1
|
Xiao G, Cui Y, Zhou L, Niu C, Wang B, Wang J, Zhou S, Pan M, Chan CK, Xia Y, Xu L, Lu Y, Chen S. Identification of a phenyl ester covalent inhibitor of caseinolytic protease and analysis of the ClpP1P2 inhibition in mycobacteria. MLIFE 2025; 4:155-168. [PMID: 40313980 PMCID: PMC12042115 DOI: 10.1002/mlf2.12169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 05/03/2025]
Abstract
The caseinolytic protease complex ClpP1P2 is crucial for protein homeostasis in mycobacteria and stress response and virulence of the pathogens. Its role as a potential drug target for combating tuberculosis (TB) has just begun to be substantiated in drug discovery research. We conducted a biochemical screening targeting the ClpP1P2 using a library of compounds phenotypically active against Mycobacterium tuberculosis (Mtb). The screening identified a phenyl ester compound GDI-5755, inhibiting the growth of Mtb and M. bovis BCG, the model organism of mycobacteria. GDI-5755 covalently modified the active-site serine residue of ClpP1, rendering the peptidase inactive, which was delineated through protein mass spectrometry and kinetic analyses. GDI-5755 exerted antibacterial activity by inhibiting ClpP1P2 in the bacteria, which could be demonstrated through a minimum inhibitory concentration (MIC) shift assay with a clpP1 CRISPRi knockdown (clpP1-KD) mutant GH189. The knockdown also remarkably heightened the mutant's sensitivity to ethionamide and meropenem, but not to many other TB drugs. On the other hand, a comparative proteomic analysis of wild-type cells exposed to GDI-5755 revealed the dysregulated proteome, specifically showing changes in the expression levels of multiple TB drug targets, including EthA, LdtMt2, and PanD. Subsequent evaluation confirmed the synergistic activity of GDI-5755 when combined with the TB drugs to inhibit mycobacterial growth. Our findings indicate that small-molecule inhibitors targeting ClpP1P2, when used alongside existing TB medications, could represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Genhui Xiao
- Global Health Drug Discovery InstituteBeijingChina
| | - Yumeng Cui
- Global Health Drug Discovery InstituteBeijingChina
| | | | - Chuya Niu
- Global Health Drug Discovery InstituteBeijingChina
| | - Bing Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Jinglan Wang
- Global Health Drug Discovery InstituteBeijingChina
| | | | - Miaomiao Pan
- Global Health Drug Discovery InstituteBeijingChina
| | - Chi Kin Chan
- Global Health Drug Discovery InstituteBeijingChina
| | - Yan Xia
- Global Health Drug Discovery InstituteBeijingChina
| | - Lan Xu
- Global Health Drug Discovery InstituteBeijingChina
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Shawn Chen
- Global Health Drug Discovery InstituteBeijingChina
| |
Collapse
|
2
|
Guo Y, Liu K, Yang X, Lv Z, Zhao K, Wang X, Chu Y, Li J, Huang T. Multi-omics-based characterization of the influences of Mycobacterium tuberculosis virulence factors EsxB and PPE68 on host cells. Arch Microbiol 2023; 205:230. [PMID: 37162591 PMCID: PMC10170423 DOI: 10.1007/s00203-023-03576-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Mycobacterium tuberculosis, the ancient master of causing tuberculosis, is one of the most successful pathogens capable of persistently colonizing host lungs. The EsxB (CFP-10) of ESX-1 system and PPE68 of the PPE family contribute to the virulence of M. tuberculosis. However, the virulence potential and pathogenetic characteristics of these two proteins during M. tuberculosis infection remain unclear. In this study, two prokaryotic expression plasmids for EsxB or PPE68 of M. tuberculosis were constructed and the recombinant proteins His-EsxB or His-PPE68 were purified. The proteome and transcriptome of MH-S cells treated with His-EsxB or His-PPE68 were explored, followed by validating the expression of the identified differentially expressed genes (DEGs) using quantitative PCR. A total of 159/439 specific proteins or 633/1117 DEGs were obtained between control and His-EsxB or His-PPE68 treated groups in the MH-S proteomes and transcriptomes. Additionally, 37/60 signal pathways were predicted in the His-EsxB or His-PPE68 treated groups and "Cytokine-cytokine receptor interaction" was the most represented pathway. Furthermore, the expression of the DEGs (IL-1β, IL-6, and TNF-α) was significantly upregulated, suggesting that these DEGs contributed to the host response during EsxB or PPE68 treatment. These findings provide detailed information on developing an effective intervention strategy to control M. tuberculosis infection.
Collapse
Affiliation(s)
- Yidong Guo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Kanghua Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, 610064, Chengdu, People's Republic of China
| | - Xiting Yang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Zheng Lv
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Xinrong Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, 610064, Chengdu, People's Republic of China.
| | - Ting Huang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China.
| |
Collapse
|
3
|
Sholeye AR, Williams AA, Loots DT, Tutu van Furth AM, van der Kuip M, Mason S. Tuberculous Granuloma: Emerging Insights From Proteomics and Metabolomics. Front Neurol 2022; 13:804838. [PMID: 35386409 PMCID: PMC8978302 DOI: 10.3389/fneur.2022.804838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis infection, which claims hundreds of thousands of lives each year, is typically characterized by the formation of tuberculous granulomas — the histopathological hallmark of tuberculosis (TB). Our knowledge of granulomas, which comprise a biologically diverse body of pro- and anti-inflammatory cells from the host immune responses, is based mainly upon examination of lungs, in both human and animal studies, but little on their counterparts from other organs of the TB patient such as the brain. The biological heterogeneity of TB granulomas has led to their diverse, relatively uncoordinated, categorization, which is summarized here. However, there is a pressing need to elucidate more fully the phenotype of the granulomas from infected patients. Newly emerging studies at the protein (proteomics) and metabolite (metabolomics) levels have the potential to achieve this. In this review we summarize the diverse nature of TB granulomas based upon the literature, and amplify these accounts by reporting on the relatively few, emerging proteomics and metabolomics studies on TB granulomas. Metabolites (for example, trimethylamine-oxide) and proteins (such as the peptide PKAp) associated with TB granulomas, and knowledge of their localizations, help us to understand the resultant phenotype. Nevertheless, more multidisciplinary ‘omics studies, especially in human subjects, are required to contribute toward ushering in a new era of understanding of TB granulomas – both at the site of infection, and on a systemic level.
Collapse
Affiliation(s)
- Abisola Regina Sholeye
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Aurelia A. Williams
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - A. Marceline Tutu van Furth
- Department of Pediatric Infectious Diseases and Immunology, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Martijn van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Shayne Mason
| |
Collapse
|
4
|
Biosafety and Proteome Profiles of Different Heat Inactivation Methods for Mycobacterium tuberculosis. Microbiol Spectr 2021; 9:e0071621. [PMID: 34937194 PMCID: PMC8694153 DOI: 10.1128/spectrum.00716-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies involving the pathogenic organism Mycobacterium tuberculosis routinely require advanced biosafety laboratory facilities, which might not be readily available in rural areas where tuberculosis burdens are high. Attempts to adapt heat inactivation techniques have led to inconsistent conclusions, and the risk of protein denaturation due to extensive heating is impractical for subsequent mass spectrometry (MS)-based protein analyses. In this study, 240 specimens with one or two loops of M. tuberculosis strain H37Rv biomass and specific inactivated solutions were proportionally assigned to six heat inactivation methods in a thermal block at 80°C and 95°C for 20, 30, and 90 min. Twenty untreated specimens served as a positive control, and bacterial growth was followed up for 12 weeks. Our results showed that 90 min of heat inactivation was necessary for samples with two loops of biomass. Further protein extraction and a matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS assay demonstrated adequate scores for bacterial identification (≥1.7), with the highest score achieved in the 80°C/90 min and 95°C/30 min treatment groups. A proteomics study also confidently identified 648 proteins with ∼93% to 96% consistent protein abundances following heating at 95°C for 20, 30, and 90 min. Heat inactivation at 95°C for 90 min yielded the most quantifiable proteins, and a functional analysis revealed proteins located in the ribosomal subunit. In summary, we proposed a heat inactivation method for the M. tuberculosis strain H37Rv and studied the preservation of protein components for subsequent bacterial identification and protein-related assays. IMPORTANCE Inactivation of Mycobacterium tuberculosis is an important step to guarantee biosafety for subsequent M. tuberculosis identification and related research, notably in areas of endemicity with minimal resources. However, certain biomolecules might be denatured or hydrolyzed because of the harsh inactivation process, and a standardized protocol is yet to be determined. We evaluated distinct heating conditions to report the inactivation efficiency and performed downstream mass spectrometry-based M. tuberculosis identification and proteomics study. The results are important and useful for both basic and clinical M. tuberculosis studies.
Collapse
|
5
|
Nicholson KR, Mousseau CB, Champion MM, Champion PA. The genetic proteome: Using genetics to inform the proteome of mycobacterial pathogens. PLoS Pathog 2021; 17:e1009124. [PMID: 33411813 PMCID: PMC7790235 DOI: 10.1371/journal.ppat.1009124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycobacterial pathogens pose a sustained threat to human health. There is a critical need for new diagnostics, therapeutics, and vaccines targeting both tuberculous and nontuberculous mycobacterial species. Understanding the basic mechanisms used by diverse mycobacterial species to cause disease will facilitate efforts to design new approaches toward detection, treatment, and prevention of mycobacterial disease. Molecular, genetic, and biochemical approaches have been widely employed to define fundamental aspects of mycobacterial physiology and virulence. The recent expansion of genetic tools in mycobacteria has further increased the accessibility of forward genetic approaches. Proteomics has also emerged as a powerful approach to further our understanding of diverse mycobacterial species. Detection of large numbers of proteins and their modifications from complex mixtures of mycobacterial proteins is now routine, with efforts of quantification of these datasets becoming more robust. In this review, we discuss the “genetic proteome,” how the power of genetics, molecular biology, and biochemistry informs and amplifies the quality of subsequent analytical approaches and maximizes the potential of hypothesis-driven mycobacterial research. Published proteomics datasets can be used for hypothesis generation and effective post hoc supplementation to experimental data. Overall, we highlight how the integration of proteomics, genetic, molecular, and biochemical approaches can be employed successfully to define fundamental aspects of mycobacterial pathobiology.
Collapse
Affiliation(s)
- Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - C. Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame Indiana, United States of America
- * E-mail: (MMC); (PAC)
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame Indiana, United States of America
- * E-mail: (MMC); (PAC)
| |
Collapse
|
6
|
Xu G, Xue J, Jiang J, Liang T, Yao Y, Liao S, Chen T, Li H, Liu C, Zhan X. Proteomic analysis reveals critical molecular mechanisms involved in the macrophage anti-spinal tuberculosis process. Tuberculosis (Edinb) 2020; 126:102039. [PMID: 33316736 DOI: 10.1016/j.tube.2020.102039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/20/2023]
Abstract
Tuberculosis infection activates the autoimmune system. However, the role of host-pathogen interactions involved in Mycobacterium tuberculosis infection is unclear. In this study, we analyzed 6 spinal tuberculosis tissues and 6 herniated disc tissues by using liquid chromatography-tandem mass spectrometry coupled with tandem mass spectrometry, and immunohistochemical staining was performed for validating the results. We identified 42 differential immune-related proteins and 3 hub genes that are primarily localised in the tertiary granule and involved in biological processes such as cellular response to the presence of cadmium ions, regulation of ion transmembrane transport, transmembrane transport, and inflammatory responses. Genes encoding cytochrome B-245 beta chain (CYBB), matrix metallopeptidase 9 (MMP9), and C-X-C motif chemokine ligand 10 (CXCL10) were identified as the hub genes that exhibited anti-tuberculosis activity and were responsible for macrophage resistance against M. tuberculosis. In conclusion, CYBB, MMP9, and CXCL10 resist M. tuberculosis infection through chemotaxis and macrophage activation. Our results indicate that CYBB, MMP9, and CXCL10 could be considered as molecular targets for spinal tuberculosis treatment, which may significantly improve patients' quality of life and prognosis.
Collapse
Affiliation(s)
- Guoyong Xu
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China
| | - Jiang Xue
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China
| | - Jie Jiang
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China
| | - Tuo Liang
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China
| | - Yuanlin Yao
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China
| | - Shian Liao
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China
| | - Tianyou Chen
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China
| | - Hao Li
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China
| | - Chong Liu
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China.
| | - Xinli Zhan
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
7
|
Pediatric Tuberculosis: The Impact of "Omics" on Diagnostics Development. Int J Mol Sci 2020; 21:ijms21196979. [PMID: 32977381 PMCID: PMC7582311 DOI: 10.3390/ijms21196979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is a major public health concern for all ages. However, the disease presents a larger challenge in pediatric populations, partially owing to the lack of reliable diagnostic standards for the early identification of infection. Currently, there are no biomarkers that have been clinically validated for use in pediatric TB diagnosis. Identification and validation of biomarkers could provide critical information on prognosis of disease, and response to treatment. In this review, we discuss how the “omics” approach has influenced biomarker discovery and the advancement of a next generation rapid point-of-care diagnostic for TB, with special emphasis on pediatric disease. Limitations of current published studies and the barriers to their implementation into the field will be thoroughly reviewed within this article in hopes of highlighting future avenues and needs for combating the problem of pediatric tuberculosis.
Collapse
|
8
|
Bisht D, Sharma D, Sharma D, Singh R, Gupta VK. Recent insights into Mycobacterium tuberculosis through proteomics and implications for the clinic. Expert Rev Proteomics 2019; 16:443-456. [PMID: 31032653 DOI: 10.1080/14789450.2019.1608185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/12/2019] [Indexed: 01/25/2023]
Abstract
This review aimed at providing an update on the application of proteomics-based approaches to gain recent insights of Mycobacterium tuberculosis (M.tb) and its relevance to clinic. Proteomics and bioinformatics approaches helped in the identification and characterization of novel proteins. Studying M.tb, causative agent of tuberculosis (TB), at the proteomic level can contribute to the identification of proteins which can be considered as potential targets for developed drugs and can help us in better understanding the pathogen physiology. Areas covered: In this review we have presented a comprehensive literature pertaining to role of proteomics in understanding M.tb. We have also focused on how the development and advancement in technology in the field of proteomics has augmented the research and played a pivotal role in answering many unexplored questions. Lastly, the application of proteomics to clinic has also been discussed. Expert commentary: We envisage that proteomics has gained remarkable momentum over the years. Proteomics can play an important role in the discovery of biomarkers for TB and other diseases. Also, it can aid in development of effective vaccines and simple, rapid and cost-effective test for the diagnosis of TB which is crucial for the management and control of the disease.
Collapse
Affiliation(s)
- Deepa Bisht
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Devesh Sharma
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Divakar Sharma
- b Medical Microbiology and Molecular Biology Laboratory , Interdisciplinary Biotechnology Unit, Aligarh Muslim University , Aligarh , India
| | - Rananjay Singh
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Vivek Kumar Gupta
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| |
Collapse
|
9
|
Porter BW, Venkatappa TK. Uncloaking an ancient adversary: Can pathogen biomarker elicitors play a role in confirming extrapulmonary TB and latent TB infection? Tuberculosis (Edinb) 2018; 113:30-37. [PMID: 30514511 DOI: 10.1016/j.tube.2018.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/07/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
Latent tuberculosis infection (LTBI) is diagnosed immunologically using the Mantoux tuberculin skin test (TST) or interferon-gamma release assays (IGRAs). While widely used, immunodiagnostics can produce false negative or false positive results. Pathogen biomarkers provide an alternative, but direct detection in LTBI and extrapulmonary TB cases is challenging. Mycobacterium tuberculosis grows slowly, has limited hematogenous movement, is protected by a lipid rich cell wall, and produces low levels of secreted factors. Here we discuss the potential of elicitors by first considering pathogen markers that may be released following the administration of isoniazid. Isoniazid targets the cell wall of mycobacteria found in extracellular compartments and within monocytes, macrophages, dendritic cells, and lymphatic endothelial cells. Isoniazid's dual-purpose potential as an antibiotic and elicitor is supported by knowledge of latent infection dynamics, time-kill kinetics, and new detection techniques. Within hours, the bactericidal action of isoniazid likely enriches plasma with M. tuberculosis DNA, RNA, proteins/peptides, and lipids. Undoubtedly a portion of these biomarkers are eliminated as some bacilli undergo phagocytosis and lysosomal destruction. However, advances in immunoprecipitation and nucleic acid amplification, combined with the use of larger blood volumes during assay development, may overcome these losses. Other anticipated challenges include determining optimal sample collection times and designing diagnostic workflows that minimize processing-associated marker loss and degradation. Conventional, commercial, and emerging technologies that address these variables are discussed. If realized, isoniazid associated markers could provide proof of concept for novel elicitor-based diagnostic approaches capable of confirming LTBI and empirically treated extrapulmonary TB.
Collapse
Affiliation(s)
- Brad W Porter
- Independent Researcher; P.O. Box 56224, Atlanta, GA 30343, USA.
| | | |
Collapse
|
10
|
Secretome profile analysis of multidrug-resistant, monodrug-resistant and drug-susceptible Mycobacterium tuberculosis. Arch Microbiol 2017; 200:299-309. [DOI: 10.1007/s00203-017-1448-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/23/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
|
11
|
Gidon A, Åsberg SE, Louet C, Ryan L, Haug M, Flo TH. Persistent mycobacteria evade an antibacterial program mediated by phagolysosomal TLR7/8/MyD88 in human primary macrophages. PLoS Pathog 2017; 13:e1006551. [PMID: 28806745 PMCID: PMC5570494 DOI: 10.1371/journal.ppat.1006551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/24/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
Pathogenic mycobacteria reside in macrophages where they avoid lysosomal targeting and degradation through poorly understood mechanisms proposed to involve arrest of phagosomal maturation at an early endosomal stage. A clear understanding of how this relates to host defenses elicited from various intracellular compartments is also missing and can only be studied using techniques allowing single cell and subcellular analyses. Using confocal imaging of human primary macrophages infected with Mycobacterium avium (Mav) we show evidence that Mav phagosomes are not arrested at an early endosomal stage, but mature to a (LAMP1+/LAMP2+/CD63+) late endosomal/phagolysosomal stage where inflammatory signaling and Mav growth restriction is initiated through a mechanism involving Toll-like receptors (TLR) 7 and 8, the adaptor MyD88 and transcription factors NF-κB and IRF-1. Furthermore, a fraction of the mycobacteria re-establish in a less hostile compartment (LAMP1-/LAMP2-/CD63-) where they not only evade destruction, but also recognition by TLRs, growth restriction and inflammatory host responses that could be detrimental for intracellular survival and establishment of chronic infections. Mycobacterium avium is increasingly reported as a causative agent of non-tuberculous disease in immunocompromised patients and in individuals with underlying disease or using immunosuppressant drugs, with prevalence often higher than the more pathogenic M. tuberculosis in developed countries. Both M. avium and M. tuberculosis cause persistent infections by surviving inside host macrophages. Here, we identify from which compartment M. avium evoke inflammatory signaling in human primary macrophages, and the pattern-recognition receptors involved. In essence, we present three key findings: 1) M. avium phagosomes are not arrested at an early endosomal stage, but rather mature normally into phagolysosomes from where a fraction of the bacteria escape and re-establish in a new compartment. 2) In addition to avoiding degradation in phagolysosomes, by escaping M. avium also evade inflammatory signaling. 3) M. avium unable to escape is degraded in phagolysosomes and recognized by Toll-like receptors 7 and 8. Our results can contribute to new understanding of intracellular infections, and thus have vital clinical implications for development of novel anti-microbial strategies and host-targeted therapy to mycobacterial and other infectious diseases.
Collapse
Affiliation(s)
- Alexandre Gidon
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Signe Elisabeth Åsberg
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Claire Louet
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
12
|
Akhter Y, Thakur S. Targets of ubiquitin like system in mycobacteria and related actinobacterial species. Microbiol Res 2017; 204:9-29. [PMID: 28870295 DOI: 10.1016/j.micres.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
Protein turnover and recycling is a prerequisite in all living organisms to maintain normal cellular physiology. Many bacteria are proteasome deficient but they possess typical protease enzymes for carrying out protein turnover. However, several groups of actinobacteria such as mycobacteria harbor both proteasome and proteases. In these bacteria, for cellular protein turnover the target proteins undergo post-translational modification referred as pupylation in which a small protein Pup (prokaryotic ubiquitin-like protein) is tagged to the specific lysine residues of the target proteins and after that those target proteins undergo proteasomal degradation. Thus, Pup serves as a degradation signal, helps in directing proteins toward the bacterial proteasome for a turnover. Although the Pup-proteasome system has a multifaceted role in environmental stresses, pathogenicity and regulation of cellular signaling, but the fate of all types of pupylation such as mono and polypupylation on the proteins is still not completely understood. In this review, we present the mechanisms involved in the activation and conjugation of Pup to the target proteins, describing the structural sketch of pupylation and fundamental differences between the eukaryotic ubiquitin-proteasome and bacterial Pup-proteasome systems. We are also presenting a concise classification and cataloging of the complete battery of experimentally identified Pup-substrates from various species of actinobacteria.
Collapse
Affiliation(s)
- Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India.
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
13
|
Roperto S, Varano M, Russo V, Lucà R, Cagiola M, Gaspari M, Ceccarelli DM, Cuda G, Roperto F. Proteomic analysis of protein purified derivative of Mycobacterium bovis. J Transl Med 2017; 15:68. [PMID: 28372590 PMCID: PMC5376687 DOI: 10.1186/s12967-017-1172-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/23/2017] [Indexed: 11/29/2022] Open
Abstract
Background Tuberculin skin test based on in vivo intradermal inoculation of purified protein derivative from Mycobacterium bovis (bPPD) is the diagnostic test for the control and surveillance of bovine tuberculosis (bTB). Methods Proteomic analysis was performed on different bPPD preparations from M. bovis, strain AN5. Proteins were precipitated from bPPD solutions by TCA precipitation. The proteome of bPPD preparations was investigated by bottom-up proteomics, which consisted in protein digestion and nano-LC–MS/MS analysis. Mass spectrometry analysis was performed on a Q-exactive hybrid quadrupole-Orbitrap mass spectrometer coupled online to an Easy nano-LC1000 system. Results Three hundred and fifty-six proteins were identified and quantified by at least 2 peptides (99% confidence per peptide). One hundred and ninety-eight proteins, which had not been previously described, were detected; furthermore, the proteomic profile shared 80 proteins with previous proteomes from bPPDs from the United Kingdom and Brazil and 139 protein components from bPPD from Korea. Locus name of M. bovis (Mb) with orthologs from M. tuberculosis H37Rv, comparative gene and protein length, molecular mass, functional categories, gene name and function of each protein were reported. Ninety-two T cell mycobacterial antigens responsible for delayed-type hypersensitivity were detected, fifty-two of which were not previously reported in any bPPD proteome. Data are available via ProteomeXchange with identifier PXD005920. Conclusions This study represents the highest proteome coverage of bPPD preparations to date. Since proteins perform cellular functions essential to health and/or disease, obtaining knowledge of their presence and variance is of great importance in understanding disease states and for advancing translational studies. Therefore, to better understand Mycobacterium tuberculosis complex biology during infection, survival, and persistence, the reproducible evaluation of the proteins that catalyze and control these processes is critically important. More active and more specific tuberculins would be desirable. Indeed, many antigens contained within bPPD are currently responsible for the cross-reactivity resulting in false-positive results as they are shared between non-tuberculous and tuberculous mycobacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1172-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy.
| | - Mariaconcetta Varano
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro "Magna Græcia" Campus "S. Venuta", Catanzaro, Italy
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Roberta Lucà
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Monica Cagiola
- Istituto Zooprofilattico dell'Umbria e delle Marche, Perugia, Italy
| | - Marco Gaspari
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro "Magna Græcia" Campus "S. Venuta", Catanzaro, Italy
| | - Dora Maria Ceccarelli
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Giovanni Cuda
- Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro "Magna Græcia" Campus "S. Venuta", Catanzaro, Italy
| | - Franco Roperto
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
14
|
Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm. Sci Rep 2017; 7:43682. [PMID: 28272507 PMCID: PMC5341126 DOI: 10.1038/srep43682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/30/2017] [Indexed: 11/26/2022] Open
Abstract
Post-translational modifications (PTMs) are essential processes conditioning the biophysical properties and biological activities of the vast majority of mature proteins. However, occurrence of several distinct PTMs on a same protein dramatically increases its molecular diversity. The comprehensive understanding of the functionalities resulting from any particular PTM association requires a highly challenging full structural description of the PTM combinations. Here, we report the in-depth exploration of the natural structural diversity of the M. tuberculosis (Mtb) virulence associated 19 kDa lipoglycoprotein antigen (LpqH) using intact protein high-resolution mass spectrometry (HR-MS) coupled to liquid chromatography. Combined top-down and bottom-up HR-MS analyses of the purified Mtb LpqH protein allow, for the first time, to uncover a complex repertoire of about 130 molecular species resulting from the intrinsically heterogeneous combination of lipidation and glycosylation together with some truncations. Direct view on the co-occurring PTMs stoichiometry reveals the presence of functionally distinct LpqH lipidation states and indicates that glycosylation is independent from lipidation. This work allowed the identification of a novel unsuspected phosphorylated form of the unprocessed preprolipoglycoprotein totally absent from the current lipoglycoprotein biogenesis pathway and providing new insights into the biogenesis and functional determinants of the mycobacterial lipoglycoprotein interacting with the host immune PRRs.
Collapse
|