Bacterial response to a combination of stresses can be unexpected and very different compared with that of an individual stress treatment. This study explores the physiological and transcriptional response of mycobacteria in response to the combinatorial treatment of an oxidant with the commonly used solvent ethanol. The presence of a subinhibitory concentration of organic peroxide increases the effectiveness of ethanol by inducing reactive peroxides that destroy the membrane integrity of cells in a significantly short time span. Our work elucidates a mechanism of targeting the complex mycobacterial membrane, which is its primary source of intrinsic resistance. Furthermore, it also demonstrates the importance of exploring the effect of various stress conditions on inducing bacterial clearance.
Collapse
|
11
|
Bancroft PJ, Turapov O, Jagatia H, Arnvig KB, Mukamolova GV, Green J. Coupling of Peptidoglycan Synthesis to Central Metabolism in Mycobacteria: Post-transcriptional Control of CwlM by Aconitase. Cell Rep 2020; 32:108209. [PMID: 32997986 PMCID: PMC7527780 DOI: 10.1016/j.celrep.2020.108209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/18/2020] [Accepted: 09/09/2020] [Indexed: 10/25/2022] Open
Abstract
Mycobacterium tuberculosis causes human tuberculosis, and a better understanding of its biology is required to identify vulnerabilities that might be exploited in developing new therapeutics. The iron-sulfur cluster of the essential M. tuberculosis central metabolic enzyme, aconitase (AcnA), disassembles when exposed to oxidative/nitrosative stress or iron chelators. The catalytically inactive apo-AcnA interacts with a sequence resembling an iron-responsive element (IRE) located within the transcript of another essential protein, CwlM, a regulator of peptidoglycan synthesis. A Mycobacterium smegmatis cwlM conditional mutant complemented with M. tuberculosis cwlM with a disrupted IRE is unable to recover from combinations of oxidative, nitrosative, and iron starvation stresses. An equivalent M. tuberculosis cwlM conditional mutant complemented with the cwlM gene lacking a functional IRE exhibits a growth defect in THP-1 macrophages. It appears that AcnA acts to couple peptidoglycan synthesis and central metabolism, and disruption of this coupling potentially leaves mycobacteria vulnerable to attack by macrophages.
Collapse
Affiliation(s)
- Peter J Bancroft
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| | - Heena Jagatia
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK.
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
12
|
Behra PRK, Pettersson BMF, Ramesh M, Dasgupta S, Kirsebom LA. Insight into the biology of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members. Sci Rep 2019; 9:19259. [PMID: 31848383 PMCID: PMC6917791 DOI: 10.1038/s41598-019-55464-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Nontuberculous mycobacteria, NTM, are of growing concern and among these members of the Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clades can cause infections in humans and they are resistant to first-line anti-tuberculosis drugs. They can be isolated from different ecological niches such as soil, tap water and ground water. Mycobacteria, such as Mmuc and Mneo, are classified as rapid growing mycobacteria, RGM, while the most familiar, Mycobacterium tuberculosis, belongs to the slow growing mycobacteria, SGM. Modern “omics” approaches have provided new insights into our understanding of the biology and evolution of this group of bacteria. Here we present comparative genomics data for seventeen NTM of which sixteen belong to the Mmuc- and Mneo-clades. Focusing on virulence genes, including genes encoding sigma/anti-sigma factors, serine threonine protein kinases (STPK), type VII (ESX genes) secretion systems and mammalian cell entry (Mce) factors we provide insight into their presence as well as phylogenetic relationship in the case of the sigma/anti-sigma factors and STPKs. Our data further suggest that these NTM lack ESX-5 and Mce2 genes, which are known to affect virulence. In this context, Mmuc- and Mneo-clade members lack several of the genes in the glycopeptidolipid (GLP) locus, which have roles in colony morphotype appearance and virulence. For the M. mucogenicum type strain, MmucT, we provide RNASeq data focusing on mRNA levels for sigma factors, STPK, ESX proteins and Mce proteins. These data are discussed and compared to in particular the SGM and fish pathogen Mycobacterium marinum. Finally, we provide insight into as to why members of the Mmuc- and Mneo-clades show resistance to rifampin and isoniazid, and why MmucT forms a rough colony morphotype.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
13
|
Characterization and engineering control of the effects of reactive oxygen species on the conversion of sterols to steroid synthons in Mycobacterium neoaurum. Metab Eng 2019; 56:97-110. [DOI: 10.1016/j.ymben.2019.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 01/08/2023]
|
14
|
Cuevasanta E, Reyes AM, Zeida A, Mastrogiovanni M, De Armas MI, Radi R, Alvarez B, Trujillo M. Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from Mycobacterium tuberculosis. J Biol Chem 2019; 294:13593-13605. [PMID: 31311857 DOI: 10.1074/jbc.ra119.008883] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) participates in prokaryotic metabolism and is associated with several physiological functions in mammals. H2S reacts with oxidized thiol derivatives (i.e. disulfides and sulfenic acids) and thereby forms persulfides, which are plausible transducers of the H2S-mediated signaling effects. The one-cysteine peroxiredoxin alkyl hydroperoxide reductase E from Mycobacterium tuberculosis (MtAhpE-SH) reacts fast with hydroperoxides, forming a stable sulfenic acid (MtAhpE-SOH), which we chose here as a model to study the interactions between H2S and peroxiredoxins (Prx). MtAhpE-SOH reacted with H2S, forming a persulfide (MtAhpE-SSH) detectable by mass spectrometry. The rate constant for this reaction was (1.4 ± 0.2) × 103 m-1 s-1 (pH 7.4, 25 °C), six times higher than that reported for the reaction with the main low-molecular-weight thiol in M. tuberculosis, mycothiol. H2S was able to complete the catalytic cycle of MtAhpE and, according to kinetic considerations, it could represent an alternative substrate in M. tuberculosis. MtAhpE-SSH reacted 43 times faster than did MtAhpE-SH with the unspecific electrophile 4,4'-dithiodipyridine, a disulfide that exhibits no preferential reactivity with peroxidatic cysteines, but MtAhpE-SSH was less reactive toward specific Prx substrates such as hydrogen peroxide and peroxynitrite. According to molecular dynamics simulations, this loss of specific reactivity could be explained by alterations in the MtAhpE active site. MtAhpE-SSH could transfer its sulfane sulfur to a low-molecular-weight thiol, a process likely facilitated by the low pKa of the leaving thiol MtAhpE-SH, highlighting the possibility that Prx participates in transpersulfidation. The findings of our study contribute to the understanding of persulfide formation and reactivity.
Collapse
Affiliation(s)
- Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay .,Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Aníbal M Reyes
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay .,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Inés De Armas
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Ribosomal maturation factor (RimP) is essential for survival of nontuberculous mycobacteria Mycobacterium fortuitum under in vitro acidic stress conditions. 3 Biotech 2019; 9:127. [PMID: 30863706 DOI: 10.1007/s13205-019-1659-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/27/2019] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium fortuitum is an important human pathogenic NTM, which resists stress conditions inside macrophages by exploitation of specific genes. TnphoA-based transposon mutagenesis was employed to identify membrane genes responsible for survival of M. fortuitum under such stress conditions. A library of about 450 mutants was constructed after electroporation of vector pRT291 into wild-type M. fortuitum. On the basis of blue color development and alkaline phosphatase assay, 20 mutants were shortlisted to screen for growth and survival under acidic stress at pH 6.5, 5.5, 4.5, and 3.5. Mutant MT727 showed reduced growth and survival under acidic stress. The acid susceptible mutant MT727 was subjected to other in vitro stress conditions prevalent inside macrophages including oxidative, nutrient starvation and nitrosative stress. However, the mutant showed no appreciable difference in growth behavior under oxidative, nutrient starvation and nitrosative stress conditions in comparison to the wild type. Genomic and bioinformatics analysis of MT727 led to identification of putative ribosomal maturation factor RimP of M. fortuitum to be affected by mutagenesis, showing closest homology to M. abscessus RimP. In silico functional interaction of RimP protein using STRING database showed its interaction with proteins of ribosomal assembly and maturation. Results indicate role of rimP gene in survival of M. fortuitum under acidic stress conditions which may be further explored for use as a potential drug target against M. fortuitum and other mycobacterial infections.
Collapse
|
16
|
Arginine-deprivation-induced oxidative damage sterilizes Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2018; 115:9779-9784. [PMID: 30143580 PMCID: PMC6166831 DOI: 10.1073/pnas.1808874115] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS)-mediated oxidative stress and DNA damage have recently been recognized as contributing to the efficacy of most bactericidal antibiotics, irrespective of their primary macromolecular targets. Inhibitors of targets involved in both combating oxidative stress as well as being required for in vivo survival may exhibit powerful synergistic action. This study demonstrates that the de novo arginine biosynthetic pathway in Mycobacterium tuberculosis (Mtb) is up-regulated in the early response to the oxidative stress-elevating agent isoniazid or vitamin C. Arginine deprivation rapidly sterilizes the Mtb de novo arginine biosynthesis pathway mutants ΔargB and ΔargF without the emergence of suppressor mutants in vitro as well as in vivo. Transcriptomic and flow cytometry studies of arginine-deprived Mtb have indicated accumulation of ROS and extensive DNA damage. Metabolomics studies following arginine deprivation have revealed that these cells experienced depletion of antioxidant thiols and accumulation of the upstream metabolite substrate of ArgB or ArgF enzymes. ΔargB and ΔargF were unable to scavenge host arginine and were quickly cleared from both immunocompetent and immunocompromised mice. In summary, our investigation revealed in vivo essentiality of the de novo arginine biosynthesis pathway for Mtb and a promising drug target space for combating tuberculosis.
Collapse
|
17
|
Cho BC, Hardies SC, Jang GI, Hwang CY. Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6 T adapted to coastal planktonic lifestyle. BMC Genomics 2018; 19:625. [PMID: 30134835 PMCID: PMC6106888 DOI: 10.1186/s12864-018-5019-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/14/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pontimonas salivibrio strain CL-TW6T (=KCCM 90105 = JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized. RESULTS The genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G + C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions. CONCLUSIONS Because of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.
Collapse
Affiliation(s)
- Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Stephen C. Hardies
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Gwang Il Jang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Chung Yeon Hwang
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| |
Collapse
|
18
|
Halliwell B, Cheah IK, Tang RMY. Ergothioneine - a diet-derived antioxidant with therapeutic potential. FEBS Lett 2018; 592:3357-3366. [PMID: 29851075 DOI: 10.1002/1873-3468.13123] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Ergothioneine is a thiol/thione molecule synthesised only by some fungi and bacteria. Nonetheless, it is avidly taken up from the diet by humans and other animals through a transporter, OCTN1, and accumulates to high levels in certain tissues. Ergothioneine is not rapidly metabolised, or excreted in urine and is present in many, if not all, human tissues and body fluids. Ergothioneine has powerful antioxidant and cytoprotective properties in vitro and there is evidence that the body may concentrate it at sites of tissue injury by raising OCTN1 levels. Decreased blood and/or plasma levels of ergothioneine have been observed in some diseases, suggesting that a deficiency could be relevant to the disease onset or progression. This brief Review explores the possible roles of ergothioneine in human health and disease.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Richard M Y Tang
- National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| |
Collapse
|
19
|
Misson L, Burn R, Vit A, Hildesheim J, Beliaeva MA, Blankenfeldt W, Seebeck FP. Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD. ACS Chem Biol 2018; 13:1333-1342. [PMID: 29658702 DOI: 10.1021/acschembio.8b00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ergothioneine is an emerging factor in cellular redox homeostasis in bacteria, fungi, plants, and animals. Reports that ergothioneine biosynthesis may be important for the pathogenicity of bacteria and fungi raise the question as to how this pathway is regulated and whether the corresponding enzymes may be therapeutic targets. The first step in ergothioneine biosynthesis is catalyzed by the methyltransferase EgtD that converts histidine into N-α-trimethylhistidine. This report examines the kinetic, thermodynamic and structural basis for substrate, product, and inhibitor binding by EgtD from Mycobacterium smegmatis. This study reveals an unprecedented substrate binding mechanism and a fine-tuned affinity landscape as determinants for product specificity and product inhibition. Both properties are evolved features that optimize the function of EgtD in the context of cellular ergothioneine production. On the basis of these findings, we developed a series of simple histidine derivatives that inhibit methyltransferase activity at low micromolar concentrations. Crystal structures of inhibited complexes validate this structure- and mechanism-based design strategy.
Collapse
Affiliation(s)
- Laëtitia Misson
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Reto Burn
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Allegra Vit
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Julia Hildesheim
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Mariia A. Beliaeva
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Florian P. Seebeck
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| |
Collapse
|
20
|
Reyes AM, Pedre B, De Armas MI, Tossounian MA, Radi R, Messens J, Trujillo M. Chemistry and Redox Biology of Mycothiol. Antioxid Redox Signal 2018; 28:487-504. [PMID: 28372502 DOI: 10.1089/ars.2017.7074] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Mycothiol (MSH, AcCys-GlcN-Ins) is the main low-molecular weight (LMW) thiol of most Actinomycetes, including the human pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Strains with decreased MSH content show increased susceptibilities to hydroperoxides and electrophilic compounds. In M. tuberculosis, MSH modulates the response to several antituberculosis drugs. Enzymatic routes involving MSH could provide clues for specific drug design. Recent Advances: Physicochemical data argue against a rapid, nonenzymatic reaction of MSH with oxidants, disulfides, or electrophiles. Moreover, exposure of the bacteria to high concentrations of two-electron oxidants resulted in protein mycothiolation. The recently described glutaredoxin-like protein mycoredoxin-1 (Mrx-1) provides a route for catalytic reduction of mycothiolated proteins, protecting critical cysteines from irreversible oxidation. The description of MSH/Mrx-1-dependent activities of peroxidases helped to explain the higher susceptibility to oxidants observed in Actinomycetes lacking MSH. Moreover, the first mycothiol-S-transferase, member of the DinB superfamily of proteins, was described. In Corynebacterium, both the MSH/Mrx-1 and the thioredoxin pathways reduce methionine sulfoxide reductase A. A novel tool for in vivo imaging of the MSH/mycothiol disulfide (MSSM) status allows following changes in the mycothiol redox state during macrophage infection and its relationship with antibiotic sensitivity. CRITICAL ISSUES Redundancy of MSH with other LMW thiols is starting to be unraveled and could help to rationalize the differences in the reported importance of MSH synthesis observed in vitro versus in animal infection models. FUTURE DIRECTIONS Future work should be directed to establish the structural bases of the specificity of MSH-dependent enzymes, thus facilitating drug developments. Antioxid. Redox Signal. 28, 487-504.
Collapse
Affiliation(s)
- Aníbal M Reyes
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Brandán Pedre
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - María Inés De Armas
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Maria-Armineh Tossounian
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Rafael Radi
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Joris Messens
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Madia Trujillo
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
21
|
Merrikh H. Spatial and Temporal Control of Evolution through Replication-Transcription Conflicts. Trends Microbiol 2017; 25:515-521. [PMID: 28216294 DOI: 10.1016/j.tim.2017.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/16/2023]
Abstract
Evolution could potentially be accelerated if an organism could selectively increase the mutation rate of specific genes that are actively under positive selection. Recently, a mechanism that cells can use to target rapid evolution to specific genes was discovered. This mechanism is driven by gene orientation-dependent encounters between DNA replication and transcription machineries. These encounters increase mutagenesis in lagging-strand genes, where replication-transcription conflicts are severe. Due to the orientation and transcription-dependent nature of this process, conflict-driven mutagenesis can be used by cells to spatially (gene-specifically) and temporally (only upon transcription induction) regulate the rate of gene evolution. Here, I summarize recent findings on this topic, and discuss the implications of increasing mutagenesis rates and accelerating evolution through active mechanisms.
Collapse
Affiliation(s)
- Houra Merrikh
- Department of Microbiology, Health Sciences Building - J-wing, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Abshire CF, Prasai K, Soto I, Shi R, Concha M, Baddoo M, Flemington EK, Ennis DG, Scott RS, Harrison L. Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stress. NPJ Microgravity 2016; 2:16038. [PMID: 28725743 PMCID: PMC5515531 DOI: 10.1038/npjmgrav.2016.38] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 12/04/2022] Open
Abstract
Waterborne pathogenic mycobacteria can form biofilms, and certain species can cause hard-to-treat human lung infections. Astronaut health could therefore be compromised if the spacecraft environment or water becomes contaminated with pathogenic mycobacteria. This work uses Mycobacterium marinum to determine the physiological changes in a pathogenic mycobacteria grown under low-shear modeled microgravity (LSMMG). M. marinum were grown in high aspect ratio vessels (HARVs) using a rotary cell culture system subjected to LSMMG or the control orientation (normal gravity, NG) and the cultures used to determine bacterial growth, bacterium size, transcriptome changes, and resistance to stress. Two exposure times to LSMMG and NG were examined: bacteria were grown for ~40 h (short), or 4 days followed by re-dilution and growth for ~35 h (long). M. marinum exposed to LSMMG transitioned from exponential phase earlier than the NG culture. They were more sensitive to hydrogen peroxide but showed no change in resistance to gamma radiation or pH 3.5. RNA-Seq detected significantly altered transcript levels for 562 and 328 genes under LSMMG after short and long exposure times, respectively. Results suggest that LSMMG induced a reduction in translation, a downregulation of metabolism, an increase in lipid degradation, and increased chaperone and mycobactin expression. Sigma factor H (sigH) was the only sigma factor transcript induced by LSMMG after both short and long exposure times. In summary, transcriptome studies suggest that LSMMG may simulate a nutrient-deprived environment similar to that found within macrophage during infection. SigH is also implicated in the M. marinum LSMMG transcriptome response.
Collapse
Affiliation(s)
- Camille F Abshire
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Kanchanjunga Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Israel Soto
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Runhua Shi
- Department of Medicine and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Monica Concha
- Department of Pathology and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Don G Ennis
- Department of Biology, University of Louisiana, Lafayette, LA, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
23
|
Gassó D, Vicente J, Mentaberre G, Soriguer R, Jiménez Rodríguez R, Navarro-González N, Tvarijonaviciute A, Lavín S, Fernández-Llario P, Segalés J, Serrano E. Oxidative Stress in Wild Boars Naturally and Experimentally Infected with Mycobacterium bovis. PLoS One 2016; 11:e0163971. [PMID: 27682987 PMCID: PMC5040450 DOI: 10.1371/journal.pone.0163971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS-RNS) are important defence substances involved in the immune response against pathogens. An excessive increase in ROS-RNS, however, can damage the organism causing oxidative stress (OS). The organism is able to neutralise OS by the production of antioxidant enzymes (AE); hence, tissue damage is the result of an imbalance between oxidant and antioxidant status. Though some work has been carried out in humans, there is a lack of information about the oxidant/antioxidant status in the presence of tuberculosis (TB) in wild reservoirs. In the Mediterranean Basin, wild boar (Sus scrofa) is the main reservoir of TB. Wild boar showing severe TB have an increased risk to Mycobacterium spp. shedding, leading to pathogen spreading and persistence. If OS is greater in these individuals, oxidant/antioxidant balance in TB-affected boars could be used as a biomarker of disease severity. The present work had a two-fold objective: i) to study the effects of bovine TB on different OS biomarkers (namely superoxide dismutase (SOD), catalasa (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and thiobarbituric acid reactive substances (TBARS)) in wild boar experimentally challenged with Mycobacterium bovis, and ii) to explore the role of body weight, sex, population and season in explaining the observed variability of OS indicators in two populations of free-ranging wild boar where TB is common. For the first objective, a partial least squares regression (PLSR) approach was used whereas, recursive partitioning with regression tree models (RTM) were applied for the second. A negative relationship between antioxidant enzymes and bovine TB (the more severe lesions, the lower the concentration of antioxidant biomarkers) was observed in experimentally infected animals. The final PLSR model retained the GPX, SOD and GR biomarkers and showed that 17.6% of the observed variability of antioxidant capacity was significantly correlated with the PLSR X’s component represented by both disease status and the age of boars. In the samples from free-ranging wild boar, however, the environmental factors were more relevant to the observed variability of the OS biomarkers than the TB itself. For each OS biomarker, each RTM was defined as a maximum by one node due to the population effect. Along the same lines, the ad hoc tree regression on boars from the population with a higher prevalence of severe TB confirmed that disease status was not the main factor explaining the observed variability in OS biomarkers. It was concluded that oxidative damage caused by TB is significant, but can only be detected in the absence of environmental variation in wild boar.
Collapse
Affiliation(s)
- Diana Gassó
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail:
| | - Joaquín Vicente
- Sabio-IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Gregorio Mentaberre
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ramón Soriguer
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rocío Jiménez Rodríguez
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Nora Navarro-González
- Western Center for Food Safety, University of California Davis, Davis, California, United States of America
| | - Asta Tvarijonaviciute
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Santiago Lavín
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Sanitat i d’Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Emmanuel Serrano
- Servei d´Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biología, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
24
|
Chinta KC, Saini V, Glasgow JN, Mazorodze JH, Rahman MA, Reddy D, Lancaster JR, Steyn AJC. The emerging role of gasotransmitters in the pathogenesis of tuberculosis. Nitric Oxide 2016; 59:28-41. [PMID: 27387335 DOI: 10.1016/j.niox.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a facultative intracellular pathogen and the second largest contributor to global mortality caused by an infectious agent after HIV. In infected host cells, Mtb is faced with a harsh intracellular environment including hypoxia and the release of nitric oxide (NO) and carbon monoxide (CO) by immune cells. Hypoxia, NO and CO induce a state of in vitro dormancy where Mtb senses these gases via the DosS and DosT heme sensor kinase proteins, which in turn induce a set of ∼47 genes, known as the Mtb Dos dormancy regulon. On the contrary, both iNOS and HO-1, which produce NO and CO, respectively, have been shown to be important against mycobacterial disease progression. In this review, we discuss the impact of O2, NO and CO on Mtb physiology and in host responses to Mtb infection as well as the potential role of another major endogenous gas, hydrogen sulfide (H2S), in Mtb pathogenesis.
Collapse
Affiliation(s)
- Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James H Mazorodze
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Md Aejazur Rahman
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Darshan Reddy
- Department of Cardiothoracic Surgery, Nelson R Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
25
|
Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016; 95:27-42. [PMID: 26923386 DOI: 10.1016/j.freeradbiomed.2016.02.028] [Citation(s) in RCA: 574] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.
Collapse
Affiliation(s)
- Narciso Couto
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Jennifer Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jill Barber
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
26
|
Halliwell B, Cheah IK, Drum CL. Ergothioneine, an adaptive antioxidant for the protection of injured tissues? A hypothesis. Biochem Biophys Res Commun 2016; 470:245-250. [PMID: 26772879 DOI: 10.1016/j.bbrc.2015.12.124] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/30/2022]
Abstract
Ergothioneine (ET) is a diet-derived, thiolated derivative of histidine with antioxidant properties. Although ET is produced only by certain fungi and bacteria, it can be found at high concentrations in certain human and animal tissues and is absorbed through a specific, high affinity transporter (OCTN1). In liver, heart, joint and intestinal injury, elevated ET concentrations have been observed in injured tissues. The physiological role of ET remains unclear. We thus review current literature to generate a specific hypothesis: that the accumulation of ET in vivo is an adaptive mechanism, involving the regulated uptake and concentration of an exogenous natural compound to minimize oxidative damage.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore.
| | - Irwin K Cheah
- Department of Biochemistry, National University of Singapore, Singapore
| | - Chester L Drum
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Translational Laboratory in Genetic Medicine, 8A Biomedical Grove, Immunos, Level 5, 138648, Singapore
| |
Collapse
|