1
|
Kharel K, Bardsley CA, Appolon CB, Dunn LL, Kumar GD, Prabha K, Sharma M, Danyluk MD, Schneider KR. The Effect of Heat-treated Poultry Pellets and Composted Poultry Litter on E. coli Survival in Southeastern US Soils: Florida and Georgia. J Food Prot 2025; 88:100439. [PMID: 39706572 DOI: 10.1016/j.jfp.2024.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Biological soil amendments of animal origin (BSAAO) are a source of foodborne pathogens that can contaminate fresh produce. This study evaluated the survival of E. coli over 140 d in agricultural soils amended with composted poultry litter (PL), heat-treated poultry pellets (HTPP), or unamended (UN) in Florida (FL) and Georgia (GA). Raised-bed plots (1 × 3 m2; n = 3) were either left unamended (UN) or amended with PL or HTPP (680 g/plot). Each plot was spray-inoculated with 1 L of rifampicin-resistant E. coli (7-8 log CFU/mL) and hand-tilled into the soil (∼5.9 and 4.5 log CFU/g for FL and GA, respectively). Soil samples were enumerated using a spread plate or most probable number technique at 0, 1, 3, 7, 14, 28, 56, 84, 112, and 140 d. Weather-related parameters were collected to assess their impact on E. coli survival. A mixed-model analysis was used to evaluate factors influencing E. coli survival, a biphasic model was used for the E. coli die-off rate, and Spearman correlations were used to understand the associations between environmental factors and survival. Time, amendment type, and location * treatment * time influenced (P < 0.05) the survival of E. coli in soil. In FL, HTPP-amended soils supported higher levels of E. coli compared to PL-amended soils; in Georgia, similar survival was observed between PL- and HTPP-amended soils, both of which were higher (P < 0.05) than in UN soils. In both locations, E. coli levels fell to the limit of detection (-0.24 log MPN/g) by 112 d in UN plots; however, they persisted at levels between 0.30 and 1.57 log CFU/g in HTTP- and PL-amended soils until 140 d. Weak to moderate correlations were observed for rainfall and soil moisture and their effect on E. coli survival; no other weather factors were impactful. The use of BSAAO in soils can prolong the survival of E. coli (>140 d) irrespective of the factors intrinsic to the locations and have implications regarding the safe use of BSAAOs during fruit and vegetable production.
Collapse
Affiliation(s)
- Karuna Kharel
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, United States
| | - Cameron A Bardsley
- US Department of Agriculture, Agricultural Research Service, Southeastern Fruit and Tree Nut Research Station, Byron, GA 31008, United States
| | - Charles Bency Appolon
- Department of Food Science and Technology, Food Science Building, University of Georgia, 100 Cedar Street, Athens, GA 30602, United States
| | - Laurel L Dunn
- Department of Food Science and Technology, Food Science Building, University of Georgia, 100 Cedar Street, Athens, GA 30602, United States
| | - Govindaraj Dev Kumar
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, United States
| | - Krishna Prabha
- Department of Food Science and Technology, Food Science Building, University of Georgia, 100 Cedar Street, Athens, GA 30602, United States
| | - Manan Sharma
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Michelle D Danyluk
- Food Science and Human Nutrition Department, Citrus Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Lake Alfred, FL 33850, United States
| | - Keith R Schneider
- Food Science and Human Nutrition Department, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
2
|
Bryson E, Anastasi A, Bricknell L, Kift R. Household dog fecal composting: Current issues and future directions. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1876-1891. [PMID: 38924209 DOI: 10.1002/ieam.4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/05/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Dog feces are a known source of nutrient, pathogen, and plastic pollution that can harm human and ecosystem health. Home composting may be a more environmentally sustainable method of managing dog feces and reducing this pollution. While composting is an established method for recycling animal manures into low-risk soil conditioners for food production, few studies have investigated whether household-scale compost methods can safely and effectively process dog feces for use in backyard edible gardens. A broad range of literature on in situ composting of dog feces is evaluated and compared according to scale, parameters tested, and compost methods used. Studies are analyzed based on key identified knowledge gaps: appropriate compost technologies to produce quality soil conditioner on small scales, potential for fecal pathogen disinfection in mesophilic compost conditions, and biodegradation of compostable plastic dog waste bags in home compost systems. This review also discusses how existing methods and quality standards for commercial compost can be adapted to dog fecal home composting. Priorities for future research are investigation of household-scale aerobic compost methods and potential compost amendments needed to effectively decompose dog feces and compostable plastic dog waste bags to produce a good-quality, sanitized, beneficial soil conditioner for use in home gardens. Integr Environ Assess Manag 2024;20:1876-1891. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Emily Bryson
- School of Health, Medical and Applied Sciences, Central Queensland University, Wayville, South Australia, Australia
| | - Amie Anastasi
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - Lisa Bricknell
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - Ryan Kift
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| |
Collapse
|
3
|
Safitri RA, van Asselt ED, Müller-Maatsch J, Vogelgsang S, Dapcevic-Hadnadev T, de Nijs M. Generic Food Safety Assessment: A Framework to Evaluate Food Safety Hazards Emerging from Change(s) in the Primary Production System - A Case Study Involving Intercropping. J Food Prot 2024; 87:100371. [PMID: 39369819 DOI: 10.1016/j.jfp.2024.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Food safety is a shared responsibility of all actors along the food supply chain. Changes in the primary production system can affect food safety hazards along the supply chain. This highlights the need for a framework that enables primary producers (i.e., farmers) to assess the potential food safety hazards and, if needed, to apply control measures. This paper presents a generic food safety assessment (GFSA) framework that has been developed based on Hazard Analysis and Critical Control Point (HACCP). The proposed framework was applied to a case study, i.e., the transition from sole cropping of oats to intercropping of oats with lupins. The application of the GFSA framework enabled the evaluation of potential changes in food safety hazards from this transition and the establishment of appropriate control measures. In addition, GFSA users can employ the results to support decision-making process. Our case study showed that implementing GFSA can be challenging for smallholder or individual farmers and may need coordinated action. Finally, effective and transparent communication is critical for managing food safety along the food supply chain, including when changes are implemented in primary production.
Collapse
Affiliation(s)
- Rosa A Safitri
- Wageningen Food Safety Research (WFSR), Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.
| | - Esther D van Asselt
- Wageningen Food Safety Research (WFSR), Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Judith Müller-Maatsch
- Wageningen Food Safety Research (WFSR), Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Susanne Vogelgsang
- Agroscope, Competence Division Plant and Plant Products, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | - Tamara Dapcevic-Hadnadev
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Monique de Nijs
- Wageningen Food Safety Research (WFSR), Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| |
Collapse
|
4
|
Zhao K, Yin X, Wang N, Chen N, Jiang Y, Deng L, Xiao W, Zhou K, He Y, Zhao X, Yang Y, Zhang J, Chen A, Wu Z, He L. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122766. [PMID: 39369531 DOI: 10.1016/j.jenvman.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Aerobic composting technology is an efficient, safe and practical method to reduce the residues of antibiotics and antibiotic resistance genes (ARGs) due to unreasonable disposal of livestock manure. Nowadays, it remains unclear how aerobic composting works to minimize the level of remaining antibiotics and ARGs in manure. Moreover, aerobic composting techniques even have the potential to enhance ARGs level. Therefore, this study conducted a literature review on ARGs variation during the composting process to assess the fate, migration, and risk features of antibiotics and ARGs in different livestock manure and compost. The relationship between ARGs reduction and crucial factors (temperature, heavy metal, and microbial community structures) in the composting process was discussed. The merits and limitations of different technologies used in compost was summarized. The effects on ARGs reduction in the aerobic composting process with various strategies was examined. We attempt to provide a fresh and novel viewpoint on the advancement of global aerobic composting technology.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha, Hunan, 410014, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Nianqiao Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Youming Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Linyan Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Wenbo Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Kun Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xichen Zhao
- Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China.
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| |
Collapse
|
5
|
Shawver S, Ishii S, Strickland MS, Badgley B. Soil type and moisture content alter soil microbial responses to manure from cattle administered antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27259-27272. [PMID: 38507165 PMCID: PMC11052774 DOI: 10.1007/s11356-024-32903-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Growing concerns about the global antimicrobial resistance crisis require a better understanding of how antibiotic resistance persists in soil and how antibiotic exposure impacts soil microbial communities. In agroecosystems, these responses are complex because environmental factors may influence how soil microbial communities respond to manure and antibiotic exposure. The study aimed to determine how soil type and moisture alter responses of microbial communities to additions of manure from cattle treated with antibiotics. Soil microcosms were constructed using two soil types at 15, 30, or 45% moisture. Microcosms received biweekly additions of manure from cattle given cephapirin or pirlimycin, antibiotic-free manure, or no manure. While soil type and moisture had the largest effects on microbiome structure, impacts of manure treatments on community structure and individual ARG abundances were observed across varying soil conditions. Activity was also affected, as respiration increased in the cephapirin treatment but decreased with pirlimycin. Manure from cattle antibiotics also increased NH4+ and decreased NO3- availability in some scenarios, but the effects were heavily influenced by soil type and moisture. Overall, this work demonstrates that environmental conditions can alter how manure from cattle administered antibiotics impact the soil microbiome. A nuanced approach that considers environmental variability may benefit the long-term management of antibiotic resistance in soil systems.
Collapse
Affiliation(s)
- Sarah Shawver
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
6
|
Omar AN, Chirnside A, Kniel KE. Evaluation of White Rot Fungus to Control Growth of Escherichia coli in Cattle Manure. J Food Prot 2024; 87:100206. [PMID: 38142826 DOI: 10.1016/j.jfp.2023.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Biological soil amendments of animal origin, such as aqueous dairy manure, may be contaminated with microbial pathogens that can subsequently result in contaminated soil, water runoff, and crops. Multiple mitigation strategies are being evaluated to reduce these risks. Inclusion of filamentous fungus in a biofiltration system to inactivate pathogenic bacteria in aqueous dairy manure prior to land application is explored in this study as a preharvest preventative method. Of the microbes used to remediate biologically contaminated sites, ligninolytic white-rot fungi have been previously studied for their ability to degrade a wide variety of toxic or persistent environmental contaminants. Reduction of two E. coli strains (E. coli TVS355 and E. coli O157:H7 4407) was evaluated in aqueous dairy manure and PBS and in the presence of white-rot fungi Pleurotus ostreatus on three different nutrient sources (woodchips (WC), spent mushroom compost (SMC), and reticulated polyurethane foam (RPF)). Overall, E. coli TVS355 was more persistent in aqueous dairy manure and PBS, surviving for 50 days in the presence of P. ostreatus, with a final concentration of 4 log CFU/g in aqueous manure and 7 log CFU/g in PBS. However, greater (p < 0.0001) reduction of E. coli O157:H7 was observed, surviving for 50 days at an average of 4 log CFU/g in aqueous dairy manure and an average of 3 log CFU/g in PBS. Therefore, P. ostreatus has the potential to result in bacterial decay, with potential reduction observed in E. coli O157:H7. The RPF matrix showed positive results as a potential model for a nutrient limiting resource for P. ostreatus and could be the key to increased bacterial reductions if resulting in ligninolytic activity in order to seek other nutrient sources.
Collapse
Affiliation(s)
- Alexis N Omar
- Department of Animal and Food Sciences, University of Delaware, 531 S. College Avenue, Newark, DE 19716, Unites States
| | - Anastasia Chirnside
- Department of Entomology and Wildlife Ecology, University of Delaware, 531 S. College Avenue, Newark, DE 19716, Unites States
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, 531 S. College Avenue, Newark, DE 19716, Unites States.
| |
Collapse
|
7
|
Li M, Chen L, Zhao F, Tang J, Bu Q, Feng Q, Yang L. An innovative risk evaluation method on soil pathogens in urban-rural ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132286. [PMID: 37595464 DOI: 10.1016/j.jhazmat.2023.132286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
The presence and reproduction of pathogens in soil environment have significant negative impacts on soil security and human health in urban-rural ecosystem. Rapid urbanization has dramatically changed the land use, soil ecosystems, and the presence of pathogens in soil environment, however, the risk associated with soil pathogens remains unknown. Identifying the potential risk of pathogens in soils in urban-rural ecosystem has become an urgent issue. In this study, we established a risk evaluation method for soil pathogens based on analytic hierarchy process and entropy methods to quantitatively estimate the potential risk of soil pathogens to children and adults in urban-rural ecosystem. The abundance and species number of soil pathogens, network structure of soil microbial community, and human exposure factors were considered with 12 indicators to establish the risk evaluation system. The results revealed that 19 potential pathogenic bacteria were detected in soils within a typical urban-rural ecosystem. Substantial differences were observed in both abundance and species of soil pathogens as well as network structure of soil microbial community from urban to rural areas. Urban areas exhibited relatively lower levels of soil pathogenic abundance, but the microbial network was considerably unstable. Rural areas supported relatively higher levels of soil pathogenic abundance and stable microbial networks. Notably, peri-urban areas showed relatively unstable microbial networks alongside higher levels of soil pathogenic abundance compared to other areas. The risk evaluation of soil pathogens for both adults and children showed that peri-urban areas presented the highest potential risk, with children being more susceptible than adults to threats posed by soil pathogens in both urban and peri-urban areas. The established evaluation system provides an innovative approach for quantifying risk of soil pathogens at regional scale and can be used as a reference for preventing soil pathogens contamination and enhancing soil health in areas with intense human activities.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Baker CA, Gutierrez A, Bell R, Schneider KR. Draft Genome Sequences of 110 Shiga Toxin-Producing Escherichia coli Isolates Collected from Bovine Manure Samples in the Southern United States. Microbiol Resour Announc 2023; 12:e0117722. [PMID: 36920193 PMCID: PMC10112231 DOI: 10.1128/mra.01177-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) bacteria continue to impact the food industry. Environmental sampling of potential sources of contamination is important to aid epidemiologic efforts in tracking foodborne illnesses throughout the United States. Here, the draft genome sequences of 110 STEC isolates from bovine manure collected in Florida and Texas are reported.
Collapse
Affiliation(s)
- Christopher A. Baker
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Alan Gutierrez
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Rebecca Bell
- Center for Food Safety and Applied Nutrition, Division of Microbiology, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Jiménez-Belenguer AI, Ferrús MA, Hernández M, García-Hernández J, Moreno Y, Castillo MÁ. Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Antibiotics (Basel) 2023; 12:387. [PMID: 36830297 PMCID: PMC9952115 DOI: 10.3390/antibiotics12020387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Fresh fruits and vegetables are potential reservoirs for antimicrobial resistance determinants, but few studies have focused specifically on organic vegetables. The present study aimed to determine the presence of third-generation cephalosporin (3GC)- and carbapenem-resistant Gram-negative bacteria on fresh organic vegetables produced in the city of Valencia (Spain). Main expanded spectrum beta-lactamase (ESBL)- and carbapenemase-encoding genes were also detected in the isolates. One hundred and fifteen samples were analyzed using selective media supplemented with cefotaxime and meropenem. Resistance assays for twelve relevant antibiotics in medical use were performed using a disc diffusion test. A total of 161 isolates were tested. Overall, 33.5% presented multidrug resistance and 16.8% were resistant to all β-lactam antibiotics tested. Imipenem resistance was observed in 18% of isolates, and low resistance levels were found to ceftazidime and meropenem. Opportunistic pathogens such as Acinetobacter baumannii, Enterobacter spp., Raoultella sp., and Stenotrophomonas maltophilia were detected, all presenting high rates of resistance. PCR assays revealed blaVIM to be the most frequently isolated ESBL-encoding gene, followed by blaTEM and blaOXA-48. These results confirm the potential of fresh vegetables to act as reservoirs for 3GC- and carbapenem-producing ARB. Further studies must be carried out to determine the impact of raw organic food on the spread of AMRs into the community.
Collapse
Affiliation(s)
- Ana Isabel Jiménez-Belenguer
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - Maria Antonia Ferrús
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - Manuel Hernández
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - Yolanda Moreno
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| | - María Ángeles Castillo
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, C/Camí de Vera s/n, 46022 València, Spain
| |
Collapse
|
10
|
Ferguson M, Hsu CK, Grim C, Kauffman M, Jarvis K, Pettengill JB, Babu US, Harrison LM, Li B, Hayford A, Balan KV, Freeman JP, Rajashekara G, Lipp EK, Rozier RS, Zimeri AM, Burall LS. A longitudinal study to examine the influence of farming practices and environmental factors on pathogen prevalence using structural equation modeling. Front Microbiol 2023; 14:1141043. [PMID: 37089556 PMCID: PMC10117993 DOI: 10.3389/fmicb.2023.1141043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023] Open
Abstract
The contamination of fresh produce with foodborne pathogens has been an on-going concern with outbreaks linked to these commodities. Evaluation of farm practices, such as use of manure, irrigation water source, and other factors that could influence pathogen prevalence in the farming environment could lead to improved mitigation strategies to reduce the potential for contamination events. Soil, water, manure, and compost were sampled from farms in Ohio and Georgia to identify the prevalence of Salmonella, Listeria monocytogenes (Lm), Campylobacter, and Shiga-toxin-producing Escherichia coli (STEC), as well as Arcobacter, an emerging human pathogen. This study investigated agricultural practices to determine which influenced pathogen prevalence, i.e., the percent positive samples. These efforts identified a low prevalence of Salmonella, STEC, and Campylobacter in soil and water (< 10%), preventing statistical modeling of these pathogens. However, Lm and Arcobacter were found in soil (13 and 7%, respectively), manure (49 and 32%, respectively), and water samples (18 and 39%, respectively) at a comparatively higher prevalence, suggesting different dynamics are involved in their survival in the farm environment. Lm and Arcobacter prevalence data, soil chemical characteristics, as well as farm practices and weather, were analyzed using structural equation modeling to identify which factors play a role, directly or indirectly, on the prevalence of these pathogens. These analyses identified an association between pathogen prevalence and weather, as well as biological soil amendments of animal origin. Increasing air temperature increased Arcobacter and decreased Lm. Lm prevalence was found to be inversely correlated with the use of surface water for irrigation, despite a high Lm prevalence in surface water suggesting other factors may play a role. Furthermore, Lm prevalence increased when the microbiome's Simpson's Diversity Index decreased, which occurred as soil fertility increased, leading to an indirect positive effect for soil fertility on Lm prevalence. These results suggest that pathogen, environment, and farm management practices, in addition to produce commodities, all need to be considered when developing mitigation strategies. The prevalence of Arcobacter and Lm versus the other pathogens suggests that multiple mitigation strategies may need to be employed to control these pathogens.
Collapse
Affiliation(s)
- Martine Ferguson
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Chiun-Kang Hsu
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Christopher Grim
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Michael Kauffman
- Center for Food Animal Health, The Ohio State University, Wooster, OH, United States
| | - Karen Jarvis
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - James B. Pettengill
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Uma S. Babu
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Lisa M. Harrison
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Baoguang Li
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Alice Hayford
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Kannan V. Balan
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Josefina P. Freeman
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Gireesh Rajashekara
- Center for Food Animal Health, The Ohio State University, Wooster, OH, United States
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Ralph Scott Rozier
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Anne Marie Zimeri
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Laurel S. Burall
- Office of Applied Safety and Research Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
- *Correspondence: Laurel S. Burall,
| |
Collapse
|
11
|
Deblais L, Jang H, Kauffman M, Gangiredla J, Sawyer M, Basa S, Poelstra JW, Babu US, Harrison LM, Hiett KL, Balan KV, Rajashekara G. Whole genome characterization of thermophilic Campylobacter species isolated from dairy manure in small specialty crop farms of Northeast Ohio. Front Microbiol 2023; 14:1074548. [PMID: 37025625 PMCID: PMC10071015 DOI: 10.3389/fmicb.2023.1074548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction With more public interest in consuming locally grown produce, small specialty crop farms (SSCF) are a viable and growing segment of the food production chain in the United States. Methods The goal of this study was to investigate the genomic diversity of Campylobacter isolated from dairy manure (n = 69) collected from 10 SSCF in Northeast Ohio between 2018 and 2020. Results A total of 56 C. jejuni and 13 C. coli isolates were sequenced. Multi-locus sequence typing (MLST) identified 22 sequence types (STs), with ST-922 (18%) and ST-61 (13%) predominant in C. jejuni and ST-829 (62%) and ST-1068 (38%) predominant in C. coli. Interestingly, isolates with similar genomic and gene contents were detected within and between SSCF over time, suggesting that Campylobacter could be transmitted between farms and may persist in a given SSCF over time. Virulence-associated genes (n = 35) involved in the uptake and utilization of potassium and organic compounds (succinate, gluconate, oxoglutarate, and malate) were detected only in the C. jejuni isolates, while 45 genes associated with increased resistance to environmental stresses (capsule production, cell envelope integrity, and iron uptake) were detected only in the C. coli isolates. Campylobacter coli isolates were also sub-divided into two distinct clusters based on the presence of unique prophages (n = 21) or IncQ conjugative plasmid/type-IV secretion system genes (n = 15). Campylobacter coli isolates harbored genes associated with resistance to streptomycin (aadE-Cc; 54%) and quinolone (gyrA-T86I; 77%), while C. jejuni had resistance genes for kanamycin (aph3'-IIIa; 20%). Both species harbored resistance genes associated with β-lactam (especially, blaOXA-193; up to 100%) and tetracycline (tetO; up to 59%). Discussion/Conclusion Our study demonstrated that Campylobacter genome plasticity associated with conjugative transfer might provide resistance to certain antimicrobials and viral infections via the acquisition of protein-encoding genes involved in mechanisms such as ribosomal protection and capsule modification.
Collapse
Affiliation(s)
- Loic Deblais
- Department of Animal Sciences, Center for Food Animal Health, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Hyein Jang
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Mike Kauffman
- Department of Animal Sciences, Center for Food Animal Health, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Jayanthi Gangiredla
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Marianne Sawyer
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Saritha Basa
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Uma S. Babu
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Lisa M. Harrison
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Kelli L. Hiett
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Kannan V. Balan
- Center for Food Safety and Applied Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Gireesh Rajashekara
- Department of Animal Sciences, Center for Food Animal Health, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
- *Correspondence: Gireesh Rajashekara,
| |
Collapse
|
12
|
Limoges MA, Neher DA, Weicht TR, Millner PD, Sharma M, Donnelly C. Differential Survival of Escherichia coli and Listeria spp. in Northeastern U.S. Soils Amended with Dairy Manure Compost, Poultry Litter Compost, and Heat-Treated Poultry Pellets and Fate in Raw Edible Radish Crops. J Food Prot 2022; 85:1708-1715. [PMID: 34855938 DOI: 10.4315/jfp-21-261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Composted or heat-treated biological soil amendments of animal origin (BSAAOs) can be added to soils to provide nutrients for fresh produce. These products lower the risk of pathogen contamination of fresh produce compared with the use of untreated BSAAOs; however, meteorological conditions, geographic location, and soil properties can influence the presence of pathogenic bacteria or their indicators (e.g., generic Escherichia coli) and allow potential for produce contamination. Replicated field plots of loamy or sandy soils were tilled and amended with dairy manure compost (DMC), poultry litter compost (PLC), or no compost (NoC) over two field seasons and noncomposted heat-treated poultry pellets (HTPPs) during the second field season. Plots were inoculated with a three-strain cocktail of rifampin-resistant E. coli (rE. coli) at levels of 8.7 log CFU/m2. Direct plating and most-probable-number methods measured the persistence of rE. coli and Listeria spp. in plots through 104 days postinoculation. Greater survival of rE. coli was observed in PLC plots in comparison to DMC plots and NoC plots during year 1 (P < 0.05). Similar trends were observed for year 2, when rE. coli survival was also greater in HTPP-amended plots (P < 0.05). Survival of rE. coli depended on soil type, and water potential and temperature were significant covariables. Listeria spp. were found in NoC plots, but not in plots amended with HTPPs, PLC, or DMC. Radish data demonstrate that PLC treatment promoted the greatest level of rE. coli translocation compared with DMC and NoC treatments (P < 0.05). These results are consistent with findings from studies conducted in other regions of the United States, and they inform northeast produce growers that composted and noncomposted poultry-based BSAAOs support greater survival of rE. coli in field soils. This result has the potential to affect the food safety risk of edible produce grown in BSAAO-amended soils as a result of pathogen contamination. HIGHLIGHTS
Collapse
Affiliation(s)
- Marie A Limoges
- Department of Nutrition and Food Science, University of Vermont, Marsh Life Science, 109 Carrigan Drive, Burlington, Vermont 05405
| | - Deborah A Neher
- Department of Plant and Soil Science, University of Vermont, Jeffords Hall, 63 Carrigan Drive, Burlington, Vermont 05405
| | - Thomas R Weicht
- Department of Plant and Soil Science, University of Vermont, Jeffords Hall, 63 Carrigan Drive, Burlington, Vermont 05405
| | - Patricia D Millner
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Building 307, Center Drive, Beltsville, Maryland 20705, USA
| | - Manan Sharma
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Building 307, Center Drive, Beltsville, Maryland 20705, USA
| | - Catherine Donnelly
- Department of Nutrition and Food Science, University of Vermont, Marsh Life Science, 109 Carrigan Drive, Burlington, Vermont 05405
| |
Collapse
|
13
|
Jin H, Zhang D, Yan Y, Yang C, Fang B, Li X, Shao Y, Wang H, Yue J, Wang Y, Cheng H, Shi Y, Qin F. Short-term application of chicken manure under different nitrogen rates alters structure and co-occurrence pattern but not diversity of soil microbial community in wheat field. Front Microbiol 2022; 13:975571. [PMID: 36160226 PMCID: PMC9490364 DOI: 10.3389/fmicb.2022.975571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Manure application is an effective way to improve the utilization efficiency of organic resources and alleviate the adverse effects of long-term application of chemical fertilizers. However, the impact of applying manure under different nitrogen rates on soil microbial community in wheat field remains unclear. Treatments with and without chicken manure application under three nitrogen rates (N 135, 180 and 225 kg⋅hm-2) were set in wheat field. Soil organic carbon, available nutrients, and abundance, diversity, structure and co-occurrence pattern of soil microbial community at wheat maturity were investigated. Compared with no manure application, chicken manure application increased the soil organic carbon and available phosphorus, while the effects on soil mineral nitrogen and available potassium varied with different nitrogen rates. Chicken manure application significantly increased soil bacterial abundance under the nitrogen fertilization of 135 and 225 kg⋅hm-2, increased soil fungal abundance under the nitrogen fertilization of 135 kg⋅hm-2, but decreased soil fungal abundance under the nitrogen fertilization of 180 and 225 kg⋅hm-2 (P < 0.05). There was no significant difference in alpha diversity indices of soil microbial communities between treatments with and without chicken manure application under different nitrogen rates (P > 0.05). Chicken manure application and its interaction with nitrogen rate significantly changed soil bacterial and fungal community structures (P < 0.05). There were significantly different taxa of soil microbial communities between treatments with and without chicken manure application. Chicken manure application reduced the ecological network complexity of soil bacterial community and increased that of soil fungal community. In summary, the responses of soil available nutrients and microbial abundance to applying chicken manure varied with different nitrogen rates. One growing season application of chicken manure was sufficient to alter the soil microbial community structure, composition and co-occurrence pattern, whereas not significantly affected soil microbial community diversity.
Collapse
Affiliation(s)
- Haiyang Jin
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Deqi Zhang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yaqian Yan
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Cheng Yang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoting Fang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangdong Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunhui Shao
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hanfang Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Junqin Yue
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanjing Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongjian Cheng
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanhua Shi
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Feng Qin
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
14
|
Current methodologies and future direction of Campylobacter isolation and detection from food matrices, clinical samples, and the agricultural environment. J Microbiol Methods 2022; 201:106562. [PMID: 36049611 DOI: 10.1016/j.mimet.2022.106562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/27/2022]
Abstract
Campylobacter spp. are the leading cause of bacterial foodborne infections in both developed and developing countries. The food commodities primarily attributed to campylobacteriosis include raw milk, poultry, seafood, and fresh produce. Furthermore, insects, animal/bird fecal material, and agricultural water have been shown to be the sources of Campylobacter contamination in these commodities. Both established and emerging species of Campylobacter have been recovered from food and environmental sources. Therefore, optimal detection and isolation of Campylobacter spp., including the emerging species, is critical for improved surveillance, prevention, and traceback of Campylobacter outbreaks. This review focuses on the existing variability in Campylobacter enrichment and isolation procedures used by researchers and regulatory agencies worldwide, for various matrices. Additionally, the challenges associated with developing and validating new culture, molecular, and immunological methods for rapid and sensitive Campylobacter detection are discussed.
Collapse
|
15
|
Focker M, van Asselt E, Berendsen B, van de Schans M, van Leeuwen S, Visser S, van der Fels-Klerx H. Review of food safety hazards in circular food systems in Europe. Food Res Int 2022; 158:111505. [DOI: 10.1016/j.foodres.2022.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
|
16
|
Inoculation with the pH Lowering Plant Growth Promoting Bacterium Bacillus sp. ZV6 Enhances Ni Phytoextraction by Salix alba from a Ni-Polluted Soil Receiving Effluents from Ni Electroplating Industry. SUSTAINABILITY 2022. [DOI: 10.3390/su14126975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soil contamination with Ni poses serious ecological risks to the environment. Several members of the Salix genus have the ability to accumulate high concentrations of Ni in their aerial parts, and thus can be used for the remediation of Ni-contaminated soils. Interestingly, the efficacy of Ni phytoextraction by Salix may be improved by the acidification of rhizosphere with rhizosphere acidifying bacterial strains. Therefore, the aim of this study was to assess the efficacy of bacterial strain Bacillus sp. ZV6 in the presence of animal manure (AM) and leaf manure (LM) for enhancing the bioavailability of Ni in the rhizosphere of Salix alba via reducing the pH of rhizosphere and resultantly, enhanced phytoextraction of Ni. Inoculation of Ni-contaminated soil with strain ZV6 significantly increased plant growth as well as Ni uptake by alba. It was found that the addition of AM and LM resulted into a significant increase in plant growth and Ni uptake by alba in Ni-contaminated soil inoculated with ZV6 stain. However, the highest improvements in diethylene triamine penta-acetic acid (DTPA) extractable Ni (10%), Ni removal from soil (54%), Ni bioconcentration factor (26%) and Ni translocation factor (13%) were detected in the soil inoculated with ZV6 along with the addition of LM, compared to control. Similarly, the enhancements in microbial biomass (92%), bacterial count (348%), organic carbon (organic C) (57%) and various enzymatic activities such as urease (56%), dehydrogenase (32%), β-glucosidase (53%), peroxidase (26%) and acid phosphatase (38%) were also significantly higher in the soil inoculated with ZV6 along with the addition of LM. The findings of this study suggest that the inoculation of Ni-contaminated soils with rhizosphere acidifying bacteria can effectively improve Ni phytoextraction and, in parallel, enhance soil health.
Collapse
|
17
|
Topalcengiz Z, Danyluk MD. Assessment of Contamination Risk from Fecal Matter Presence on Fruit and Mulch in the tomato fields based on generic Escherichia coli population. Food Microbiol 2022; 103:103956. [DOI: 10.1016/j.fm.2021.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
|
18
|
Miranda-Carrazco A, Chávez-López C, Ramírez-Villanueva DA, Dendooven L. Bacteria in (vermi)composted organic wastes mostly survive when applied to an arable soil cultivated with wheat (Triticum sp. L.). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:363. [PMID: 35419663 DOI: 10.1007/s10661-022-09996-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Composting and vermicomposting are an environmentally friendly way to reduce pathogens in organic wastes and generate a valuable product that provides nutrients for crops. However, how the bacterial community structure changes during these different processes and if the bacteria applied with the (vermi)composted products survive in an arable cultivated soil is still largely unknown. In this study, we monitored how the bacterial community structure changed during conditioning, composting with and without Eisenia fetida, and when the end-product was applied to arable soil cultivated with wheat Triticum sp. L. The organic wastes used were biosolid, cow manure, and a mixture of both. Large changes occurred in the relative abundance of some of the most abundant bacterial genera during conditioning, but the changes were much smaller during composting or vermicomposting. The bacterial community structure was significantly different in the organic wastes during conditioning and (vermi)composting but adding E. fetida had no significant effect on it. Changes in the relative abundance of the bacterial groups in the (vermi)composted waste applied to the arable soil cultivated with wheat were small, suggesting that most survived even after 140 days. As such, applying (vermi)composted organic wastes not only adds nutrients to a crop but also contributes to the survival of plant growth-promoting bacteria found in the (vermi)compost. However, putative human pathogens found in the biosolid also survived in the arable soil, and their relative abundance remained high but mixing the biosolid with cow manure reduced that risk. It was found that applying (vermi)composted organic wastes to an arable soil not only provides plant nutrients and adds bacteria with plant growth-promoting capacities, but some putative pathogens also survived.
Collapse
Affiliation(s)
- Alejandra Miranda-Carrazco
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | - Claudia Chávez-López
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico
| | | | - Luc Dendooven
- Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
19
|
Black Z, Balta I, Black L, Naughton PJ, Dooley JSG, Corcionivoschi N. The Fate of Foodborne Pathogens in Manure Treated Soil. Front Microbiol 2021; 12:781357. [PMID: 34956145 PMCID: PMC8702830 DOI: 10.3389/fmicb.2021.781357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this review was to provide an update on the complex relationship between manure application, altered pathogen levels and antibiotic resistance. This is necessary to protect health and improve the sustainability of this major farming practice in agricultural systems based on high levels of manure production. It is important to consider soil health in relation to environment and land management practices in the context of the soil microflora and the introduction of pathogens on the health of the soil microbiome. Viable pathogens in manure spread on agricultural land may be distributed by leaching, surface run-off, water source contamination and contaminated crop removal. Thus it is important to understand how multiple pathogens can persist in manures and on soil at farm-scale and how crops produced under these conditions could be a potential transfer route for zoonotic pathogens. The management of pathogen load within livestock manure is a potential mechanism for the reduction and prevention of outbreaks infection with Escherichia coli, Listeria Salmonella, and Campylobacter. The ability of Campylobacter, E. coli, Listeria and Salmonella to combat environmental stress coupled with their survival on food crops and vegetables post-harvest emphasizes the need for further study of these pathogens along with the emerging pathogen Providencia given its link to disease in the immunocompromised and its’ high levels of antibiotic resistance. The management of pathogen load within livestock manure has been widely recognized as a potential mechanism for the reduction and prevention of outbreaks infection but any studies undertaken should be considered as region specific due to the variable nature of the factors influencing pathogen content and survival in manures and soil. Mediocre soils that require nutrients could be one template for research on manure inputs and their influence on soil health and on pathogen survival on grassland and in food crops.
Collapse
Affiliation(s)
- Zoe Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| | - Lisa Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Patrick J Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James S G Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
20
|
Mays C, Garza GL, Waite-Cusic J, Radniecki TS, Navab-Daneshmand T. Impact of biosolids amendment and wastewater effluent irrigation on enteric antibiotic-resistant bacteria - a greenhouse study. WATER RESEARCH X 2021; 13:100119. [PMID: 34585133 PMCID: PMC8452883 DOI: 10.1016/j.wroa.2021.100119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Reuse of wastewater effluent and biosolids in agriculture is essential to sustainable water and nutrient resource management practices. Wastewater and biosolids, however, are reportedly the recipients, reservoirs, and sources of antibiotic-resistant enteric pathogens. While decay rates of fecal bacterial indicators in soil are frequently studied, very few studies have reported on the persistence of the antibiotic-resistant sub-populations. Little is known about how multi-drug resistance phenotypes of enteric bacteria in agricultural soil change over time. In this study, germinated carrot seeds were planted in soil that received biosolids amendment and/or wastewater effluent irrigation in a greenhouse setting. We quantified total and antibiotic-resistant fecal bacterial indicators (Escherichia coli and enterococci) weekly in soil and total E. coli at harvest (day 77) on carrots. Antibiotic susceptibility of 121 E. coli and 110 enterococci collected isolates were determined. E. coli or enterococci were not recovered from the soil without biosolids amendment regardless of the irrigation water source. After biosolids amendment, soil E. coli and enterococci concentrations increased more than 3 log10 CFU/g-TS within the first week, declined slowly over time, but stayed above the detection limit (0.39 CFU/g-TS) over the entirety of the study. No statistical difference was found between effluent wastewater or water irrigation in soil total and antibiotic-resistant E. coli and enterococci concentrations or carrots E. coli levels. Soil antibiotic-resistant E. coli and enterococci decayed significantly faster than total E. coli and enterococci. Moreover, the prevalence of multi-drug resistant (resistance to three or more antibiotics) E. coli declined significantly over time, while almost all collected enterococci isolates showed multi-drug resistance phenotypes. At harvest, E. coli were present on carrots; the majority of which were resistant to ampicillin. The survival of antibiotic-resistant enteric bacteria in soil and on harvested carrots indicates there are transmission risks associated with biosolids amendment use in root crops.
Collapse
Affiliation(s)
- Catherine Mays
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR 97331, United States
| | - Gabriela L. Garza
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR 97331, United States
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR 97331, United States
| | - Tyler S. Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR 97331, United States
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, 116 Johnson Hall, Corvallis, OR 97331, United States
| |
Collapse
|
21
|
Ramos TDM, Jay-Russell MT, Millner PD, Baron JN, Stover J, Pagliari P, Hutchinson M, Lilley J, Rowley N, Haghani V, Aminabadi P, Kenney A, Hashem F, Martínez-López B, Bihn EA, Clements DP, Shade JB, Sciligo AR, Pires AFA. Survival and Persistence of Foodborne Pathogens in Manure-Amended Soils and Prevalence on Fresh Produce in Certified Organic Farms: A Multi-Regional Baseline Analysis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.674767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological soil amendments of animal origin (BSAAOs), including untreated (e.g., raw or aged manure, or incompletely composted manure) and treated animal products (e.g., compost), are used for crop production and as part of soil health management. Application of BSAAO's must be done cautiously, as raw manure commonly contains enteric foodborne pathogens that can potentially contaminate edible produce that may be consumed without cooking. USDA National Organic Program (NOP) certified production systems follow the 90-or 120-day interval standards between applications of untreated BSAAOs and crop harvest, depending on whether the edible portions of the crops are in indirect or direct contact with the soil, respectively. This study was conducted to evaluate the survival of four foodborne pathogens in soils amended with BSAAOs and to examine the potential for bacterial transfer to fresh produce harvested from USDA NOP certified organic farms (19) from four states. Only 0.4% (2/527) of produce samples were positive for L. monocytogenes. Among the untreated manure and compost samples, 18.0% (42/233) were positive for at least one of the tested and culturable bacterial foodborne pathogens. The prevalence of non-O157 STEC and Salmonella in untreated manure was substantially > that of E. coli O157:H7 and L. monocytogenes. Of the 2,461 soil samples analyzed in this study, 12.9% (318) were positive for at least one pathogen. In soil amended with untreated manure, the prevalence of non-O157 STEC [7.7% (190) and L. monocytogenes (5.0% (122), was > that of Salmonella (1.1% (26)] or E. coli O157 [0.04% (1)]. Foodborne pathogen prevalence in the soil peaked after manure application and decreased significantly 30 days post-application (dpa). However, non-O157 STEC and L. monocytogenes were recovered from soil samples after 90 and 120 dpa. Results indicate that produce contamination by tested foodborne pathogens was infrequent, but these data should not be generalized outside of the specific wait-time regulations for organic crop production and the farms studied. Moreover, other sources of contamination, e.g., irrigation, wildlife, environmental conditions, cropping and management practices, should be considered. This study also provides multi-regional baseline data relating to current NOP application intervals and development of potential risk mitigation strategies to reduce pathogen persistence in soils amended with BSAAOs. These findings contribute to filling critical data gaps concerning occurrence of fecal pathogens in NOP-certified farming systems used for production of fresh produce in different US regions.
Collapse
|
22
|
Xu S, Schwinghamer T, Sura S, Cessna AJ, Zvomuya F, Zaheer R, Larney FJ, McAllister TA. Degradation of antimicrobial resistance genes within stockpiled beef cattle feedlot manure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1093-1106. [PMID: 34605371 DOI: 10.1080/10934529.2021.1965416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Degradation of antimicrobial resistance genes (ARG) in manure from beef cattle administered (kg-1 feed) 44 mg of chlortetracycline (CTC), 44 mg of chlortetracycline plus sulfamethazine (CTCSMZ), 11 mg of tylosin (TYL), or no antimicrobials (Control) was examined. Manure was stockpiled and quantitative PCR (qPCR) was used to assess tetracycline [tet(C), (L), (M), (W)], erythromycin [erm(A), (B), (F), (X)], and sulfamethazine [sul(1), (2)] ARG and 16S rDNA. After 102 d, copies of all ARG decreased by 0.3 to 1.5 log10 copies (g dry matter)-1. Temperature in the interior of piles averaged ≥ 55 °C for 10 d, except for CTCSMZ, but did not reach 55 °C at pile exteriors. Compared to Control, CTCSMZ increased (P < 0.05) tet(C), tet(M), tet(W), sul(1), and sul(2) in stockpiled manure. Copies of 16S rDNA remained higher (P < 0.05) in CTCSMZ than Control for the first 26 d. Levels of most ARG did not differ between the interior and exterior of stockpiles. Our results suggest that stockpiled manure would still introduce ARG to land upon manure application, but at levels lower than if manure was applied fresh.
Collapse
Affiliation(s)
- Shanwei Xu
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | - Tim Schwinghamer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Srinivas Sura
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba, Canada
| | - Allan J Cessna
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Francis J Larney
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
23
|
Beattie RE, Hristova KR. Manure derived nutrients alter microbial community composition and increase the presence of potential pathogens in freshwater sediment. J Appl Microbiol 2021; 132:747-757. [PMID: 34312944 DOI: 10.1111/jam.15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022]
Abstract
AIM To determine the impact of an acute, pulse disturbance of nutrients from manure on freshwater sediment microbiomes in an experimental system. METHODS AND RESULTS A controlled freshwater mesocosm experiment was designed to compare the effect of disturbance from nutrients derived from sterile manure (SM), disturbance from equivalent concentrations of laboratory-derived nutrients, and a nondisturbed control on freshwater sediment microbial community composition and function using 16S rRNA amplicon sequencing. Sediment microbiomes impacted by nutrients from SM showed no sign of compositional recovery after 28 days but those impacted by laboratory-derived chemicals lead to a new steady-state (p < 0.05). Carbon and nitrate sources within disturbed mesocosms were the primary drivers of altered microbial community composition. Additionally, multiple potential pathogens (based on exact sequence matching at the species level) were enriched in mesocosms treated with SM. CONCLUSIONS Nutrient disturbance from SM, in the absence of the manure microbial community, alters the microbiome of sediments without recovery after 28 days and enriches potential pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY These results suggest manure land application practices should be re-evaluated to account for impact of nutrient disturbance on environmental microbiomes in addition to the impact of the manure microbial community.
Collapse
Affiliation(s)
- Rachelle E Beattie
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
24
|
A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fertilizers stand at the base of current agricultural practices, providing the nutrient sustainment required for growing plants. Most fertilizers are synthetic chemicals, whose exploitation at very high levels poses a risk to cultivated land and the whole environment. They have several drawbacks including soil degradation, water pollution, and human food safety. Currently, the urgent need to counterbalance these negative environmental impacts has opened the way for the use of natural and renewable products that may help to restore soil structure, microorganism communities, nutrient elements, and, in some cases, to positively enhance carbon soil sequestration. Here, we endeavor to reinforce the vision that effective strategies designed to mitigate negative anthropic and climate change impacts should combine, in appropriate proportions, solutions addressed to a lower and less energy intensive production of chemicals and to a more inclusive exploitation of renewable natural products as biological soil amendments. After drawing an overview of the agricultural energy demand and consumption of fertilizers in Europe in the last few years (with a particular focus on Italy), this narrative review will deal with the current and prospective use of compost, biochar, and neem cake, which are suitable natural products with well-known potential and still-to-be-discovered features, to benefit sustainable agriculture and be adopted as circular economic solutions.
Collapse
|
25
|
Sepehrnia N, Tabatabaei SH, Norouzi H, Gorakifard M, Shirani H, Rezanezhad F. Particle fractionation controls Escherichia coli release from solid manure. Heliyon 2021; 7:e07038. [PMID: 34095566 PMCID: PMC8167222 DOI: 10.1016/j.heliyon.2021.e07038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/03/2022] Open
Abstract
Bacteria transport through soil is a complex process particularly when the cells are released from solid manures and co-transported with particles. This study focuses on understanding of the Escherichia coli release from different particle fractions (0.25-, 0.5-, 1-, and 2-mm) of solid manure and evaluating different influent boundary conditions during cell release from manure and when a solid manure is applied to the soil. The 0.25-mm and 2-mm particle sizes resulted a greater cell release compared to 0.5-mm and 1-mm fractions (p < 0.05). The shape and magnitude of the cell release curves (CRCs) from the original manure bulk were mainly influenced by the two 0.25-mm and 2-mm fractions, respectively. The arithmetic mean for normalizing the CRCs and the time variable- based normalized CRCs for the manure-treated soil were the robust variables in evaluation of the experimental data. However, a single maximum bacteria concentration could provide the realistic dataset for the modeling process. Evaluation of the root-mean-squared-error and Akaike criterion showed that the two- and three-parametric models are recommended for simulating the cell release from solid manure in comparison with one parametric models. This study also suggests considering separate microbial release evaluations, with regards to influent concentration, for manure and manure-treated soils to propose best management practices for controlling bacteria pollution. Further research will reveal the key roles of different woody components and soluble material ratios for the various solid manures in bacteria release.
Collapse
Affiliation(s)
- Nasrollah Sepehrnia
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Sayyed-Hassan Tabatabaei
- Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Hamdollah Norouzi
- Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Mohsen Gorakifard
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Spain
| | - Hossein Shirani
- Department of Soil Science, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Fereidoun Rezanezhad
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Waterloo, Canada
| |
Collapse
|
26
|
Kuo V, Lehmkuhl BK, Lennon JT. Resuscitation of the microbial seed bank alters plant-soil interactions. Mol Ecol 2021; 30:2905-2914. [PMID: 33894046 DOI: 10.1111/mec.15932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/19/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
While microorganisms are recognized for driving belowground processes that influence the productivity and fitness of plant populations, the vast majority of bacteria and fungi in soil belong to a seed bank consisting of dormant individuals. However, plant performance may be affected by microbial dormancy through its effects on the activity, abundance, and diversity of soil microorganisms. To test how microbial seed banks influence plant-soil interactions, we purified recombinant resuscitation promoting factor (Rpf), a bacterial protein that terminates dormancy. In a factorially designed experiment, we then applied the Rpf to soil containing field mustard (Brassica rapa), an agronomically important plant species. Plant biomass was ~33% lower in the Rpf treatment compared to plants grown with an unmanipulated microbial seed bank. In addition, Rpf reduced soil respiration, decreased bacterial abundance, and increased fungal abundance. These effects of Rpf on plant performance were accompanied by shifts in bacterial community composition, which may have diluted mutualists or resuscitated pathogens. Our findings suggest that changes in microbial seed banks may influence the magnitude and direction of plant-soil feedbacks in ways that affect above- and belowground biodiversity and function.
Collapse
Affiliation(s)
- Venus Kuo
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
27
|
Temporal and Agricultural Factors Influence Escherichia coli Survival in Soil and Transfer to Cucumbers. Appl Environ Microbiol 2021; 87:AEM.02418-20. [PMID: 33483305 DOI: 10.1128/aem.02418-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
Biological soil amendments of animal origin (BSAAO) increase nutrient levels in soils to support the production of fruits and vegetables. BSAAOs may introduce or extend the survival of bacterial pathogens which can be transferred to fruits and vegetables to cause foodborne illness. Escherichia coli survival over 120 days in soil plots (3 m2) covered with (mulched) or without plastic mulch (not mulched), amended with either poultry litter, composted poultry litter, heat-treated poultry pellets, or chemical fertilizer, and transfer to cucumbers in 2 years (2018 and 2019) were evaluated. Plots were inoculated with E. coli (8.5 log CFU/m2) and planted with cucumber seedlings (Supremo). The number of days needed to reduce E. coli levels by 4 log CFU (dpi4log) was determined using a sigmoidal decline model. Random forest regression and one-way analysis of variance (ANOVA; P < 0.05) identified predictors (soil properties, nutrients, and weather factors) of dpi4log of E. coli and transfer to cucumbers. The combination of year, amendment, and mulch (25.0% increase in the mean square error [IncMSE]) and year (9.75% IncMSE) were the most prominent predictors of dpi4log and transfer to cucumbers, respectively. Nitrate levels at 30 days and soil moisture at 40 days were also impactful predictors of dpi4log. Differing rainfall amounts in 2018 (24.9 in.) and 2019 (12.6 in.) affected E. coli survival in soils and transfer to cucumbers. Salmonella spp. were recovered sporadically from various plots but were not recovered from cucumbers in either year. Greater transfer of E. coli to cucumbers was also shown to be partially dependent on dpi4log of E. coli in plots containing BSAAO.IMPORTANCE Poultry litter and other biological soil amendments are commonly used fertilizers in fruit and vegetable production and can introduce enteric pathogens such as Escherichia coli O157:H7 or Salmonella previously associated with outbreaks of illness linked to contaminated produce. E. coli survival duration in soils covered with plastic mulch or uncovered and containing poultry litter or heat-treated poultry litter pellets were evaluated. Nitrate levels on day 30 and moisture content in soils on day 40 on specific days were good predictors of E. coli survival in soils; however, the combination of year, amendment, and mulch type was a better predictor. Different cumulative rainfall totals from year to year most likely affected the transfer of E. coli from soils to cucumbers and survival durations in soil. E. coli survival in soils can be extended by the addition of several poultry litter-based soil amendments commonly used in organic production of fruits and vegetables and is highly dependent on temporal variation in rainfall.
Collapse
|
28
|
Stocker MD, Hill RL, Pachepsky YA. Modeling the kinetics of manure-borne fecal indicator removal in runoff. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1633-1643. [PMID: 33200447 DOI: 10.1002/jeq2.20164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Several manure-borne microorganism removal models have been developed to provide accurate estimations of the number of microorganisms removed from manure or manured soils undergoing rainfall. It has been commonly assumed that these models perform equally well when used to simulate microbe removal in runoff from manures of different consistency and levels of weathering. The objectives of this work were (a) to observe kinetics of the removal of Escherichia coli and enterococci with runoff for two different manure consistencies and three manure weathering durations, and (b) to compare performance of the log-linear, Vadas-Kleinman-Sharpley, and Bradford-Shijven models in simulation of the observed kinetics. Liquid and solid dairy manure were applied to grassed soil boxes that received simulated rainfall immediately after application and subsequently at 1 and 2 wk. Runoff samples were collected for 1 h at increasing time intervals during each event. Only the effective rainfall depth at the start of runoff was significantly affected by manure consistency (p = .033), whereas other parameters were not (p > .05). Substantial differences in microorganism removal kinetics during the initial, 1-, and 2-wk rainfall events were manifested by the significant (p < .05) effect of the degree of manure weathering in about 70% of cases. The log-linear model produced the largest fitting error especially during the initial rainfall event. The Vadas-Kleinman-Sharpley model and the Bradford-Schijven model were comparable in accuracy for all events. The latter model was slightly more accurate, and the former model had better expressed dependencies of parameter values on manure weathering. Ignoring manure weathering may lead to incorrect parameterization of manure removal models.
Collapse
Affiliation(s)
- M D Stocker
- USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA
- Dep. of Environmental Science and Technology, Univ. of Maryland, College Park, MD, USA
| | - R L Hill
- Dep. of Environmental Science and Technology, Univ. of Maryland, College Park, MD, USA
| | - Y A Pachepsky
- USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA
| |
Collapse
|
29
|
Triggiano F, Calia C, Diella G, Montagna MT, De Giglio O, Caggiano G. The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010-2019). Microorganisms 2020; 8:E1567. [PMID: 33053645 PMCID: PMC7600224 DOI: 10.3390/microorganisms8101567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Scientific studies show that urban wastewater treatment plants (UWWTP) are among the main sources of release of antibiotics, antibiotic resistance genes (ARG) and antibiotic-resistant bacteria (ARB) into the environment, representing a risk to human health. This review summarizes selected publications from 1 January 2010 to 31 December 2019, with particular attention to the presence and treatment of ARG and ARB in UWWTPs in Italy. Following a brief introduction, the review is divided into three sections: (i) phenotypic assessment (ARB) and (ii) genotypic assessment (ARG) of resistant microorganisms, and (iii) wastewater treatment processes. Each article was read entirely to extract the year of publication, the geographical area of the UWWTP, the ARB and ARG found, and the type of disinfection treatment used. Among the ARB, we focused on the antibiotic resistance of Escherichia coli, Klebsiella pneumoniae, and Enterococci in UWWTP. The results show that the information presented in the literature to date is not exhaustive; therefore, future scientific studies at the national level are needed to better understand the spread of ARB and ARG, and also to develop new treatment methods to reduce this spread.
Collapse
Affiliation(s)
| | | | | | | | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (C.C.); (G.D.); (M.T.M.); (G.C.)
| | | |
Collapse
|
30
|
Esperón F, Albero B, Ugarte-Ruíz M, Domínguez L, Carballo M, Tadeo JL, Del Mar Delgado M, Moreno MÁ, de la Torre A. Assessing the benefits of composting poultry manure in reducing antimicrobial residues, pathogenic bacteria, and antimicrobial resistance genes: a field-scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27738-27749. [PMID: 32399873 DOI: 10.1007/s11356-020-09097-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The poultry industry in the European Union produces 13 million tons of manure annually, which represents a major health and environmental challenge. Composting is an environmental-friendly technique for the management of manure, but there are few studies about antibiotic residues and antimicrobial resistances at a field scale. The goal of this study was to determine if the composting of poultry manure at a field scale would result in the reduction of antibiotic residues, pathogenic bacteria, and antibiotic resistance genes (ARGs) in the final fertilizer product. A 10-week composting of poultry manure spiked with enrofloxacin, doxycycline, and ciprofloxacin was performed. The determination of antibiotics residues and 22 selected ARGs was carried out together with the identification of bacteria by metagenomics. In the case of ciprofloxacin and doxycycline, a 90% decrease was observed after composting for 3 weeks. Sixteen ARGs were detected at the beginning of the experiment; 12 of them decreased from week 0 to week 10 (reduction of 73.7-99.99%). The presence of potentially pathogenic bacteria, such as, Campylobacter coli or commensal bacteria such as Escherichia coli decreases along the composting process. In conclusion, 10-week composting of poultry manure promotes the reduction of antibiotic residues and most of the ARGs and pathogenic bacteria.
Collapse
Affiliation(s)
- Fernando Esperón
- Animal Health Research Center (INIA-CISA), Ctra Algete a El Casar s/n, 28130, Valdeolmos, Madrid, Spain.
| | - Beatriz Albero
- Department of Environment and Agronomy (INIA), Ctra La Coruña Km. 7.5, 28040, Madrid, Spain
| | - María Ugarte-Ruíz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Avda. Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Avda. Puerta de Hierro, s/n, 28040, Madrid, Spain
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Ada. Puerta de Hierro, s/n, Madrid, Spain
| | - Matilde Carballo
- Animal Health Research Center (INIA-CISA), Ctra Algete a El Casar s/n, 28130, Valdeolmos, Madrid, Spain
| | - José Luis Tadeo
- Department of Environment and Agronomy (INIA), Ctra La Coruña Km. 7.5, 28040, Madrid, Spain
| | - María Del Mar Delgado
- Department of Environment and Agronomy (INIA), Ctra La Coruña Km. 7.5, 28040, Madrid, Spain
| | - Miguel Ángel Moreno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Avda. Puerta de Hierro, s/n, 28040, Madrid, Spain
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Ada. Puerta de Hierro, s/n, Madrid, Spain
| | - Ana de la Torre
- Animal Health Research Center (INIA-CISA), Ctra Algete a El Casar s/n, 28130, Valdeolmos, Madrid, Spain
| |
Collapse
|
31
|
Baker CA, Lee S, De J, Jeong KC, Schneider KR. Survival of Escherichia coli O157 in autoclaved and natural sandy soil mesocosms. PLoS One 2020; 15:e0234562. [PMID: 32525952 PMCID: PMC7289397 DOI: 10.1371/journal.pone.0234562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/28/2020] [Indexed: 01/14/2023] Open
Abstract
While the soil microbiome may influence pathogen survival, determining the major contributors that reduce pathogen survival is inconclusive. This research was performed to determine the survival of E. coli O157 in autoclaved and natural (unautoclaved) sandy soils. Soils were inoculated with three different E. coli O157 strains (stx1+/stx2+, stx1-/stx2-, and stx1-/stx2+), and enumerated until extinction at 30°C. There was a significant difference in the survival of E. coli O157 based on soil treatment (autoclaved versus natural) at 30°C on days 1 (P = 0.00022), 3, (P = 2.53e-14), 7 (P = 5.59e-16), 14 (P = 1.072e-12), 30 (P = 7.18e-9), and 56 (P = 0.00029), with greater survival in autoclaved soils. The time to extinction (two consecutive negative enrichments) for all three strains was 169 and 84 days for autoclaved and natural soils, respectively. A separate E. coli O157 trial supplemented with 16S rRNA gene sequencing of the soil microbiome was performed at 15°C and 30°C on days 0, 7, 14, and 28 for each soil treatment. Greater species richness (Chao1, P = 2.2e-16) and diversity (Shannon, P = 2.2e-16) was observed in natural soils in comparison with autoclaved soils. Weighted UniFrac (beta-diversity) showed a clear distinction between soil treatments (P = 0.001). The greatest reduction of E. coli O157 was observed in natural soils at 30°C, and several bacterial taxa positively correlated (relative abundance) with time (day 0 to 28) in these soils (P < 0.05), suggesting that the presence of those bacteria might cause the reduction of E. coli O157. Taken together, a clear distinction in E. coli O157 survival, was observed between autoclaved and natural soils along with corresponding differences in microbial diversity in soil treatments. This research provides further insights into the bacterial taxa that may influence E. coli O157 in soils.
Collapse
Affiliation(s)
- Christopher A. Baker
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
| | - Shinyoung Lee
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
| | - Jaysankar De
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
| | - Kwangcheol C. Jeong
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
32
|
Teichmann J, Litt PK, Sharma M, Nyarko E, Kniel KE. Influence of Poultry Litter Amendment Type and Irrigation Events on Survival and Persistence of Salmonella Newport. J Food Prot 2020; 83:821-828. [PMID: 32318725 DOI: 10.4315/0362-028x.jfp-19-431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/17/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella enterica subsp. enterica serovar Newport is a bacterial foodborne pathogen isolated from several environmental reservoirs on the Delmarva Peninsula and has been associated with several produce-related outbreaks. However, little is known about specific interactions between Salmonella Newport and soil amendments used as fertilizers. The purpose of this study was to determine Salmonella Newport persistence and resuscitation in raw poultry litter (PLR), a common biological soil amendment, and in soils containing poultry litter-based (heat-treated poultry pellets [HTPP]) or chemical fertilizer (urea [U]) amendments to provide equivalent levels of nitrogen to the soil. Inoculated samples were stored in a growth chamber and irrigated regularly over 4 weeks. Soil samples were collected every week for 4 weeks to determine moisture content and surviving Salmonella Newport populations (log CFU per gram dry weight). Data were analyzed by using a one-way analysis of variance and Student's t test. The PLR supported significantly higher (5.07 log CFU/g dry weight [gdw]) populations of Salmonella Newport than HTPP only (1.70 log CFU/gdw). However, PLR-amended (PRLA) soil (2.5 log CFU/gdw) samples had significantly (P < 0.05) lower Salmonella Newport populations compared with HTPP-amended (4.5 log CFU/gdw) and U-amended (4.0 log CFU/gdw) soil samples. The effect of irrigation on Salmonella Newport population levels in PRLA soils was significant, and in a comparative study, the overall increase in the pathogen levels in U-amended soil (mean = 1.12 log CFU/gdw) was significantly greater than that in PLRA soil (mean = 0.54 log CFU/gdw), whereas that in HTPP-amended soil (0.80 log CFU/gdw) was not significantly different from PLRA soil. HIGHLIGHTS
Collapse
Affiliation(s)
- June Teichmann
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716 (ORCID: https://orcid.org/0000-0002-2673-0728 [P.K.L.]); and
| | - Pushpinder Kaur Litt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716 (ORCID: https://orcid.org/0000-0002-2673-0728 [P.K.L.]); and
| | - Manan Sharma
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Building 201, Room 103, Beltsville, Maryland 20705, USA (ORCID: https://orcid.org/0000-0002-8585-0308 [M.S.])
| | - Esmond Nyarko
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716 (ORCID: https://orcid.org/0000-0002-2673-0728 [P.K.L.]); and
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716 (ORCID: https://orcid.org/0000-0002-2673-0728 [P.K.L.]); and
| |
Collapse
|
33
|
Zhang M, He LY, Liu YS, Zhao JL, Zhang JN, Chen J, Zhang QQ, Ying GG. Variation of antibiotic resistome during commercial livestock manure composting. ENVIRONMENT INTERNATIONAL 2020; 136:105458. [PMID: 31926439 DOI: 10.1016/j.envint.2020.105458] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 05/05/2023]
Abstract
Composting has been widely used to turn livestock manure into organic fertilizer. However, livestock manure contains various contaminants including antibiotics and antibiotic resistance genes (ARGs). Here we investigated the variation of antibiotic resistome and its influencing factors during a commercial livestock manure composting. The results showed that composting could effectively reduce the relative abundance of ARGs and mobile genic elements (MGEs). As the dominant phylum in the composting samples, the key potential bacterial host of ARGs were Actinobacteria such as Leucobacter, Mycobacterium and Thermomonosporaceae unclassified. Meanwhile, Legionella pneumophila, Staphylococcus saprophyticus, Haemophilus ducreyi and Siccibacter turicensis may be the key potential pathogenic host of ARGs because of their co-occurrence with ARG subtypes. Redundancy analysis showed that the dissipation of ARGs during composting was linked to various environmental factors such as moisture. Bacterial succession as well as profile of biocide and metal resistance genes (BMRGs) were the determinants which constructed the antibiotic resistome during manure composting. However, the residues of ARGs and pathogens in compost products may still pose risks to human and crops after fertilization.
Collapse
Affiliation(s)
- Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
34
|
Bougnom BP, Thiele-Bruhn S, Ricci V, Zongo C, Piddock LJV. Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding extended spectrum β-lactamases (ESBLs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134201. [PMID: 31505362 DOI: 10.1016/j.scitotenv.2019.134201] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
A study was conducted to investigate the impact of raw wastewater use for irrigation on dissemination of bacterial resistance in urban agriculture in African cities. The pollution of agricultural fields by selected antibiotic residues was assessed. The structure and functions of the soil microbial communities, presence of antibiotic resistance genes of human clinical importance and Enterobacteriaceae plasmid replicons were analysed using high throughput metagenomic sequencing. In irrigated fields, the richness of Bacteroidetes and Firmicutes phyla increased by 65% and 15.7%, respectively; functions allocated to microbial communities' adaptation and development increased by 3%. Abundance of antibiotic resistance genes of medical interest was 27% greater in irrigated fields. Extended spectrum β-lactamase genes identified in irrigated fields included blaCARB-3, blaOXA-347, blaOXA-5 and blaRm3. The presence of ARGs encoding resistance to amphenicols, β-lactams, and tetracyclines were associated with the higher concentrations of ciprofloxacin, enrofloxacin and sulfamethoxazole in irrigated fields. Ten Enterobacteriaceae plasmid amplicon groups involved in the wide distribution of ARGs were identified in the fields. IncQ2, ColE, IncFIC, IncQ1, and IncFII were found in both farming systems; IncW and IncP1 in irrigated fields; and IncY, IncFIB and IncFIA in non-irrigated fields. In conclusion, raw wastewater irrigated soils in African cities could represent a vector for the spread of antibiotic resistance, thus threatening human and animal health. Consumers of products from these farms and farmers could be at risk of acquiring infections due to drug-resistant bacteria.
Collapse
Affiliation(s)
- B P Bougnom
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK; Department of Microbiology, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - S Thiele-Bruhn
- Department of Soil Science, University of Trier, D-54286 Trier, Germany
| | - V Ricci
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK
| | - C Zongo
- Department of Biochemistry and Microbiology, University Ouaga, I Pr Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - L J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
35
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
36
|
Ramos TM, Jay-Russell MT, Millner PD, Shade J, Misiewicz T, Sorge US, Hutchinson M, Lilley J, Pires AFA. Assessment of Biological Soil Amendments of Animal Origin Use, Research Needs, and Extension Opportunities in Organic Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Sekizuka T, Inamine Y, Segawa T, Hashino M, Yatsu K, Kuroda M. Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:589-597. [PMID: 31106978 PMCID: PMC6851574 DOI: 10.1111/1758-2229.12772] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Aeromonas hydrophila and Aeromonas caviae adapt to saline water environments and are the most predominant Aeromonas species isolated from estuaries. Here, we isolated antimicrobial-resistant (AMR) Aeromonas strains (A. hydrophila GSH8-2 and A. caviae GSH8M-1) carrying the carabapenemase blaKPC-2 gene from a wastewater treatment plant (WWTP) effluent in Tokyo Bay (Japan) and determined their complete genome sequences. GSH8-2 and GSH8M-1 were classified as newly assigned sequence types ST558 and ST13, suggesting no supportive evidence of clonal dissemination. The strains appear to have acquired blaKPC-2 -positive IncP-6-relative plasmids (pGSH8-2 and pGSH8M-1-2) that share a common backbone with plasmids in Aeromonas sp. ASNIH3 isolated from hospital wastewater in the United States, A. hydrophila WCHAH045096 isolated from sewage in China, other clinical isolates (Klebsiella, Enterobacter and Escherichia coli), and wastewater isolates (Citrobacter, Pseudomonas and other Aeromonas spp.). In addition to blaKPC-2 , pGSH8M-1-2 carries an IS26-mediated composite transposon including a macrolide resistance gene, mph(A). Although Aeromonas species are opportunistic pathogens, they could serve as potential environmental reservoir bacteria for carbapenemase and AMR genes. AMR monitoring from WWTP effluents will contribute to the detection of ongoing AMR dissemination in the environment and might provide an early warning of potential dissemination in clinical settings and communities.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics CenterNational Institute of Infectious Diseases1‐23‐1 Toyama, ShinjukuTokyo162‐8640Japan
| | - Yuba Inamine
- Pathogen Genomics CenterNational Institute of Infectious Diseases1‐23‐1 Toyama, ShinjukuTokyo162‐8640Japan
| | - Takaya Segawa
- Pathogen Genomics CenterNational Institute of Infectious Diseases1‐23‐1 Toyama, ShinjukuTokyo162‐8640Japan
| | - Masanori Hashino
- Pathogen Genomics CenterNational Institute of Infectious Diseases1‐23‐1 Toyama, ShinjukuTokyo162‐8640Japan
| | - Koji Yatsu
- Pathogen Genomics CenterNational Institute of Infectious Diseases1‐23‐1 Toyama, ShinjukuTokyo162‐8640Japan
| | - Makoto Kuroda
- Pathogen Genomics CenterNational Institute of Infectious Diseases1‐23‐1 Toyama, ShinjukuTokyo162‐8640Japan
| |
Collapse
|
38
|
Chen C, Pankow CA, Oh M, Heath LS, Zhang L, Du P, Xia K, Pruden A. Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments. ENVIRONMENT INTERNATIONAL 2019; 128:233-243. [PMID: 31059918 DOI: 10.1016/j.envint.2019.04.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 05/12/2023]
Abstract
Manure-derived amendments are commonly applied to soil, raising questions about whether antibiotic use in livestock could influence the soil resistome (collective antibiotic resistance genes (ARGs)) and ultimately contribute to the spread of antibiotic resistance to humans during food production. Here, we examined the metagenomes of soils amended with raw or composted manure generated from dairy cows administered pirlimycin and cephapirin (antibiotic) or no antibiotics (control) relative to unamended soils. Initial amendment (Day 1) with manure or compost significantly increased the diversity (richness) of ARGs in soils (p < 0.01) and resulted in distinct abundances of individual ARG types. Notably, initial amendment with antibiotic-manure significantly increased the total ARG relative abundances (per 16S rRNA gene) in the soils (2.21 × unamended soils, p < 0.001). After incubating 120 days, to simulate a wait period before crop harvest, 282 ARGs reduced 4.33-fold (median) up to 307-fold while 210 ARGs increased 2.89-fold (median) up to 76-fold in the antibiotic-manure-amended soils, resulting in reduced total ARG relative abundances equivalent to those of the unamended soils. We further assembled the metagenomic data and calculated resistome risk scores, which was recently defined as a relative index comparing co-occurrence of sequences corresponding to ARGs, mobile genetic elements, and putative pathogens on the same scaffold. Initial amendment of manure significantly increased the soil resistome risk scores, especially when generated by cows administered antibiotics, while composting reduced the effects and resulted in soil resistomes more similar to the background. The risk scores of manure-amended soils reduced to levels comparable to the unamended soils after 120 days. Overall, this study provides an integrated, high-resolution examination of the effects of prior antibiotic use, composting, and a 120-day wait period on soil resistomes following manure-derived amendment, demonstrating that all three management practices have measurable effects and should be taken into consideration in the development of policy and practice for mitigating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Chaoqi Chen
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Christine A Pankow
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Min Oh
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Pang Du
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
39
|
Baker CA, De J, Bertoldi B, Dunn L, Chapin T, Jay-Russell M, Danyluk MD, Schneider KR. Prevalence and concentration of stx+ E. coli and E. coli O157 in bovine manure from Florida farms. PLoS One 2019; 14:e0217445. [PMID: 31125367 PMCID: PMC6534375 DOI: 10.1371/journal.pone.0217445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 12/25/2022] Open
Abstract
Fresh produce outbreaks due to Shiga toxin-producing Escherichia coli (STEC) continue to occur in the United States (US). Manure-amended soils can pose a public health risk when used for growing raw agricultural commodities. Knowing the prevalence and concentration of STEC in untreated biological soil amendments of animal origin (BSAAO) is important to help guide the most appropriate pre-harvest interval(s) following application to limit risks from these soil amendments. Bovine manure samples were collected from 12 farms in Florida, including samples from piles, lagoons, barns, and screened solids. Two methods were used to detect stx1/2 and rfbE genes in samples. A prevalence rate of 9% for stx1 and/or stx2 and 19% for rfbE was observed from the 518 bovine manure samples evaluated. A most probable number (MPN) assay was performed on stx+ samples when applicable. The geometric mean for stx+ samples (n = 20) was 3.37 MPN g-1 (0.53 log MPN g-1) with a maximum value of 6,800 MPN g-1 (3.83 log MPN g-1). This research was part of a larger nationwide geographical study on the prevalence and concentration of STEC in bovine manure to help guide regulations on feasible pre-harvest intervals for the application of untreated BSAAO.
Collapse
Affiliation(s)
- Christopher A. Baker
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
| | - Jaysankar De
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
| | - Bruna Bertoldi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
| | - Laurel Dunn
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Travis Chapin
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Michele Jay-Russell
- Western Center for Food Safety, University of California, Davis, California, United States of America
| | - Michelle D. Danyluk
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
40
|
Haymaker J, Sharma M, Parveen S, Hashem F, May EB, Handy ET, White C, East C, Bradshaw R, Micallef SA, Callahan MT, Allard S, Anderson B, Craighead S, Gartley S, Vanore A, Kniel KE, Solaiman S, Bui A, Murray R, Craddock HA, Kulkarni P, Foust D, Duncan R, Taabodi M, Sapkota AR. Prevalence of Shiga-toxigenic and atypical enteropathogenic Escherichia coli in untreated surface water and reclaimed water in the Mid-Atlantic U.S. ENVIRONMENTAL RESEARCH 2019; 172:630-636. [PMID: 30878734 DOI: 10.1016/j.envres.2019.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
The microbial quality of irrigation water has increasingly become a concern as a source of contamination for fruits and vegetables. Non-traditional sources of water are being used by more and more growers in smaller, highly diversified farms in the Mid-Atlantic region of the U.S. Shiga-toxigenic E. coli (STEC) have been responsible for several outbreaks of infections associated with the consumption of leafy greens. Our study evaluated the prevalence of the "big seven" STEC serogroups and the associated enterohemorrhagic E. coli (EHEC) virulence factors (VF) genes in conventional and nontraditional irrigation waters in the Mid-Atlantic region of the U.S. Water samples (n = 510) from 170 sampling events were collected from eight untreated surface water sites, two wastewater reclamation facilities, and one vegetable processing plant, over a 12-month period. Ten liters of water were filtered through Modified Moore swabs (MMS); swabs were then enriched into Universal Pre-enrichment Broth (UPB), followed by enrichment into non-O157 STEC R&F broth and isolation on R & F non-O157 STEC chromogenic plating medium. Isolates (n = 2489) from enriched MMS from water samples were screened for frequently reported STEC serogroups that cause foodborne illness: O26, O45, O103, O111, O121, O145, and O157, along with VF genes stx1, stx2, eae, and ehxA. Through this screening process, STEC isolates were found in 2.35% (12/510) of water samples, while 9.0% (46/510) contained an atypical enteropathogenic E. coli (aEPEC) isolate. The eae gene (n = 88 isolates) was the most frequently detected EHEC VF of the isolates screened. The majority of STEC isolates (stx1 or stx2) genes mainly came from either a pond or reclamation pond water site on two specific dates, potentially indicating that these isolates were not spatially or temporally distributed among the sampling sites. STEC isolates at reclaimed water sites may have been introduced after wastewater treatment. None of the isolates containing eae were determined to be Escherichia albertii. Our work showed that STEC prevalence in Mid-Atlantic untreated surface waters over a 12-month period was lower than the prevalence of atypical EPEC.
Collapse
Affiliation(s)
- Joseph Haymaker
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Manan Sharma
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States.
| | - Salina Parveen
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Fawzy Hashem
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Eric B May
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Eric T Handy
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States
| | - Chanelle White
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Cheryl East
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States
| | - Rhodel Bradshaw
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Mary Theresa Callahan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Brienna Anderson
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Shani Craighead
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Samantha Gartley
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Adam Vanore
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Kalmia E Kniel
- University of Delaware, Department of Animal and Food Sciences, Newark, DE 19716, United States
| | - Sultana Solaiman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Rianna Murray
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Hillary A Craddock
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Derek Foust
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Rico Duncan
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Maryam Taabodi
- University of Maryland Eastern Shore, Department of Agriculture and Resource Sciences, Princess Anne, MD, United States
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| |
Collapse
|
41
|
Neher DA, Cutler AJ, Weicht TR, Sharma M, Millner PD. Composts of poultry litter or dairy manure differentially affect survival of enteric bacteria in fields with spinach. J Appl Microbiol 2019; 126:1910-1922. [PMID: 30925006 DOI: 10.1111/jam.14268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/01/2019] [Accepted: 03/25/2019] [Indexed: 11/26/2022]
Abstract
AIMS The aim was to determine the survival and persistence of Escherichia coli in soil amended with compost from different manure sources. METHOD AND RESULTS Complex interactions of abiotic and biotic factors on E. coli survival were characterized in field experiment plots receiving randomly assigned compost treatments: dairy windrow, dairy vermicompost, poultry windrow or no compost. Biomass, activity and function of indigenous microbial communities in the composts and soils were measured concurrently to determine whether mechanisms of compost were driven by biotic or abiotic properties. E. coli persisted in compost containing poultry amendments but not in composts containing dairy or no amendments. Poultry compost contained more NH4 -N and a distinct microbial community compared to dairy and no compost treatments. A laboratory experiment performed on compost extracts suggested that E. coli survived better in extracts devoid of indigenous microbes as long as bioavailable nutrients were plentiful. CONCLUSIONS Dairy-based composts are less likely to support E. coli survival than poultry-based composts. SIGNIFICANCE AND IMPACT OF THE STUDY Results aid in risk assessment of the use of different types of manure-based compost and soil amendments in fruit and vegetable production by elucidating the roles of nutrient and microbial community composition on survival of E. coli in amended field soils.
Collapse
Affiliation(s)
- D A Neher
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - A J Cutler
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - T R Weicht
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - M Sharma
- Environmental Microbial and Food Safety Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Beltsville, MD, USA
| | - P D Millner
- Environmental Microbial and Food Safety Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Beltsville, MD, USA
| |
Collapse
|
42
|
Shah MK, Bradshaw R, Nyarko E, Millner PD, Neher D, Weicht T, Bergholz TM, Sharma M. Survival and Growth of Wild-Type and rpoS-Deficient Salmonella Newport Strains in Soil Extracts Prepared with Heat-Treated Poultry Pellets. J Food Prot 2019; 82:501-506. [PMID: 30810379 DOI: 10.4315/0362-028x.jfp-18-465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Manure runoff can transfer pathogens to farmlands or to water sources, leading to subsequent contamination of produce. Untreated biological soil amendments, like manure, can be contaminated with foodborne pathogens, such as Salmonella Newport, which may lead to transfer of the pathogen to fruits or vegetables. Studies have reported the occurrence and survival of Salmonella in manure or manure slurries. However, data on the survival and growth of Salmonella Newport is lacking in matrices simulating runoff. We quantified the survival and growth of wild-type (WT) Salmonella Newport and rpoS-deficient (Δ rpoS) strains in sterile and nonsterile soil extracts prepared with (amended) or without (unamended) heat-treated poultry pellets at 25°C. Salmonella Newport WT and Δ rpoS populations reached a maximum cell density of 6 to 8 log CFU/mL in 24 to 30 h in amended and unamended soil extracts and remained in stationary phase for up to 4 days. Salmonella Newport in amended soil extracts exhibited a decreased lag phase (λ , 2.87 ± 1.01 h) and greater maximum cell densities ( Nmax, 6.84 ± 1.25 CFU/mL) compared with λ (20.10 ± 9.53 h) and Nmax (5.22 ± 0.82 CFU/mL) in unamended soil extracts. In amended soil extract, the Δ rpoS strain had no measurable λ , similar growth rates (μmax) compared with WT, and a lower Nmax compared with the WT strain. Unamended, nonsterile soil extracts did not support the growth of Salmonella Newport WT and led to a decline in populations for the Δ rpoS strain. Salmonella Newport had lower cell densities in nonsterile soil extracts (5.94 ± 0.95 CFU/mL) than it did in sterile soil extracts (6.66 ± 1.50 CFU/mL), potentially indicating competition for nutrients between indigenous microbes and Salmonella Newport. The most favorable growth conditions were provided by amended sterile and nonsterile soil extracts, followed by sterile, unamended soil extracts for both Salmonella Newport strains. Salmonella Newport may grow to greater densities in amended extracts, providing a route for increased Salmonella levels in the growing environments of produce.
Collapse
Affiliation(s)
- Manoj K Shah
- 1 Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota 48102
| | - Rhodel Bradshaw
- 2 U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial Food Safety Laboratory, Beltsville, Maryland 20705 (ORCID: http://orcid.org/000-0002-8585-0308 [M.S.])
| | - Esmond Nyarko
- 2 U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial Food Safety Laboratory, Beltsville, Maryland 20705 (ORCID: http://orcid.org/000-0002-8585-0308 [M.S.])
| | - Patricia D Millner
- 2 U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial Food Safety Laboratory, Beltsville, Maryland 20705 (ORCID: http://orcid.org/000-0002-8585-0308 [M.S.])
| | - Deborah Neher
- 3 Department of Plant and Soil Science, University of Vermont, Burlington, Vermont 05405, USA
| | - Thomas Weicht
- 3 Department of Plant and Soil Science, University of Vermont, Burlington, Vermont 05405, USA
| | - Teresa M Bergholz
- 1 Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota 48102
| | - Manan Sharma
- 2 U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial Food Safety Laboratory, Beltsville, Maryland 20705 (ORCID: http://orcid.org/000-0002-8585-0308 [M.S.])
| |
Collapse
|
43
|
Survival of Escherichia coli in Manure-Amended Soils Is Affected by Spatiotemporal, Agricultural, and Weather Factors in the Mid-Atlantic United States. Appl Environ Microbiol 2019; 85:AEM.02392-18. [PMID: 30552193 DOI: 10.1128/aem.02392-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
Untreated biological soil amendments of animal origin (BSAAO), such as manure, are commonly used to fertilize soils for growing fruit and vegetable crops and can contain enteric bacterial foodborne pathogens. Little is known about the comparative longitudinal survival of pathogens in agricultural fields containing different types of BSAAO, and field data may be useful to determine intervals between manure application and harvest of produce intended for human consumption to minimize foodborne illness. This study generated 324 survival profiles from 12 different field trials at three different sites (UMES, PA, and BARC) in the Mid-Atlantic United States from 2011 to 2015 of inoculated nonpathogenic Escherichia coli (gEc) and attenuated O157 E. coli (attO157) in soils which were unamended (UN) or amended with untreated poultry litter (PL), horse manure (HM), or dairy manure solids (DMS) or liquids (DML). Site, season, inoculum level (low/high), amendment type, management (organic/conventional), and depth (surface/tilled) all significantly (P < 0.0001) influenced survival duration (dpi100mort). Spatiotemporal factors (site, year, and season) in which the field trial was conducted influenced survival durations of gEc and attO157 to a greater extent than weather effects (average daily temperature and rainfall). Initial soil moisture content was the individual factor that accounted for the greatest percentage of variability in survival duration. PL supported greater survival durations of gEc and attO157, followed by HM, UN, and DMS in amended soils. The majority of survival profiles for gEc and attO157 which survived for more than 90 days came from a specific year (i.e., 2013). The effect of management and depth on dpi100mort were dependent on the amendment type evaluated.IMPORTANCE Current language in the Food Safety Modernization Act Produce Safety Rule states no objection to a 90- or 120-day interval between application of untreated BSAAO and harvest of crops to minimize transfer of pathogens to produce intended for human consumption with the intent to limit potential cases of foodborne illness. This regional multiple season, multiple location field trial determined survival durations of Escherichia coli in soils amended with manure to determine whether this interval is appropriate. Spatiotemporal factors influence survival durations of E. coli more than amendment type, total amount of E. coli present, organic or conventional soil management, and depth of manure application. Overall, these data show poultry litter may support extended survival of E. coli compared to horse manure or dairy manure, but spatiotemporal factors like site and season may have more influence than manure type in supporting survival of E. coli beyond 90 days in amended soils in the Mid-Atlantic United States.
Collapse
|
44
|
Antibiotic resistance in grass and soil. Biochem Soc Trans 2019; 47:477-486. [DOI: 10.1042/bst20180552] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/25/2022]
Abstract
Abstract
Antibiotic resistance is currently one of the greatest threats to human health. The global overuse of antibiotics in human medicine and in agriculture has resulted in the proliferation and dissemination of a multitude of antibiotic resistance genes (ARGs). Despite a large proportion of antibiotics being used in agriculture, little is understood about how this may contribute to the overall antibiotic resistance crisis. The use of manure in agriculture is a traditional and widespread practice and is essential for returning nutrients to the soil; however, the impact of continuous manure application on the environmental microbiome and resistome is unknown. The use of antibiotics in animal husbandry in therapeutic and sub-therapeutic doses creates a selective pressure for ARGs in the gut microbiome of the animal, which is then excreted in the faeces. Therefore, the application of manure to agricultural land is a potential route for the transmission of antibiotic-resistant bacteria from livestock to crops, animals and humans. It is of vital importance to understand the mechanisms behind ARG enrichment and its maintenance both on the plant and within the soil microbiome to mitigate the spread of this resistance to animals and humans. Understanding this link between human health, animal health, plant health and the environment is crucial to inform implementation of new regulations and practice regarding antibiotic use in agriculture and manure application, aimed at ensuring the antibiotic resistance crisis is not aggravated.
Collapse
|
45
|
Sekizuka T, Yatsu K, Inamine Y, Segawa T, Nishio M, Kishi N, Kuroda M. Complete Genome Sequence of a blaKPC-2-Positive Klebsiella pneumoniae Strain Isolated from the Effluent of an Urban Sewage Treatment Plant in Japan. mSphere 2018; 3:e00314-18. [PMID: 30232165 PMCID: PMC6147131 DOI: 10.1128/msphere.00314-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance genes (ARGs) and the bacteria that harbor them are widely distributed in the environment, especially in surface water, sewage treatment plant effluent, soil, and animal waste. In this study, we isolated a KPC-2-producing Klebsiella pneumoniae strain (GSU10-3) from a sampling site in Tokyo Bay, Japan, near a wastewater treatment plant (WWTP) and determined its complete genome sequence. Strain GSU10-3 is resistant to most β-lactam antibiotics and other antimicrobial agents (quinolones and aminoglycosides). This strain is classified as sequence type 11 (ST11), and a core genome phylogenetic analysis indicated that strain GSU10-3 is closely related to KPC-2-positive Chinese clinical isolates from 2011 to 2017 and is clearly distinct from strains isolated from the European Union (EU), United States, and other Asian countries. Strain GSU10-3 harbors four plasmids, including a blaKPC-2-positive plasmid, pGSU10-3-3 (66.2 kb), which is smaller than other blaKPC-2-positive plasmids and notably carries dual replicons (IncFII [pHN7A8] and IncN). Such downsizing and the presence of dual replicons may promote its maintenance and stable replication, contributing to its broad host range with low fitness costs. A second plasmid, pGSU10-3-1 (159.0 kb), an IncA/C2 replicon, carries a class 1 integron (containing intI1, dfrA12, aadA2, qacEΔ1, and sul1) with a high degree of similarity to a broad-host-range plasmid present in the family Enterobacteriaceae The plasmid pGSU10-3-2 (134.8 kb), an IncFII(K) replicon, carries the IS26-mediated ARGs [aac(6')Ib-cr,blaOXA-1, catB4 (truncated), and aac(3)-IId], tet(A), and a copper/arsenate resistance locus. GSU10-3 is the first nonclinical KPC-2-producing environmental Enterobacteriaceae isolate from Japan for which the whole genome has been sequenced.IMPORTANCE We isolated and determined the complete genome sequence of a KPC-2-producing K. pneumoniae strain from a sampling site in Tokyo Bay, Japan, near a wastewater treatment plant (WWTP). In Japan, the KPC type has been very rarely detected, while IMP is the most predominant type of carbapenemase in clinical carbapenemase-producing Enterobacteriaceae (CPE) isolates. Although laboratory testing thus far suggested that Japan may be virtually free of KPC-producing Enterobacteriaceae, we have detected it from effluent from a WWTP. Antimicrobial resistance (AMR) monitoring of WWTP effluent may contribute to the early detection of future AMR bacterial dissemination in clinical settings and communities; indeed, it will help illuminate the whole picture in which environmental contamination through WWTP effluent plays a part.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| | - Koji Yatsu
- Pathogen Genomics Center, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| | - Yuba Inamine
- Pathogen Genomics Center, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| | - Takaya Segawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| | - Miho Nishio
- Pathogen Genomics Center, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| | - Norimi Kishi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| |
Collapse
|
46
|
Wang D, Huber A, Dunfield K, Murray K, Wu F, Warriner K. Comparative persistence of Salmonella and Escherichia coli O157:H7 in loam or sandy loam soil amended with bovine or swine manure. Can J Microbiol 2018; 64:979-991. [PMID: 30148968 DOI: 10.1139/cjm-2018-0234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fate of Salmonella and Escherichia coli O157:H7 in swine or dairy manure amended into sandy loam or loam soil under field conditions was studied. Soil was amended with manure inoculated with a Salmonella or E. coli O157:H7 cocktail, then transferred to 0.22 μm pore size membrane walled vials. The vials were then placed on the surface or at 15 cm depth in the test plots. Pathogen numbers, soil moisture, rainfall, and temperature were measured throughout the three trials (20-47 weeks duration) representing spring or fall application. Survival curves were characterized by having an initial rapid decline in pathogen numbers followed by a slower inactivation phase with an occasional increase in culturable cells. The CT99.9 values (time to reach a 3 log CFU reduction) varied from 2 to 120 days, with the most rapid decrease being observed on the surface of sandy loam soil. The persistence of pathogens is primarily governed by variations in moisture and temperature, although season of application along with manure and soil type also contribute. To generate more accurate predictive pathogen models, there is a need for laboratory-based trials to mirror the dynamic variation in temperature and soil moisture encountered within the natural environment.
Collapse
Affiliation(s)
- D Wang
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A Huber
- b Soil Research Group, Guelph, ON N1H 2Y5, Canada
| | - K Dunfield
- c School of Environmental Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - K Murray
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F Wu
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - K Warriner
- a Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
47
|
Alegbeleye OO, Singleton I, Sant'Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol 2018; 73:177-208. [PMID: 29526204 PMCID: PMC7127387 DOI: 10.1016/j.fm.2018.01.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022]
Abstract
Foodborne illness resulting from the consumption of contaminated fresh produce is a common phenomenon and has severe effects on human health together with severe economic and social impacts. The implications of foodborne diseases associated with fresh produce have urged research into the numerous ways and mechanisms through which pathogens may gain access to produce, thereby compromising microbiological safety. This review provides a background on the various sources and pathways through which pathogenic bacteria contaminate fresh produce; the survival and proliferation of pathogens on fresh produce while growing and potential methods to reduce microbial contamination before harvest. Some of the established bacterial contamination sources include contaminated manure, irrigation water, soil, livestock/ wildlife, and numerous factors influence the incidence, fate, transport, survival and proliferation of pathogens in the wide variety of sources where they are found. Once pathogenic bacteria have been introduced into the growing environment, they can colonize and persist on fresh produce using a variety of mechanisms. Overall, microbiological hazards are significant; therefore, ways to reduce sources of contamination and a deeper understanding of pathogen survival and growth on fresh produce in the field are required to reduce risk to human health and the associated economic consequences.
Collapse
Affiliation(s)
| | - Ian Singleton
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh, UK
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
48
|
Gikas P, Zhu B, Batistatos NI, Zhang R. Evaluation of the rotary drum reactor process as pretreatment technology of municipal solid waste for thermophilic anaerobic digestion and biogas production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 216:96-104. [PMID: 28838769 DOI: 10.1016/j.jenvman.2017.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Municipal solid waste (MSW) contains a large fraction of biodegradable organic materials. When disposed in landfills, these materials can cause adverse environmental impact due to gaseous emissions and leachate generation. This study was performed with an aim of effectively separating the biodegradable materials from a Mechanical Biological Treatment (MBT) facility and treating them in well-controlled anaerobic digesters for biogas production. The rotary drum reactor (RDR) process (a sub-process of the MBT facilities studied in the present work) was evaluated as an MSW pretreatment technology for separating and preparing the biodegradable materials in MSW to be used as feedstock for anaerobic digestion. The RDR processes used in six commercial MSW treatment plants located in the USA were surveyed and sampled. The samples of the biodegradable materials produced by the RDR process were analyzed for chemical and physical characteristics as well as anaerobically digested in the laboratory using batch reactors under thermophilic conditions. The moisture content, TS, VS and C/N of the samples varied between 64.7 and 44.4%, 55.6 to 35.3%, 27.0 to 41.3% and 24.5 to 42.7, respectively. The biogas yield was measured to be between 533.0 and 675.6 mL g-1VS after 20 days of digestion. Approximately 90% of the biogas was produced during the first 13 days. The average methane content of the biogas was between 58.0 and 59.9%. The results indicated that the biodegradable materials separated from MSW using the RDR processes could be used as an excellent feedstock for anaerobic digestion. The digester residues may be further processed for compost production or further energy recovery by using thermal conversion processes such as combustion or gasification.
Collapse
Affiliation(s)
- Petros Gikas
- Design of Environmental Processes Laboratory, School of Environmental Engineering, Technical University of Crete, Chania, 73100, Greece; Department of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| | - Baoning Zhu
- Department of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nicolas Ion Batistatos
- Design of Environmental Processes Laboratory, School of Environmental Engineering, Technical University of Crete, Chania, 73100, Greece
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
49
|
Wind L, Krometis LA, Hession WC, Chen C, Du P, Jacobs K, Xia K, Pruden A. Fate of Pirlimycin and Antibiotic-Resistant Fecal Coliforms in Field Plots Amended with Dairy Manure or Compost during Vegetable Cultivation. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:436-444. [PMID: 29864178 DOI: 10.2134/jeq2017.12.0491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identification of agricultural practices that mitigate the environmental dissemination of antibiotics is a key need in reducing the prevalence of antibiotic-resistant bacteria of human health concern. Here, we aimed to compare the effects of crop (lettuce [ L.] or radish [ L.]), soil amendment type (inorganic fertilizer, raw dairy manure, composted dairy manure, or no amendment), and prior antibiotic use history (no antibiotics during previous lactation cycles vs. manure mixed from cows administered pirlimycin or cephapirin) of manure-derived amendments on the incidence of culturable antibiotic-resistant fecal coliforms in agricultural soils through a controlled field-plot experiment. Antibiotic-resistant culturable fecal coliforms were recoverable from soils across all treatments immediately after application, although persistence throughout the experiment varied by antibiotic class and time. The magnitude of observed coliform counts differed by soil amendment type. Compost-amended soils had the highest levels of cephalosporin-resistant fecal coliforms, regardless of whether the cows from which the manure was derived were administered antibiotics. Samples from control plots or those treated with inorganic fertilizer trended toward lower counts of resistant coliforms, although these differences were not statistically significant. No statistical differences were observed between soils that grew leafy (lettuce) versus rooted (radish) crops. Only pirlimycin was detectable past amendment application in raw manure-amended soils, dissipating 12 to 25% by Day 28. Consequently, no quantifiable correlations between coliform count and antibiotic magnitude could be identified. This study demonstrates that antibiotic-resistant fecal coliforms can become elevated in soils receiving manure-derived amendments, but that a variety of factors likely contribute to their long-term persistence under typical field conditions.
Collapse
|
50
|
Dynamic changes in free-chlorine levels within a commercial post-harvest wash and prevention of cross-contamination between shredded lettuce batches. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|