1
|
Cao Y, Song L, Zhu Y, Huang R, Zhang D, Christakos G, Wu J. A comparative analysis of the microbial community structure and functional gene profile between healthy and diseased Gracilaria lemaneiformis. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107167. [PMID: 40306044 DOI: 10.1016/j.marenvres.2025.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/31/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025]
Abstract
Marine macroalgae and their associated microbial communities are pivotal in shaping coastal ecosystems and facilitating biogenic elements' biochemical cycles. In this study, we implemented the high-throughput sequencing technology to sequence bacterial 16S rRNA gene to comprehensively analyze the bacterial communities of healthy and diseased macroalgae as well as the surrounding seawaters. The results revealed that Proteobacteria and Bacteroidota were the two main phylum in all samples. Alphaproteobacteria, Gammaproteobacteria and Bacteroidota were the predominant bacterial classes. This observation underscored that the composition of bacterial communities remains comparably consistent at higher taxonomic levels, regardless of variations in their health statuses. The alpha-diversity indices of seawater bacterial communities, epiphytic communities, and endophytic communities showed no significant differences. Epiphytic bacterial communities harbored a greater proportion of colonized bacteria, such as Vibrio and Pseudomonas. While endophytic bacterial communities contained a higher presence of tissue-degrading microbial assemblages, the primary bacterial communities were predominantly affiliated with Rhodobacteraceae and Flavobacteriaceae. Temperature, salinity, nitrate and nitrite concentration were the most significant properties correlated with seawater, epiphytic and endophytic bacterial communities in different health statuses revealed by Canonical correspondence analysis. A PICRUSt analysis demonstrated the metabolic functional prediction. Nitrogen and sulfate reduction genes were mainly concentrated in epiphytic bacterial communities in good health. Endophytic bacterial communities in disease had higher carbon and nitrogen fixation potentials. These results confirmed that bacteria, macroalgae, and environmental properties had an interactive relationship, all related to the momentous ecological benefits of macroalgae.
Collapse
Affiliation(s)
- Yawen Cao
- Donghai Laboratory, Zhoushan, 316021, Zhejiang, China; Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Li Song
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Yaojia Zhu
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| | - Runqiu Huang
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Dongdong Zhang
- Donghai Laboratory, Zhoushan, 316021, Zhejiang, China; Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - George Christakos
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
2
|
Jia R, Wan L, Jin L, Tian Q, Chen Y, Zhu X, Zhang M, Zhang Y, Zong L, Wu X, Miao C, Cai Y, Ma J, Hu L, Liu WT. Fucoidan reduces NET accumulation and alleviates chemotherapy-induced peripheral neuropathy via the gut-blood-DRG axis. J Neuroinflammation 2025; 22:100. [PMID: 40186245 PMCID: PMC11969723 DOI: 10.1186/s12974-025-03431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse reaction to chemotherapy with limited treatment options. Research has indicated that neutrophil extracellular traps (NETs) are critical for the pathogenesis of CIPN. LPS/HMGB1 serve as important inducers of NETs. Here, we aimed to target the inhibition of NET formation (NETosis) to alleviate CIPN. METHODS Oxaliplatin (L-OHP) was used to establish a CIPN model. The mice were pretreated with fucoidan to investigate the therapeutic effect. SR-A1-/- mice were used to examine the role of scavenger receptor A1 (SR-A1) in CIPN. Bone marrow-derived macrophages (BMDMs) isolated from SR-A1-/- mice and WT mice were used to investigate the mechanism by which macrophage phagocytosis of NETs alleviates CIPN. RESULTS Clinically, we found that the contents of LPS, HMGB1 and NETs in the plasma of CIPN patients were significantly increased and positively correlated with the VAS score. Fucoidan decreased the LPS/HMGB1/NET contents and relieved CIPN in mice. Mechanistically, fucoidan upregulated SR-A1 expression and promoted the phagocytosis of LPS/HMGB1 by BMDMs. Fucoidan also facilitated the engulfment of NETs by BMDMs via the recognition and localization of SR-A1 and HMGB1. The therapeutic effects of fucoidan were abolished by SR-A1 knockout. RNA-seq analysis revealed that fucoidan increased sqstm1 (p62) gene expression. Fucoidan promoted the competitive binding of sqstm1 and Nrf2 to Keap1, increasing Nrf2 nuclear translocation and SR-A1 transcription. Additionally, the sequencing analysis (16 S) of microbial diversity revealed that fucoidan increased the gut microbiota diversity and abundance and increased the Bacteroides/Firmicutes ratio. CONCLUSIONS Altogether, fucoidan promotes the SR-A1-mediated phagocytosis of LPS/HMGB1/NETs and maintains gut microbial homeostasis, which may provide a potential therapeutic strategy for CIPN.
Collapse
Affiliation(s)
- Rumeng Jia
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Li Wan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Lai Jin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qingyan Tian
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yongyi Chen
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Xia Zhu
- Department of Oncology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, 222042, China
| | - Mengyao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yajie Zhang
- Central Laboratory, Department of Biobank, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Lijuan Zong
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Cai
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jianxin Ma
- Department of Oncology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, 222042, China.
| | - Liang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
3
|
Trivedi A, Miratsky JA, Henderson EC, Singharoy A, Shrivastava A. A membrane-associated conveyor belt controls the rotational direction of the bacterial type 9 secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.23.614571. [PMID: 39386584 PMCID: PMC11463627 DOI: 10.1101/2024.09.23.614571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Many bacteria utilize the type 9 secretion system (T9SS) for gliding motility, surface colonization, and pathogenesis. This dual-function motor supports both gliding motility and protein secretion, where rotation of the T9SS plays a central role. Fueled by the energy of the stored proton motive force and transmitted through the torque of membrane-anchored stator units, the rotary T9SS propels an adhesin-coated conveyor belt along the bacterial outer membrane like a molecular snowmobile, thereby enabling gliding motion. However, the mechanisms controlling the rotational direction and gliding motility of T9SS remain elusive. Shedding light on this mechanism, we find that in the gliding bacterium Flavobacterium johnsoniae , deletion of the C-terminus of a conveyor belt protein GldJ controls, and in fact, reverses the rotational direction of T9SS from counterclockwise to clockwise thus suggesting that the interface between the conveyor belt protein GldJ and the T9SS ring protein GldK plays an important role in controlling the directionality of T9SS. Combined with MD simulation of the T9SS stator units GldLM, we suggest a 'tri-component gearset' model where the conveyor belt controls the rotational direction of its driver, the T9SS, thus providing adaptive sensory feedback to influence the motility of the gliding bacterium.
Collapse
|
4
|
Chen Y, Tachiyama S, Li Y, Feng X, Zhao H, Wu Y, Guo Y, Lara-Tejero M, Hua C, Liu J, Gao B. Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in Campylobacter jejuni. Proc Natl Acad Sci U S A 2025; 122:e2412594121. [PMID: 39793078 PMCID: PMC11725899 DOI: 10.1073/pnas.2412594121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of Campylobacter jejuni. FlgX forms a stable tetramer that does not bind cyclic di-GMP (c-di-GMP), unlike other canonical PilZ domain-containing proteins. Cryoelectron tomography and subtomogram averaging of flagellar motors in situ provide evidence that FlgX interacts with each stator unit and plays a critical role in stator ring assembly and stability. Furthermore, FlgX is conserved and was most likely present in the common ancestor of the phylum Campylobacterota. Overall, FlgX represents a divergence in function for PilZ superfamily proteins as well as a player in the key stator-rotor interaction of complex flagellar motors.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Yuqian Li
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Xueyin Feng
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hang Zhao
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Yanmin Wu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Guo
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - María Lara-Tejero
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Canfeng Hua
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Beile Gao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| |
Collapse
|
5
|
Yermunja L, Acharya C. Differential gliding motility responses of Chryseobacterium sp. strain PMSZPI isolated from uranium ore deposit on hard and soft substrates. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100309. [PMID: 39629480 PMCID: PMC11613158 DOI: 10.1016/j.crmicr.2024.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The Bacteroidota bacterium, Chryseobacterium sp. strain PMSZPI isolated from sub-surface soil of uranium ore deposit was shown to move on solid surfaces via gliding motility resulting in the formation of thin spreading colonies. In this study, we attempted to understand the influence of the surfaces, soft or hard/rigid, on the motility behaviour of PMSZPI cells. The computational tool T9GPred in combination with LC-MS/MS analysis established the presence of orthologs of vital gliding motility proteins in PMSZPI. We analyzed the single cell or population motility phenotypes of PMSZPI under spreading and non-spreading conditions. A low percentage of agar or soft agar (0.35 %) with low nutrient levels induced more active gliding motility in individual cells leading to increased colony spreading. Microscopic analyses indicated the self-assembly of the gliding cells into irregular edged or spherical microcolonies based on the agar concentration. Cells moved at a speed of 0.6 µm s-1 on low-percentage gliding permissive agar (0.35 %) surface in contrast to significant inhibition of motility on rigid or hard agar (1.5 %) surface. RNA sequencing and real-time quantitative PCR (qPCR) analysis revealed increased expression of gliding motility genes under low agar conditions consistent with increased spreading behaviour. These findings provide the first glimpse into the gliding motility behaviour of a Bacteroidota bacterium from metal enriched environment that apparently could have implications on bacterial adaptation to changing surface environments.
Collapse
Affiliation(s)
- Lalitharashmi Yermunja
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
6
|
Panich J, Dudebout EM, Wadhwa N, Blair DF. Swashing motility: A novel propulsion-independent mechanism for surface migration in Salmonella and E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609010. [PMID: 39229098 PMCID: PMC11370582 DOI: 10.1101/2024.08.21.609010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bacterial motility over surfaces is crucial for colonization, biofilm formation, and pathogenicity. Surface motility in Escherichia coli and Salmonella enterica is traditionally believed to rely on flagellar propulsion. Here, we report a novel mode of motility, termed "swashing," where these bacteria migrate on agar surfaces without functional flagella. Mutants lacking flagellar filaments and motility proteins exhibit rapid surface migration comparable to wild-type strains. Unlike previously described sliding motility, swashing is inhibited by surfactants and requires fermentable sugars. We propose that the fermentation of sugars at the colony edge produces osmolytes, creating local osmotic gradients that draw water from the agar, forming a fluid bulge that propels the colony forward. Our findings challenge the established view that flagellar propulsion is required for surface motility in E. coli and Salmonella, and highlight the role of a fermentation in facilitating bacterial spreading. This discovery expands our understanding of bacterial motility, offering new insights into bacterial adaptive strategies in diverse environments.
Collapse
Affiliation(s)
- Justin Panich
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Eric M. Dudebout
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Navish Wadhwa
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ 85287
| | - David F. Blair
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
7
|
Han J, Balasubramanian I, Flores JA, Bandyopadhyay S, Yang J, Liu Y, Singh R, Setty P, Kiela P, Ferraris R, Gao N. Intestinal lysozyme engagement of Salmonella Typhimurium stimulates the release of barrier-impairing InvE and Lpp1. J Biol Chem 2024; 300:107424. [PMID: 38823640 PMCID: PMC11255904 DOI: 10.1016/j.jbc.2024.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024] Open
Abstract
Lysozyme is a β-1,4-glycosidase that hydrolyzes the polysaccharide backbone of bacterial cell walls. With an additional bactericidal function mediated by a separate protein domain, lysozyme is considered a uniquely important antimicrobial molecule contributing to the host's innate immune response to infection. Elevated lysozyme production is found in various inflammatory conditions while patients with genetic risks for inflammatory bowel diseases demonstrate abnormal lysozyme expression, granule packaging, and secretion in Paneth cells. However, it remains unclear how a gain- or loss-of-function in host lysozyme may impact the host inflammatory responses to pathogenic infection. We challenged Lyz1-/- and ectopic Lyz1-expressing (Villin-Lyz1TG) mice with S. Typhimurium and then comprehensively assessed the inflammatory disease progression. We conducted proteomics analysis to identify molecules derived from human lysozyme-mediated processing of live Salmonella. We examined the barrier-impairing effects of these identified molecules in human intestinal epithelial cell monolayer and enteroids. Lyz1-/- mice are protected from infection in terms of morbidity, mortality, and barrier integrity, whereas Villin-Lyz1TG mice demonstrate exacerbated infection and inflammation. The growth and invasion of Salmonella in vitro are not affected by human or chicken lysozyme, whereas lysozyme encountering of live Salmonella stimulates the release of barrier-disrupting factors, InvE-sipC and Lpp1, which directly or indirectly impair the tight junctions. The direct engagement of host intestinal lysozyme with an enteric pathogen such as Salmonella promotes the release of virulence factors that are barrier-impairing and pro-inflammatory. Controlling lysozyme function may help alleviate the inflammatory progression.
Collapse
Affiliation(s)
- Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Juan A Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Jiaxing Yang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Prashanth Setty
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel Kiela
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology, and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.
| |
Collapse
|
8
|
Mizgalska D, Rodríguez-Banqueri A, Veillard F, Książęk M, Goulas T, Guevara T, Eckhard U, Potempa J, Gomis-Rüth FX. Structural and functional insights into the C-terminal signal domain of the Bacteroidetes type-IX secretion system. Open Biol 2024; 14:230448. [PMID: 38862016 DOI: 10.1098/rsob.230448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024] Open
Abstract
Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 β-sandwich (β1-β7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands β3 and β4 ('motif Lβ3β4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lβ3β4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mirosław Książęk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Theodoros Goulas
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Karditsa 43100, Greece
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
9
|
Thunes NC, Evenhuis JP, Lipscomb RS, Pérez-Pascual D, Stevick RJ, Birkett C, Ghigo JM, McBride MJ. Gliding motility proteins GldJ and SprB contribute to Flavobacterium columnare virulence. J Bacteriol 2024; 206:e0006824. [PMID: 38517170 PMCID: PMC11025331 DOI: 10.1128/jb.00068-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.
Collapse
Affiliation(s)
- Nicole C. Thunes
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - David Pérez-Pascual
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Pitt A, Lienbacher S, Schmidt J, Neumann-Schaal M, Wolf J, Hahn MW. Description of a new freshwater bacterium Aquirufa regiilacus sp. nov., classification of the genera Aquirufa, Arundinibacter, Sandaracinomonas, and Tellurirhabdus to the family Spirosomataceae, classification of the genus Chryseotalea to the family Fulvivirgaceae and Litoribacter to the family Cyclobacteriaceae, as well as classification of Litoribacter alkaliphilus as a later heterotypic synonym of Litoribacter ruber. Arch Microbiol 2024; 206:79. [PMID: 38280955 PMCID: PMC10821818 DOI: 10.1007/s00203-023-03801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/29/2024]
Abstract
Strains LEOWEIH-7CT and LEPPI-3A were isolated from the Leopoldskroner Weiher, a lake located in the city of Salzburg, Austria. 16S rRNA gene similarities and phylogenetic reconstructions with 16S rRNA gene sequences as well as based on genome sequences revealed that the new strains belong to the A. antheringensis branch of the genus Aquirufa. Calculated whole-genome average nucleotide identity (gANI) and digital DNA-DNA hybridization (dDDH) values with the closely related type strains showed that the two strains represent a single new species. The strains grew aerobically and chemoorganotrophically, and the cells were rod shaped, on average 0.8 µm long and 0.3 µm wide, red pigmented and motile by gliding. The genome size of both strains was 2.6 Mbp and the G+C value was 41.9%. The genomes comprised genes predicted for the complete light-harvesting rhodopsin system and various carotenoids. We proposed to establish the name Aquirufa regiilacus sp. nov. for strain LEOWEIH-7CT (=DSM 116390T = JCM 36347T) as the type strain. Strain LEPPI-3A (=DSM 116391 = JCM 36348) also belongs to this new species. The calculated genome-based phylogenetic tree revealed that Aquirufa and some other genera currently allocated in the family Cytophagaceae need a reclassification. Aquirufa, Arundinibacter, Sandaracinomonas, and Tellurirhabdus should be designated to the family Spirosomataceae, the genus Chryseotalea to the family Fulvivirgaceae, and the genus Litoribacter to the family Cyclobacteriaceae. Furthermore, based on calculated gANI and dDDH values, Litoribacter alkaliphilus should be reclassified as a later heterotypic synonym of Litoribacter ruber.
Collapse
Affiliation(s)
- Alexandra Pitt
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310, Mondsee, Austria.
| | - Stefan Lienbacher
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310, Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310, Mondsee, Austria
| | - Meina Neumann-Schaal
- Chemical Analytics and Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Jacqueline Wolf
- Chemical Analytics and Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Martin W Hahn
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310, Mondsee, Austria
| |
Collapse
|
11
|
Wein P, Dornblut K, Herkersdorf S, Krüger T, Molloy EM, Brakhage AA, Hoffmeister D, Hertweck C. Bacterial secretion systems contribute to rapid tissue decay in button mushroom soft rot disease. mBio 2023; 14:e0078723. [PMID: 37486262 PMCID: PMC10470514 DOI: 10.1128/mbio.00787-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The soft rot pathogen Janthinobacterium agaricidamnosum causes devastating damage to button mushrooms (Agaricus bisporus), one of the most cultivated and commercially relevant mushrooms. We previously discovered that this pathogen releases the membrane-disrupting lipopeptide jagaricin. This bacterial toxin, however, could not solely explain the rapid decay of mushroom fruiting bodies, indicating that J. agaricidamnosum implements a more sophisticated infection strategy. In this study, we show that secretion systems play a crucial role in soft rot disease. By mining the genome of J. agaricidamnosum, we identified gene clusters encoding a type I (T1SS), a type II (T2SS), a type III (T3SS), and two type VI secretion systems (T6SSs). We targeted the T2SS and T3SS for gene inactivation studies, and subsequent bioassays implicated both in soft rot disease. Furthermore, through a combination of comparative secretome analysis and activity-guided fractionation, we identified a number of secreted lytic enzymes responsible for mushroom damage. Our findings regarding the contribution of secretion systems to the disease process expand the current knowledge of bacterial soft rot pathogens and represent a significant stride toward identifying targets for their disarmament with secretion system inhibitors. IMPORTANCE The button mushroom (Agaricus bisporus) is the most popular edible mushroom in the Western world. However, mushroom crops can fall victim to serious bacterial diseases that are a major threat to the mushroom industry, among them being soft rot disease caused by Janthinobacterium agaricidamnosum. Here, we show that the rapid dissolution of mushroom fruiting bodies after bacterial invasion is due to degradative enzymes and putative effector proteins secreted via the type II secretion system (T2SS) and the type III secretion system (T3SS), respectively. The ability to degrade mushroom tissue is significantly attenuated in secretion-deficient mutants, which establishes that secretion systems are key factors in mushroom soft rot disease. This insight is of both ecological and agricultural relevance by shedding light on the disease processes behind a pathogenic bacterial-fungal interaction which, in turn, serves as a starting point for the development of secretion system inhibitors to control disease progression.
Collapse
Affiliation(s)
- Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Katharina Dornblut
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sebastian Herkersdorf
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Axel A. Brakhage
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
12
|
Veith PD, Gorasia DG, Reynolds EC. Characterization of the O-Glycoproteome of Flavobacterium johnsoniae. J Bacteriol 2023; 205:e0009323. [PMID: 37162352 PMCID: PMC10294664 DOI: 10.1128/jb.00093-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Flavobacterium johnsoniae is a free-living member of the Bacteroidota phylum that is found in soil and water. It is frequently used as a model species for studying a type of gliding motility dependent on the type IX secretion system (T9SS). O-Glycosylation has been reported in several Bacteroidota species, and the O-glycosylation of S-layer proteins in Tannerella forsythia was shown to be important for certain virulence features. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The structure of the major glycan was found to be a hexasaccharide with the sequence Hex-(Me-dHex)-Me-HexA-Pent-HexA-Me-HexNAcA. Bioinformatic localization of the glycoproteins predicted 68 inner membrane proteins, 60 periplasmic proteins, 26 outer membrane proteins, 57 lipoproteins, and 9 proteins secreted by the T9SS. The glycosylated sites were predominantly located in the periplasm, where they are postulated to be beneficial for protein folding/stability. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated. IMPORTANCE Flavobacterium johnsoniae is a Gram-negative bacterium that is found in soil and water. It is frequently used as a model species for studying gliding motility and the T9SS. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The glycosylated domains were mainly localized to the periplasm. The function of O-glycosylation is likely related to protein folding and stability; therefore, the finding of the glycosylation sites has relevance for studies involving expression of the proteins. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated, which may impact the structure and function of these components.
Collapse
Affiliation(s)
- Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Shen Y, Gao S, Fan Q, Zuo J, Wang Y, Yi L, Wang Y. New antibacterial targets: Regulation of quorum sensing and secretory systems in zoonotic bacteria. Microbiol Res 2023; 274:127436. [PMID: 37343493 DOI: 10.1016/j.micres.2023.127436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Quorum sensing (QS) is a communication mechanism that controls bacterial communication and can influence the transcriptional expression of multiple genes through one or more signaling molecules, thereby coordinating the population response of multiple bacterial pathogens. Secretion systems (SS) play an equally important role in bacterial information exchange, relying on the secretory systems to secrete proteins that act as virulence factors to promote adhesion to host cells. Eight highly efficient SS have been described, all of which are involved in the secretion or transfer of virulence factors, and the effector proteins they secrete play a key role in the virulence and pathogenicity of bacteria. It has been shown that many bacterial SS are directly or indirectly regulated by QS and thus influence bacterial virulence and antibiotic resistance. This review describes the relationship between QS and SS of several common zoonotic pathogenic bacteria and outlines the molecular mechanisms of how QS systems regulate SS, to provide a theoretical basis for the study of bacterial pathogenicity and the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Li Yi
- Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China.
| |
Collapse
|
14
|
Escribano MP, Balado M, Toranzo AE, Lemos ML, Magariños B. The secretome of the fish pathogen Tenacibaculum maritimum includes soluble virulence-related proteins and outer membrane vesicles. Front Cell Infect Microbiol 2023; 13:1197290. [PMID: 37360528 PMCID: PMC10288586 DOI: 10.3389/fcimb.2023.1197290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Tenacibaculum maritimum, the etiological agent of tenacibaculosis in marine fish, constitutively secretes extracellular products (ECPs) in which protein content has not been yet comprehensively studied. In this work, the prevalence of extracellular proteolytic and lipolytic activities related to virulence was analyzed in 64 T. maritimum strains belonging to the O1-O4 serotypes. The results showed the existence of a great intra-specific heterogeneity in the enzymatic capacity, particularly within serotype O4. Thus, the secretome of a strain belonging to this serotype was characterized by analyzing the protein content of ECPs and the possible production of outer membrane vesicles (OMVs). Notably, the ECPs of T. maritimum SP9.1 contain a large amount of OMVs that were characterized by electron microscopy and purified. Thus, ECPs were divided into soluble (S-ECPs) and insoluble fractions (OMVs), and their protein content was analyzed by a high-throughput proteomic approach. A total of 641 proteins were identified in ECPs including some virulence-related factors, which were mainly found in one of the fractions, either OMVs or S-ECPs. Outer membrane proteins such as TonB-dependent siderophore transporters and the type IX secretion system (T9SS)-related proteins PorP, PorT, and SprA appeared to be mainly associated with OMVs. By contrast, putative virulence factors such as sialidase SiaA, chondroitinase CslA, sphingomyelinase Sph, ceramidase Cer, and collagenase Col were found only in the S-ECPs. These findings clearly demonstrate that T. maritimum releases, through surface blebbing, OMVs specifically enriched in TonB-dependent transporters and T9SS proteins. Interestingly, in vitro and in vivo assays also showed that OMVs could play a key role in virulence by promoting surface adhesion and biofilm formation and maximizing the cytotoxic effects of the ECPs. The characterization of T. maritimum secretome provides insights into ECP function and can constitute the basis for future studies aimed to elucidate the full role of OMVs in the pathogenesis of fish tenacibaculosis.
Collapse
|
15
|
Dukes HE, Tinker KA, Ottesen EA. Disentangling hindgut metabolism in the American cockroach through single-cell genomics and metatranscriptomics. Front Microbiol 2023; 14:1156809. [PMID: 37323917 PMCID: PMC10266427 DOI: 10.3389/fmicb.2023.1156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Omnivorous cockroaches host a complex hindgut microbiota comprised of insect-specific lineages related to those found in mammalian omnivores. Many of these organisms have few cultured representatives, thereby limiting our ability to infer the functional capabilities of these microbes. Here we present a unique reference set of 96 high-quality single cell-amplified genomes (SAGs) from bacterial and archaeal cockroach gut symbionts. We additionally generated cockroach hindgut metagenomic and metatranscriptomic sequence libraries and mapped them to our SAGs. By combining these datasets, we are able to perform an in-depth phylogenetic and functional analysis to evaluate the abundance and activities of the taxa in vivo. Recovered lineages include key genera within Bacteroidota, including polysaccharide-degrading taxa from the genera Bacteroides, Dysgonomonas, and Parabacteroides, as well as a group of unclassified insect-associated Bacteroidales. We also recovered a phylogenetically diverse set of Firmicutes exhibiting a wide range of metabolic capabilities, including-but not limited to-polysaccharide and polypeptide degradation. Other functional groups exhibiting high relative activity in the metatranscriptomic dataset include multiple putative sulfate reducers belonging to families in the Desulfobacterota phylum and two groups of methanogenic archaea. Together, this work provides a valuable reference set with new insights into the functional specializations of insect gut symbionts and frames future studies of cockroach hindgut metabolism.
Collapse
Affiliation(s)
- Helen E. Dukes
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Kara A. Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | | |
Collapse
|
16
|
Wang G, Yin X, Feng Z, Chen C, Chen D, Wu B, Liu C, Morel JL, Jiang Y, Yu H, He H, Chao Y, Tang Y, Qiu R, Wang S. Novel biological aqua crust enhances in situ metal(loid) bioremediation driven by phototrophic/diazotrophic biofilm. MICROBIOME 2023; 11:110. [PMID: 37202810 DOI: 10.1186/s40168-023-01549-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/13/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Understanding the ecological and environmental functions of phototrophic biofilms in the biological crust is crucial for improving metal(loid) (e.g. Cd, As) bioremediation in mining ecosystems. In this study, in combination with metal(loid) monitoring and metagenomic analysis, we systematically evaluated the effect of biofilm in a novel biological aqua crust (biogenic aqua crust-BAC) on in situ metal(loid) bioremediation of a representative Pb/Zn tailing pond. RESULTS We observed strong accumulation of potentially bioavailable metal(loid)s and visible phototrophic biofilms in the BAC. Furthermore, dominating taxa Leptolyngbyaceae (10.2-10.4%, Cyanobacteria) and Cytophagales (12.3-22.1%, Bacteroidota) were enriched in biofilm. Along with predominant heterotrophs (e.g. Cytophagales sp.) as well as diazotrophs (e.g. Hyphomonadaceae sp.), autotrophs/diazotrophs (e.g. Leptolyngbyaceae sp.) in phototrophic biofilm enriched the genes encoding extracellular peptidase (e.g. family S9, S1), CAZymes (e.g. CBM50, GT2) and biofilm formation (e.g. OmpR, CRP and LuxS), thus enhancing the capacity of nutrient accumulation and metal(loid) bioremediation in BAC system. CONCLUSIONS Our study demonstrated that a phototrophic/diazotrophic biofilm constitutes the structured communities containing specific autotrophs (e.g. Leptolyngbyaceae sp.) and heterotrophs (e.g. Cytophagales sp.), which effectively control metal(loid) and nutrient input using solar energy in aquatic environments. Elucidation of the mechanisms of biofilm formation coupled with metal(loid) immobilization in BAC expands the fundamental understanding of the geochemical fate of metal(loid)s, which may be harnessed to enhance in situ metal(loid) bioremediation in the aquatic ecosystem of the mining area. Video Abstract.
Collapse
Affiliation(s)
- Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiuran Yin
- Microbial Ecophysiology Group, University of Bremen, Bremen, Germany
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Bo Wu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jean Louis Morel
- Laboratoire Sols Et Environnement, UMR 1120, Université de Lorraine, INRAE, 54518, Vandoeuvre-Lès-Nancy, France
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Huan He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
17
|
Shibata S, Nakane D. Isolation and Visualization of Gliding Motility Machinery in Bacteroidota. Methods Mol Biol 2023; 2646:267-276. [PMID: 36842121 DOI: 10.1007/978-1-0716-3060-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Many members of the phylum Bacteroidota (formerly called Bacteroidetes) adhere to and move on solid surfaces. This type of bacterial motility is called gliding and does not involve the conventional bacterial motility machinery, such as flagella and pili. To understand the mechanism of gliding motility of some Bacteroidota bacteria such as a soil bacterium Flavobacterium johnsoniae and a marine bacterium Saprospira grandis, the gliding motility machines of these two bacteria have been analyzed by electron microscopy with negative staining. Here, we describe methods to directly observe the gliding motility machinery in Bacteroidota by transmission electron microscopy.
Collapse
Affiliation(s)
- Satoshi Shibata
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Tottori, Japan.
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
18
|
Live Cell Imaging of Gliding Motility of Flavobacterium johnsoniae Under High-Resolution Microscopy. Methods Mol Biol 2023; 2646:277-286. [PMID: 36842122 DOI: 10.1007/978-1-0716-3060-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Many phylum Bacteroidetes bacteria are motile without either flagella or pili. These cells move on surfaces such as glass or agar, and a motor generates a propulsion force for the cells via a proton motive force across the cytoplasmic membrane. The gliding motility depends on the helical track of cell adhesin along the longer axis of the cell body. Here, we describe live-cell imaging of gliding motility under optical microscopy, as well as an immunofluorescent labeling method for visualizing helical trajectories.
Collapse
|
19
|
Kondo Y, Ohara K, Fujii R, Nakai Y, Sato C, Naito M, Tsukuba T, Kadowaki T, Sato K. Transposon mutagenesis and genome sequencing identify two novel, tandem genes involved in the colony spreading of Flavobacterium collinsii, isolated from an ayu fish, Plecoglossus altivelis. Front Cell Infect Microbiol 2023; 13:1095919. [PMID: 36844397 PMCID: PMC9950754 DOI: 10.3389/fcimb.2023.1095919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Bacteria of the family Flavobacteriaceae (flavobacteria) primarily comprise nonpathogenic bacteria that inhabit soil and water (both marine and freshwater). However, some bacterial species in the family, including Flavobacterium psychrophilum and Flavobacterium columnare, are known to be pathogenic to fish. Flavobacteria, including the abovementioned pathogenic bacteria, belong to the phylum Bacteroidota and possess two phylum-specific features, gliding motility and a protein secretion system, which are energized by a common motor complex. Herein, we focused on Flavobacterium collinsii (GiFuPREF103) isolated from a diseased fish (Plecoglossus altivelis). Genomic analysis of F. collinsii GiFuPREF103 revealed the presence of a type IX secretion system and additional genes associated with gliding motility and spreading. Using transposon mutagenesis, we isolated two mutants with altered colony morphology and colony spreading ability; these mutants had transposon insertions in pep25 and lbp26. The glycosylation material profiles revealed that these mutants lacked the high-molecular-weight glycosylated materials present in the wild-type strain. In addition, the wild-type strains exhibited fast cell population movement at the edge of the spreading colony, whereas reduced cell population behavior was observed in the pep25- and lbp26-mutant strains. In the aqueous environment, the surface layers of these mutant strains were more hydrophobic, and they formed biofilms with enhanced microcolony growth compared to those with the wild-type. In Flavobacterium johnsoniae, the Fjoh_0352 and Fjoh_0353 mutant strains were generated, which were based on the ortholog genes of pep25 and lbp26. In these F. johnsoniae mutants, as in F. collinsii GiFuPREF103, colonies with diminished spreading capacity were formed. Furthermore, cell population migration was observed at the edge of the colony in wild-type F. johnsoniae, whereas individual cells, and not cell populations, migrated in these mutant strains. The findings of the present study indicate that pep25 and lbp26 contribute to the colony spreading of F. collinsii.
Collapse
Affiliation(s)
- Yoshio Kondo
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan,*Correspondence: Yoshio Kondo, ; Keiko Sato,
| | - Kenichi Ohara
- Gifu Prefectural Research Institute for Fisheries and Aquatic Environments, Gifu, Japan
| | - Ryoji Fujii
- Gifu Prefectural Research Institute for Fisheries and Aquatic Environments, Gifu, Japan
| | - Yudai Nakai
- Department of Frontier Oral Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chikara Sato
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Ibaraki, Japan,Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keiko Sato
- Department of Frontier Oral Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan,*Correspondence: Yoshio Kondo, ; Keiko Sato,
| |
Collapse
|
20
|
Thunes NC, Mohammed HH, Evenhuis JP, Lipscomb RS, Pérez-Pascual D, Stevick RJ, Birkett C, Conrad RA, Ghigo JM, McBride MJ. Secreted peptidases contribute to virulence of fish pathogen Flavobacterium columnare. Front Cell Infect Microbiol 2023; 13:1093393. [PMID: 36816589 PMCID: PMC9936825 DOI: 10.3389/fcimb.2023.1093393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Flavobacterium columnare causes columnaris disease in freshwater fish in both natural and aquaculture settings. This disease is often lethal, especially when fish population density is high, and control options such as vaccines are limited. The type IX secretion system (T9SS) is required for F. columnare virulence, but secreted virulence factors have not been fully identified. Many T9SS-secreted proteins are predicted peptidases, and peptidases are common virulence factors of other pathogens. T9SS-deficient mutants, such as ΔgldN and ΔporV, exhibit strong defects in secreted proteolytic activity. The F. columnare genome has many peptidase-encoding genes that may be involved in nutrient acquisition and/or virulence. Mutants lacking individual peptidase-encoding genes, or lacking up to ten peptidase-encoding genes, were constructed and examined for extracellular proteolytic activity, for growth defects, and for virulence in zebrafish and rainbow trout. Most of the mutants retained virulence, but a mutant lacking 10 peptidases, and a mutant lacking the single peptidase TspA exhibited decreased virulence in rainbow trout fry, suggesting that peptidases contribute to F. columnare virulence.
Collapse
Affiliation(s)
- Nicole C. Thunes
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Haitham H. Mohammed
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States,Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX, United States
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - David Pérez-Pascual
- Institut Pasteur, Université de Paris-Cité, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université de Paris-Cité, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Rachel A. Conrad
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris-Cité, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States,*Correspondence: Mark J. McBride,
| |
Collapse
|
21
|
Shibata S, Tahara YO, Katayama E, Kawamoto A, Kato T, Zhu Y, Nakane D, Namba K, Miyata M, McBride MJ, Nakayama K. Filamentous structures in the cell envelope are associated with bacteroidetes gliding machinery. Commun Biol 2023; 6:94. [PMID: 36690840 PMCID: PMC9870892 DOI: 10.1038/s42003-023-04472-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Many bacteria belonging to the phylum Bacteroidetes move on solid surfaces, called gliding motility. In our previous study with the Bacteroidetes gliding bacterium Flavobacterium johnsoniae, we proposed a helical loop track model, where adhesive SprB filaments are propelled along a helical loop on the cell surface. In this study, we observed the gliding cell rotating counterclockwise about its axis when viewed from the rear to the advancing direction of the cell and revealed that one labeled SprB focus sometimes overtook and passed another SprB focus that was moving in the same direction. Several electron microscopic analyses revealed the presence of a possible multi-rail structure underneath the outer membrane, which was associated with SprB filaments and contained GldJ protein. These results provide insights into the mechanism of Bacteroidetes gliding motility, in which the SprB filaments are propelled along tracks that may form a multi-rail system underneath the outer membrane. The insights may give clues as to how the SprB filaments get their driving force.
Collapse
Affiliation(s)
- Satoshi Shibata
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.
| | - Yuhei O Tahara
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
- Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
| | - Eisaku Katayama
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
- Waseda Research Institute for Science and Engineering, Okubo Shinjyuku, Tokyo, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yongtao Zhu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Makoto Miyata
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
- Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
| | - Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
22
|
Astafyeva Y, Gurschke M, Streit WR, Krohn I. Interplay between the microalgae Micrasterias radians and its symbiont Dyadobacter sp. HH091. Front Microbiol 2022; 13:1006609. [PMID: 36312980 PMCID: PMC9606717 DOI: 10.3389/fmicb.2022.1006609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Based on previous research, related to detailed insight into mutualistic collaboration of microalga and its microbiome, we established an artificial plant-bacteria system of the microalga Micrasterias radians MZCH 672 and the bacterial isolate Dyadobacter sp. HH091. The bacteria, affiliated with the phylum Bacteroidota, strongly stimulated growth of the microalga when it was added to axenic algal cultures. For further advances, we studied the isolate HH091 and its interaction with the microalga M. radians using transcriptome and extensive genome analyses. The genome of HH091 contains predicted polysaccharide utilizing gene clusters co-working with the type IX secretion system (T9SS) and conceivably involved in the algae-bacteria liaison. Here, we focus on characterizing the mechanism of T9SS, implementing the attachment and invasion of microalga by Dyadobacter sp. HH091. Omics analysis exposed T9SS genes: gldK, gldL, gldM, gldN, sprA, sprE, sprF, sprT, porU and porV. Besides, gld genes not considered as the T9SS components but required for gliding motility and protein secretion (gldA, gldB, gldD, gldF, gldG, gldH, gldI, gldJ), were also identified at this analysis. A first model of T9SS apparatus of Dyadobacter was proposed in a course of this research. Using the combination of fluorescence labeling of Dyadobacter sp. HH091, we examined the bacterial colonisation and penetration into the cell wall of the algal host M. radians MZCH 672.
Collapse
|
23
|
Hudson J, Egan S. Opportunistic diseases in marine eukaryotes: Could Bacteroidota be the next threat to ocean life? Environ Microbiol 2022; 24:4505-4518. [PMID: 35706128 PMCID: PMC9804302 DOI: 10.1111/1462-2920.16094] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/05/2023]
Abstract
Bacteria within the phylum Bacteroidota (Bacteroidetes) are known to cause devastating and widespread disease outbreaks in marine eukaryotic hosts. However, with few pathogens described in detail, their prevalence and virulence strategies remain largely unknown. Here, we systematically reviewed the literature to evaluate the current understanding of Bacteroidota that cause disease in marine hosts. Isolates affiliated with the genera Tenacibaculum and Aquimarina (Flavobacteriaceae) were the most widely reported and characterized pathogens. Although cultured isolates were predominantly Flavobacteriia, culture-independent studies also found classes Bacteroidia, Cytophagia and Sphingobacteriia associated with disease. We found that pathogenic marine Bacteroidota largely conformed to an opportunistic lifestyle but could also act as secondary pathogens or were involved in polymicrobial diseases. Many diseases were also associated with an environmental stressor, especially those affecting coral, macroalgae and fish. Key virulence traits included the production of adhesins and host tissue-degrading enzymes. Overall, the nature of disease involving Bacteroidota pathogens appears to be an outcome of complex host-pathogen-environment interactions; however, our understanding of virulence remains limited by the lack of functional characterization studies. This is concerning as Bacteroidota have the potential to emerge as a serious threat to marine ecosystems and aquaculture industries, driven by global changes in ocean conditions.
Collapse
Affiliation(s)
- Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyAustralia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyAustralia
| |
Collapse
|
24
|
Pellizza L, Bialer MG, Sieira R, Aran M. MliR, a novel MerR-like regulator of iron homeostasis, impacts metabolism, membrane remodeling, and cell adhesion in the marine Bacteroidetes Bizionia argentinensis. Front Microbiol 2022; 13:987756. [PMID: 36118216 PMCID: PMC9478572 DOI: 10.3389/fmicb.2022.987756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The MerR family is a group of transcriptional activators with conserved N-terminal helix-turn-helix DNA binding domains and variable C-terminal effector binding regions. In most MerR proteins the effector binding domain (EBD) contains a cysteine center suited for metal binding and mediates the response to environmental stimuli, such as oxidative stress, heavy metals or antibiotics. We here present a novel transcriptional regulator classified in the MerR superfamily that lacks an EBD domain and has neither conserved metal binding sites nor cysteine residues. This regulator from the psychrotolerant bacteria Bizionia argentinensis JUB59 is involved in iron homeostasis and was named MliR (MerR-like iron responsive Regulator). In silico analysis revealed that homologs of the MliR protein are widely distributed among different bacterial species. Deletion of the mliR gene led to decreased cell growth, increased cell adhesion and filamentation. Genome-wide transcriptomic analysis showed that genes associated with iron homeostasis were downregulated in mliR-deletion mutant. Through nuclear magnetic resonance-based metabolomics, ICP-MS, fluorescence microscopy and biochemical analysis we evaluated metabolic and phenotypic changes associated with mliR deletion. This work provides the first evidence of a MerR-family regulator involved in iron homeostasis and contributes to expanding our current knowledge on relevant metabolic pathways and cell remodeling mechanisms underlying in the adaptive response to iron availability in bacteria.
Collapse
|
25
|
Sharma G, Garg N, Hasan S, Shirodkar S. Prevotella: An insight into its characteristics and associated virulence factors. Microb Pathog 2022; 169:105673. [PMID: 35843443 DOI: 10.1016/j.micpath.2022.105673] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Prevotella species, a gram-negative obligate anaerobe, is commonly associated with human infections such as dental caries and periodontitis, as well as other conditions such as chronic osteomyelitis, bite-related infections, rheumatoid arthritis and intestinal diseases like ulcerative colitis. This generally harmless commensal possesses virulence factors such as adhesins, hemolysins, secretion systems exopolysaccharide, LPS, proteases, quorum sensing molecules and antibiotic resistance to evolve into a well-adapted pathogen capable of causing successful infection and proliferation in the host tissue. This review describes several of these virulence factors and their advantage to Prevotella spp. in causing inflammatory diseases like periodontitis. In addition, using genome analysis of Prevotella reference strains, we examined other putative virulence determinants which can provide insights as biomarkers and be the targets for effective interventions in Prevotella related diseases like periodontitis.
Collapse
Affiliation(s)
- Geetika Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Nancy Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India.
| |
Collapse
|
26
|
Carreira LAM, Szadkowski D, Müller F, Søgaard-Andersen L. Spatiotemporal regulation of switching front–rear cell polarity. Curr Opin Cell Biol 2022; 76:102076. [DOI: 10.1016/j.ceb.2022.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
|
27
|
Type B CTD Proteins Secreted by the Type IX Secretion System Associate with PorP-like Proteins for Cell Surface Anchorage. Int J Mol Sci 2022; 23:ijms23105681. [PMID: 35628493 PMCID: PMC9143113 DOI: 10.3390/ijms23105681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
The Bacteroidetes type IX secretion system (T9SS) consists of at least 20 components that translocate proteins with type A or type B C-terminal domain (CTD) signals across the outer membrane (OM). While type A CTD proteins are anchored to the cell surface via covalent linkage to the anionic lipopolysaccharide, it is still unclear how type B CTD proteins are anchored to the cell surface. Moreover, very little is known about the PorE and PorP components of the T9SS. In this study, for the first time, we identified a complex comprising the OM β-barrel protein PorP, the OM-associated periplasmic protein PorE and the type B CTD protein PG1035. Cross-linking studies supported direct interactions between PorE-PorP and PorP-PG1035. Furthermore, we show that the formation of the PorE-PorP-PG1035 complex was independent of PorU and PorV. Additionally, the Flavobacterium johnsoniae PorP-like protein, SprF, was found bound to the major gliding motility adhesin, SprB, which is also a type B CTD protein. Together, these results suggest that type B-CTD proteins may anchor to the cell surface by binding to their respective PorP-like proteins.
Collapse
|
28
|
Song L, Perpich JD, Wu C, Doan T, Nowakowska Z, Potempa J, Christie PJ, Cascales E, Lamont RJ, Hu B. A unique bacterial secretion machinery with multiple secretion centers. Proc Natl Acad Sci U S A 2022; 119:e2119907119. [PMID: 35471908 PMCID: PMC9170169 DOI: 10.1073/pnas.2119907119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
The Porphyromonas gingivalis type IX secretion system (T9SS) promotes periodontal disease by secreting gingipains and other virulence factors. By in situ cryoelectron tomography, we report that the P. gingivalis T9SS consists of 18 PorM dimers arranged as a large, caged ring in the periplasm. Near the outer membrane, PorM dimers interact with a PorKN ring complex of ∼52 nm in diameter. PorMKN translocation complexes of a given T9SS adopt distinct conformations energized by the proton motive force, suggestive of different activation states. At the inner membrane, PorM associates with a cytoplasmic complex that exhibits 12-fold symmetry and requires both PorM and PorL for assembly. Activated motors deliver substrates across the outer membrane via one of eight Sov translocons arranged in a ring. The T9SSs are unique among known secretion systems in bacteria and eukaryotes in their assembly as supramolecular machines composed of apparently independently functioning translocation motors and export pores.
Collapse
Affiliation(s)
- Liqiang Song
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| | - John D. Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40292
| | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| | - Thierry Doan
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, CNRS UMR7255, Aix-Marseille Université, Marseille, 13402 France
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, 30-387 Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40292
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, 30-387 Poland
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, CNRS UMR7255, Aix-Marseille Université, Marseille, 13402 France
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40292
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| |
Collapse
|
29
|
Abstract
Gliding motility using cell surface adhesins, and export of proteins by the type IX secretion system (T9SS) are two phylum-specific features of the Bacteroidetes. Both of these processes are energized by the GldLM motor complex, which transduces the proton motive force at the inner membrane into mechanical work at the outer membrane. We previously used cryo-electron microscopy to solve the structure of the GldLM motor core from Flavobacterium johnsoniae at 3.9-Å resolution (R. Hennell James, J. C. Deme, A. Kjaer, F. Alcock, et al., Nat Microbiol 6:221–233, 2021, https://dx.doi.org/10.1038/s41564-020-00823-6). Here, we present structures of homologous complexes from a range of pathogenic and environmental Bacteroidetes species at up to 3.0-Å resolution. These structures show that the architecture of the GldLM motor core is conserved across the Bacteroidetes phylum, although there are species-specific differences at the N terminus of GldL. The resolution improvements reveal a cage-like structure that ties together the membrane-proximal cytoplasmic region of GldL and influences gliding function. These findings add detail to our structural understanding of bacterial ion-driven motors that drive the T9SS and gliding motility.
Collapse
|
30
|
Vincent MS, Comas Hervada C, Sebban-Kreuzer C, Le Guenno H, Chabalier M, Kosta A, Guerlesquin F, Mignot T, McBride MJ, Cascales E, Doan T. Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLoS Biol 2022; 20:e3001443. [PMID: 35333857 PMCID: PMC8986121 DOI: 10.1371/journal.pbio.3001443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/06/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Motile bacteria usually rely on external apparatus like flagella for swimming or pili for twitching. By contrast, gliding bacteria do not rely on obvious surface appendages to move on solid surfaces. Flavobacterium johnsoniae and other bacteria in the Bacteroidetes phylum use adhesins whose movement on the cell surface supports motility. In F. johnsoniae, secretion and helicoidal motion of the main adhesin SprB are intimately linked and depend on the type IX secretion system (T9SS). Both processes necessitate the proton motive force (PMF), which is thought to fuel a molecular motor that comprises the GldL and GldM cytoplasmic membrane proteins. Here, we show that F. johnsoniae gliding motility is powered by the pH gradient component of the PMF. We further delineate the interaction network between the GldLM transmembrane helices (TMHs) and show that conserved glutamate residues in GldL TMH2 are essential for gliding motility, although having distinct roles in SprB secretion and motion. We then demonstrate that the PMF and GldL trigger conformational changes in the GldM periplasmic domain. We finally show that multiple GldLM complexes are distributed in the membrane, suggesting that a network of motors may be present to move SprB along a helical path on the cell surface. Altogether, our results provide evidence that GldL and GldM assemble dynamic membrane channels that use the proton gradient to power both T9SS-dependent secretion of SprB and its motion at the cell surface.
Collapse
Affiliation(s)
- Maxence S. Vincent
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Caterina Comas Hervada
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Corinne Sebban-Kreuzer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Hugo Le Guenno
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Maïalène Chabalier
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Françoise Guerlesquin
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7283, Marseille, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Thierry Doan
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| |
Collapse
|
31
|
Protein Interactome Analysis of the Type IX Secretion System Identifies PorW as the Missing Link between the PorK/N Ring Complex and the Sov Translocon. Microbiol Spectr 2022; 10:e0160221. [PMID: 35019767 PMCID: PMC8754138 DOI: 10.1128/spectrum.01602-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type IX secretion system (T9SS) transports cargo proteins through the outer membrane of Bacteroidetes and attaches them to the cell surface for functions including pathogenesis, gliding motility, and degradation of carbon sources. The T9SS comprises at least 20 different proteins and includes several modules: the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, the outer membrane Sov translocon, and the cell attachment complex. However, the spatial organization of these modules is unknown. We have characterized the protein interactome of the Sov translocon in Porphyromonas gingivalis and identified Sov-PorV-PorA as well as Sov-PorW-PorN-PorK to be novel networks. PorW also interacted with PGN_1783 (PorD), which was required for maximum secretion efficiency. The identification of PorW as the missing link completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore. IMPORTANCE The T9SS is a newly identified protein secretion system of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum used by pathogens associated with diseases of humans, fish, and poultry for the secretion and cell surface attachment of virulence factors. The T9SS comprises three known modules: (i) the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, (ii) the outer membrane Sov translocon, and (iii) the cell surface attachment complex. The spatial organization and interaction of these modules have been a mystery. Here, we describe the protein interactome of the Sov translocon in the human pathogen Porphyromonas gingivalis and have identified PorW as the missing link which bridges PorN with Sov and so completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing, for the first time, a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore.
Collapse
|
32
|
Li J, He Z, Liang Y, Peng T, Hu Z. Insights into Algal Polysaccharides: A Review of Their Structure, Depolymerases, and Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1749-1765. [PMID: 35124966 DOI: 10.1021/acs.jafc.1c05365] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, marine macroalgae with extensive biomass have attracted the attention of researchers worldwide. Furthermore, algal polysaccharides have been widely studied in the food, pharmaceutical, and cosmetic fields because of their various kinds of bioactivities. However, there are immense barriers to their application as a result of their high molecular size, poor solubility, hydrocolloid nature, and low physiological activities. Unique polysaccharides, such as laminarin, alginate, fucoidan, agar, carrageenan, porphyran, ulvan, and other complex structural polysaccharides, can be digested by marine bacteria with many carbohydrate-active enzymes (CAZymes) by breaking down the limitation of glycosidic bonds. However, structural elucidation of algal polysaccharides, metabolic pathways, and identification of potential polysaccharide hydrolases that participate in different metabolic pathways remain major obstacles restricting the efficient utilization of algal oligosaccharides. This review focuses on the structure, hydrolase families, metabolic pathways, and potential applications of seven macroalgae polysaccharides. These results will contribute to progressing our understanding of the structure of algal polysaccharides and their metabolic pathways and will be valuable for clearing the way for the compelling utilization of bioactive oligosaccharides.
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhixiao He
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Yumei Liang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, People's Republic of China
| |
Collapse
|
33
|
Fuchsbauer O, Lunar Silva I, Cascales E, Roussel A, Leone P. Structural and functional analyses of the Porphyromonas gingivalis type IX secretion system PorN protein. J Biol Chem 2022; 298:101618. [PMID: 35065963 PMCID: PMC8861641 DOI: 10.1016/j.jbc.2022.101618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis, the major human pathogen bacterium associated with periodontal diseases, secretes virulence factors through the Bacteroidetes-specific type IX secretion system (T9SS). Effector proteins of the T9SS are recognized by the complex via their conserved C-terminal domains (CTDs). Among the 18 proteins essential for T9SS function in P. gingivalis, PorN is a periplasmic protein that forms large ring-shaped structures in association with the PorK outer membrane lipoprotein. PorN also mediates contacts with the PorM subunit of the PorLM energetic module, and with the effector’s CTD. However, no information is available on the PorN structure and on the implication of PorN domains for T9SS assembly and effector recognition. Here we present the crystal structure of PorN at 2.0-Å resolution, which represents a novel fold with no significant similarity to any known structure. In agreement with in silico analyses, we also found that the N- and C-terminal regions of PorN are intrinsically disordered. Our functional studies showed that the N-terminal disordered region is involved in PorN dimerization while the C-terminal disordered region is involved in the interaction with PorK. Finally, we determined that the folded PorN central domain is involved in the interaction with PorM, as well as with the effector’s CTD. Altogether, these results lay the foundations for a more comprehensive model of T9SS architecture and effector transport.
Collapse
Affiliation(s)
- Olivier Fuchsbauer
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Marseille, France; Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Marseille, France
| | - Ignacio Lunar Silva
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université - Centre National de la Recherche Scientifique (UMR7255), Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université - Centre National de la Recherche Scientifique (UMR7255), Marseille Cedex 20, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Marseille, France; Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Marseille, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, UMR 7257, Marseille, France; Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, UMR 7257, Marseille, France.
| |
Collapse
|
34
|
Rieu M, Krutyholowa R, Taylor NMI, Berry RM. A new class of biological ion-driven rotary molecular motors with 5:2 symmetry. Front Microbiol 2022; 13:948383. [PMID: 35992645 PMCID: PMC9389320 DOI: 10.3389/fmicb.2022.948383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Several new structures of three types of protein complexes, obtained by cryo-electron microscopy (cryo-EM) and published between 2019 and 2021, identify a new family of natural molecular wheels, the "5:2 rotary motors." These span the cytoplasmic membranes of bacteria, and their rotation is driven by ion flow into the cell. They consist of a pentameric wheel encircling a dimeric axle within the cytoplasmic membrane of both Gram-positive and gram-negative bacteria. The axles extend into the periplasm, and the wheels extend into the cytoplasm. Rotation of these wheels has never been observed directly; it is inferred from the symmetry of the complexes and from the roles they play within the larger systems that they are known to power. In particular, the new structure of the stator complex of the Bacterial Flagellar Motor, MotA5B2, is consistent with a "wheels within wheels" model of the motor. Other 5:2 rotary motors are believed to share the core rotary function and mechanism, driven by ion-motive force at the cytoplasmic membrane. Their structures diverge in their periplasmic and cytoplasmic parts, reflecting the variety of roles that they perform. This review focuses on the structures of 5:2 rotary motors and their proposed mechanisms and functions. We also discuss molecular rotation in general and its relation to the rotational symmetry of molecular complexes.
Collapse
Affiliation(s)
- Martin Rieu
- Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building University of Oxford, Oxford, United Kingdom
| | - Roscislaw Krutyholowa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nicholas M. I. Taylor
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Nicholas M. I. Taylor,
| | - Richard M. Berry
- Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building University of Oxford, Oxford, United Kingdom
- *Correspondence: Richard M. Berry,
| |
Collapse
|
35
|
Type IX secretion system effectors and virulence of the model Flavobacterium columnare strain MS-FC-4. Appl Environ Microbiol 2021; 88:e0170521. [PMID: 34818105 DOI: 10.1128/aem.01705-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium columnare causes columnaris disease in wild and cultured freshwater fish and is a major problem for sustainable aquaculture worldwide. The F. columnare type IX secretion system (T9SS) secretes many proteins and is required for virulence. The T9SS component GldN is required for secretion and for gliding motility over surfaces. Genetic manipulation of F. columnare is inefficient, which has impeded identification of secreted proteins that are critical for virulence. Here we identified a virulent wild-type F. columnare strain (MS-FC-4) that is highly amenable to genetic manipulation. This facilitated isolation and characterization of two deletion mutants lacking core components of the T9SS. Deletion of gldN disrupted protein secretion and gliding motility and eliminated virulence in zebrafish and rainbow trout. Deletion of porV disrupted secretion and virulence but not motility. Both mutants exhibited decreased extracellular proteolytic, hemolytic, and chondroitin sulfate lyase activities. They also exhibited decreased biofilm formation and decreased attachment to fish fins and to other surfaces. Using genomic and proteomic approaches, we identified proteins secreted by the T9SS. We deleted ten genes encoding secreted proteins and characterized the virulence of mutants lacking individual or multiple secreted proteins. A mutant lacking two genes encoding predicted peptidases exhibited reduced virulence in rainbow trout, and mutants lacking a predicted cytolysin showed reduced virulence in zebrafish and rainbow trout. The results establish F. columnare strain MS-FC-4 as a genetically amenable model to identify virulence factors. This may aid development of measures to control columnaris disease and impact fish health and sustainable aquaculture. IMPORTANCE: Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish and is a major problem for aquaculture. Little is known regarding the virulence factors involved in this disease and control measures are inadequate. The type IX secretion system (T9SS) secretes many proteins and is required for virulence, but the secreted virulence factors are not known. We identified a strain of F. columnare (MS-FC-4) that is well suited for genetic manipulation. The components of the T9SS and the proteins secreted by this system were identified. Deletion of core T9SS genes eliminated virulence. Genes encoding ten secreted proteins were deleted. Deletion of two peptidase-encoding genes resulted in decreased virulence in rainbow trout, and deletion of a cytolysin-encoding gene resulted in decreased virulence in rainbow trout and zebrafish. Secreted peptidases and cytolysins are likely virulence factors and are targets for the development of control measures.
Collapse
|
36
|
Mizgalska D, Goulas T, Rodríguez-Banqueri A, Veillard F, Madej M, Małecka E, Szczesniak K, Ksiazek M, Widziołek M, Guevara T, Eckhard U, Solà M, Potempa J, Gomis-Rüth FX. Intermolecular latency regulates the essential C-terminal signal peptidase and sortase of the Porphyromonas gingivalis type-IX secretion system. Proc Natl Acad Sci U S A 2021; 118:e2103573118. [PMID: 34593635 PMCID: PMC8501833 DOI: 10.1073/pnas.2103573118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen of the human dysbiotic oral microbiome that causes severe periodontitis. It employs a type-IX secretion system (T9SS) to shuttle proteins across the outer membrane (OM) for virulence. Uniquely, T9SS cargoes carry a C-terminal domain (CTD) as a secretion signal, which is cleaved and replaced with anionic lipopolysaccharide by transpeptidation for extracellular anchorage to the OM. Both reactions are carried out by PorU, the only known dual-function, C-terminal signal peptidase and sortase. PorU is itself secreted by the T9SS, but its CTD is not removed; instead, intact PorU combines with PorQ, PorV, and PorZ in the OM-inserted "attachment complex." Herein, we revealed that PorU transits between active monomers and latent dimers and solved the crystal structure of the ∼260-kDa dimer. PorU has an elongated shape ∼130 Å in length and consists of seven domains. The first three form an intertwined N-terminal cluster likely engaged in substrate binding. They are followed by a gingipain-type catalytic domain (CD), two immunoglobulin-like domains (IGL), and the CTD. In the first IGL, a long "latency β-hairpin" protrudes ∼30 Å from the surface to form an intermolecular β-barrel with β-strands from the symmetric CD, which is in a latent conformation. Homology modeling of the competent CD followed by in vivo validation through a cohort of mutant strains revealed that PorU is transported and functions as a monomer through a C690/H657 catalytic dyad. Thus, dimerization is an intermolecular mechanism for PorU regulation to prevent untimely activity until joining the attachment complex.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, 43100 Karditsa, Greece
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ewelina Małecka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Szczesniak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Miroslaw Ksiazek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Magda Widziołek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Ulrich Eckhard
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Maria Solà
- Structural MitoLab, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain;
| |
Collapse
|
37
|
Guérin C, Lee BH, Fradet B, van Dijk E, Mirauta B, Thermes C, Bernardet JF, Repoila F, Duchaud E, Nicolas P, Rochat T. Transcriptome architecture and regulation at environmental transitions in flavobacteria: the case of an important fish pathogen. ISME COMMUNICATIONS 2021; 1:33. [PMID: 36739365 PMCID: PMC9723704 DOI: 10.1038/s43705-021-00029-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The family Flavobacteriaceae (phylum Bacteroidetes) is a major component of soil, marine and freshwater ecosystems. In this understudied family, Flavobacterium psychrophilum is a freshwater pathogen that infects salmonid fish worldwide, with critical environmental and economic impact. Here, we report an extensive transcriptome analysis that established the genome map of transcription start sites and transcribed regions, predicted alternative sigma factor regulons and regulatory RNAs, and documented gene expression profiles across 32 biological conditions mimicking the pathogen life cycle. The results link genes to environmental conditions and phenotypic traits and provide insights into gene regulation, highlighting similarities with better known bacteria and original characteristics linked to the phylogenetic position and the ecological niche of the bacterium. In particular, osmolarity appears as a signal for transition between free-living and within-host programs and expression patterns of secreted proteins shed light on probable virulence factors. Further investigations showed that a newly discovered sRNA widely conserved in the genus, Rfp18, is required for precise expression of proteases. By pointing proteins and regulatory elements probably involved in host-pathogen interactions, metabolic pathways, and molecular machineries, the results suggest many directions for future research; a website is made available to facilitate their use to fill knowledge gaps on flavobacteria.
Collapse
Affiliation(s)
- Cyprien Guérin
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France
| | - Bo-Hyung Lee
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Benjamin Fradet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Erwin van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Bogdan Mirauta
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005, Paris, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | - Francis Repoila
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eric Duchaud
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| | - Tatiana Rochat
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
38
|
Gao L, Tan Y, Zhang W, Qi Q, Lu X. Cytophaga hutchinsonii SprA and SprT Are Essential Components of the Type IX Secretion System Required for Ca 2+ Acquisition, Cellulose Degradation, and Cell Motility. Front Microbiol 2021; 12:628555. [PMID: 33643255 PMCID: PMC7906972 DOI: 10.3389/fmicb.2021.628555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The type IX secretion system (T9SS) is a novel protein secretion system, which is found in and confined to the phylum Bacteroidetes. T9SS is involved in the secretion of virulence factors, cell surface adhesins, and complex biopolymer degrading enzymes to the cell surface or extracellular medium. Cytophaga hutchinsonii is a widely distributed bacterium, which is able to efficiently digest cellulose and rapidly glide along the solid surfaces. C. hutchinsonii has a full set of orthologs of T9SS components. However, the functions of most homologous proteins have not been verified. In C. hutchinsonii, CHU_0029 and CHU_2709 are similar in sequence to Flavobacterium johnsoniae T9SS components SprA and SprT, respectively. In this study, the single deletion mutants of chu_0029 (sprA) and chu_2709 (sprT) were obtained using a complex medium with the addition of Ca2+ and Mg2+. Single deletion of sprA or sprT resulted in defects in cellulose utilization and gliding motility. Moreover, the ΔsprA and ΔsprT mutants showed growth defects in Ca2+- and Mg2+-deficient media. The results of ICP-MS test showed that both the whole cell and intracellular concentrations of Ca2+ were dramatically reduced in the ΔsprA and ΔsprT mutants, indicating that SprA and SprT are both important for the assimilation of trace amount of Ca2+. While the assimilation of Mg2+ was not obviously influenced in the ΔsprA and ΔsprT mutants. Through proteomics analysis of the cell surface proteins of the wild type and mutants, we found that the ΔsprA and ΔsprT mutants were defective in secretion of the majority of T9SS substrates. Together, these results indicate that SprA and SprT are both essential components of C. hutchinsonii T9SS, which is required for protein secretion, Ca2+ acquisition, cellulose degradation, and gliding motility in C. hutchinsonii. Our study shed more light on the functions of SprA and SprT in T9SS, and further proved the link between the T9SS and Ca2+ uptake system.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
39
|
Lunar Silva I, Cascales E. Molecular Strategies Underlying Porphyromonas gingivalis Virulence. J Mol Biol 2021; 433:166836. [PMID: 33539891 DOI: 10.1016/j.jmb.2021.166836] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is considered the keystone of periodontitis diseases, a set of inflammatory conditions that affects the tissues surrounding the teeth. In the recent years, the major virulence factors exploited by P. gingivalis have been identified and characterized, including a cocktail of toxins, mainly proteases called gingipains, which promote gingival tissue invasion. These effectors use the Sec pathway to cross the inner membrane and are then recruited and transported across the outer membrane by the type IX secretion system (T9SS). In P. gingivalis, most secreted effectors are attached to anionic lipopolysaccharides (A-LPS), and hence form a virulence coat at the cell surface. P. gingivalis produces additional virulence factors to evade host immune responses, such as capsular polysaccharide, fimbriae and outer membrane vesicles. In addition to periodontitis, it is proposed that this broad repertoire of virulence factors enable P. gingivalis to be involved in diverse human diseases such as rheumatoid arthritis, and neurodegenerative, Alzheimer, and cardiovascular disorders. Here, we review the major virulence determinants of P. gingivalis and discuss future directions to better understand their mechanisms of action.
Collapse
Affiliation(s)
- Ignacio Lunar Silva
- Laboratoire d'Ingénierie des Syst èmes Macromol éculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier CS7071, 13009 Marseille Cedex 20, France.
| | - Eric Cascales
- Laboratoire d'Ingénierie des Syst èmes Macromol éculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier CS7071, 13009 Marseille Cedex 20, France.
| |
Collapse
|
40
|
Type IX Secretion System Cargo Proteins Are Glycosylated at the C Terminus with a Novel Linking Sugar of the Wbp/Vim Pathway. mBio 2020; 11:mBio.01497-20. [PMID: 32873758 PMCID: PMC7468200 DOI: 10.1128/mbio.01497-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis and Tannerella forsythia, two pathogens associated with severe gum disease, use the type IX secretion system (T9SS) to secrete and attach toxic arrays of virulence factor proteins to their cell surfaces. The proteins are tethered to the outer membrane via glycolipid anchors that have remained unidentified for more than 2 decades. In this study, the first sugar molecules (linking sugars) in these anchors are identified and found to be novel compounds. The novel biosynthetic pathway of these linking sugars is also elucidated. A diverse range of bacteria that do not have the T9SS were found to have the genes for this pathway, suggesting that they may synthesize similar linking sugars for utilization in different systems. Since the cell surface attachment of virulence factors is essential for virulence, these findings reveal new targets for the development of novel therapies. Porphyromonas gingivalis and Tannerella forsythia use the type IX secretion system to secrete cargo proteins to the cell surface where they are anchored via glycolipids. In P. gingivalis, the glycolipid is anionic lipopolysaccharide (A-LPS), of partially known structure. Modified cargo proteins were deglycosylated using trifluoromethanesulfonic acid and digested with trypsin or proteinase K. The residual modifications were then extensively analyzed by tandem mass spectrometry. The C terminus of each cargo protein was amide-bonded to a linking sugar whose structure was deduced to be 2-N-seryl, 3-N-acetylglucuronamide in P. gingivalis and 2-N-glycyl, 3-N-acetylmannuronic acid in T. forsythia. The structures indicated the involvement of the Wbp pathway to produce 2,3-di-N-acetylglucuronic acid and a WbpS amidotransferase to produce the uronamide form of this sugar in P. gingivalis. The wbpS gene was identified as PGN_1234 as its deletion resulted in the inability to produce the uronamide. In addition, the P. gingivalisvimA mutant which lacks A-LPS was successfully complemented by the T. forsythiavimA gene; however, the linking sugar was altered to include glycine rather than serine. After removal of the acetyl group at C-2 by the putative deacetylase, VimE, VimA presumably transfers the amino acid to complete the biosynthesis. The data explain all the enzyme activities required for the biosynthesis of the linking sugar accounting for six A-LPS-specific genes. The linking sugar is therefore the key compound that enables the attachment of cargo proteins in P. gingivalis and T. forsythia. We propose to designate this novel linking sugar biosynthetic pathway the Wbp/Vim pathway.
Collapse
|
41
|
Gavriilidou A, Gutleben J, Versluis D, Forgiarini F, van Passel MWJ, Ingham CJ, Smidt H, Sipkema D. Comparative genomic analysis of Flavobacteriaceae: insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genomics 2020; 21:569. [PMID: 32819293 PMCID: PMC7440613 DOI: 10.1186/s12864-020-06971-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Members of the bacterial family Flavobacteriaceae are widely distributed in the marine environment and often found associated with algae, fish, detritus or marine invertebrates. Yet, little is known about the characteristics that drive their ubiquity in diverse ecological niches. Here, we provide an overview of functional traits common to taxonomically diverse members of the family Flavobacteriaceae from different environmental sources, with a focus on the Marine clade. We include seven newly sequenced marine sponge-derived strains that were also tested for gliding motility and antimicrobial activity. RESULTS Comparative genomics revealed that genome similarities appeared to be correlated to 16S rRNA gene- and genome-based phylogeny, while differences were mostly associated with nutrient acquisition, such as carbohydrate metabolism and gliding motility. The high frequency and diversity of genes encoding polymer-degrading enzymes, often arranged in polysaccharide utilization loci (PULs), support the capacity of marine Flavobacteriaceae to utilize diverse carbon sources. Homologs of gliding proteins were widespread among all studied Flavobacteriaceae in contrast to members of other phyla, highlighting the particular presence of this feature within the Bacteroidetes. Notably, not all bacteria predicted to glide formed spreading colonies. Genome mining uncovered a diverse secondary metabolite biosynthesis arsenal of Flavobacteriaceae with high prevalence of gene clusters encoding pathways for the production of antimicrobial, antioxidant and cytotoxic compounds. Antimicrobial activity tests showed, however, that the phenotype differed from the genome-derived predictions for the seven tested strains. CONCLUSIONS Our study elucidates the functional repertoire of marine Flavobacteriaceae and highlights the need to combine genomic and experimental data while using the appropriate stimuli to unlock their uncharted metabolic potential.
Collapse
Affiliation(s)
- Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Francesca Forgiarini
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mark W. J. van Passel
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Present address: Ministry of Health, Welfare and Sport, Parnassusplein 5, 2511 VX, The Hague, The Netherlands
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
42
|
Structural insights of the enzymes from the chitin utilization locus of Flavobacterium johnsoniae. Sci Rep 2020; 10:13775. [PMID: 32792608 PMCID: PMC7426924 DOI: 10.1038/s41598-020-70749-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Chitin is one of the most abundant renewable organic materials found on earth. The chitin utilization locus in Flavobacterium johnsoniae, which encodes necessary proteins for complete enzymatic depolymerization of crystalline chitin, has recently been characterized but no detailed structural information on the enzymes was provided. Here we present protein structures of the F. johnsoniae chitobiase (FjGH20) and chitinase B (FjChiB). FjGH20 is a multi-domain enzyme with a helical domain not before observed in other chitobiases and a domain organization reminiscent of GH84 (β-N-acetylglucosaminidase) family members. The structure of FjChiB reveals that the protein lacks loops and regions associated with exo-acting activity in other chitinases and instead has a more solvent accessible substrate binding cleft, which is consistent with its endo-chitinase activity. Additionally, small angle X-ray scattering data were collected for the internal 70 kDa region that connects the N- and C-terminal chitinase domains of the unique 158 kDa multi-domain chitinase A (FjChiA). The resulting model of the molecular envelope supports bioinformatic predictions of the region comprising six domains, each with similarities to either Fn3-like or Ig-like domains. Taken together, the results provide insights into chitin utilization by F. johnsoniae and reveal structural diversity in bacterial chitin metabolism.
Collapse
|
43
|
The Type IX Secretion System Is Required for Virulence of the Fish Pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 2020; 86:AEM.00799-20. [PMID: 32532872 DOI: 10.1128/aem.00799-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
Flavobacterium psychrophilum causes bacterial cold-water disease in wild and aquaculture-reared fish and is a major problem for salmonid aquaculture. The mechanisms responsible for cold-water disease are not known. It was recently demonstrated that the related fish pathogen, Flavobacterium columnare, requires a functional type IX protein secretion system (T9SS) to cause disease. T9SSs secrete cell surface adhesins, gliding motility proteins, peptidases, and other enzymes, any of which may be virulence factors. The F. psychrophilum genome has genes predicted to encode components of a T9SS. Here, we used a SacB-mediated gene deletion technique recently adapted for use in the Bacteroidetes to delete a core F. psychrophilum T9SS gene, gldN The ΔgldN mutant cells were deficient for secretion of many proteins in comparison to wild-type cells. Complementation of the mutant with wild-type gldN on a plasmid restored secretion. Compared to wild-type and complemented strains, the ΔgldN mutant was deficient in adhesion, gliding motility, and extracellular proteolytic and hemolytic activities. The ΔgldN mutant exhibited reduced virulence in rainbow trout and complementation restored virulence, suggesting that the T9SS plays an important role in the disease.IMPORTANCE Bacterial cold-water disease, caused by F. psychrophilum, is a major problem for salmonid aquaculture. Little is known regarding the virulence factors involved in this disease, and control measures are inadequate. A targeted gene deletion method was adapted to F. psychrophilum and used to demonstrate the importance of the T9SS in virulence. Proteins secreted by this system are likely virulence factors and targets for the development of control measures.
Collapse
|
44
|
Gorasia DG, Veith PD, Reynolds EC. The Type IX Secretion System: Advances in Structure, Function and Organisation. Microorganisms 2020; 8:microorganisms8081173. [PMID: 32752268 PMCID: PMC7463736 DOI: 10.3390/microorganisms8081173] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
The type IX secretion system (T9SS) is specific to the Bacteroidetes phylum. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilises the T9SS to transport many proteins—including its gingipain virulence factors—across the outer membrane and attach them to the cell surface. Additionally, the T9SS is also required for gliding motility in motile organisms, such as Flavobacterium johnsoniae. At least nineteen proteins have been identified as components of the T9SS, including the three transcription regulators, PorX, PorY and SigP. Although the components are known, the overall organisation and the molecular mechanism of how the T9SS operates is largely unknown. This review focusses on the recent advances made in the structure, function, and organisation of the T9SS machinery to provide further insight into this highly novel secretion system.
Collapse
|
45
|
Cytophaga hutchinsonii gldN, Encoding a Core Component of the Type IX Secretion System, Is Essential for Ion Assimilation, Cellulose Degradation, and Cell Motility. Appl Environ Microbiol 2020; 86:AEM.00242-20. [PMID: 32245758 DOI: 10.1128/aem.00242-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
The type IX secretion system (T9SS), which is involved in pathogenicity, motility, and utilization of complex biopolymers, is a novel protein secretion system confined to the phylum Bacteroidetes Cytophaga hutchinsonii, a common cellulolytic soil bacterium belonging to the phylum Bacteroidetes, can rapidly digest crystalline cellulose using a novel strategy. In this study, the deletion mutant of chu_0174 (gldN) was obtained using PY6 medium supplemented with Stanier salts. GldN was verified to be a core component of C. hutchinsonii T9SS, and is indispensable for cellulose degradation, motility, and secretion of C-terminal domain (CTD) proteins. Notably, the ΔgldN mutant showed significant growth defects in Ca2+- and Mg2+-deficient media. These growth defects could be relieved by the addition of Ca2+ or Mg2+ The intracellular concentrations of Ca2+ and Mg2+ were markedly reduced in ΔgldN These results demonstrated that GldN is essential for the acquisition of trace amounts of Ca2+ and Mg2+, especially for Ca2+ Moreover, an outer membrane efflux protein, CHU_2807, which was decreased in abundance on the outer membrane of ΔgldN, is essential for normal growth in PY6 medium. The reduced intracellular accumulation of Ca2+ and Mg2+ in the Δ2807 mutant indicated that CHU_2807 is involved in the uptake of trace amounts of Ca2+ and Mg2+ This study provides insights into the role of T9SS in metal ion assimilation in C. hutchinsonii IMPORTANCE The widespread Gram-negative bacterium Cytophaga hutchinsonii uses a novel but poorly understood strategy to utilize crystalline cellulose. Recent studies showed that a T9SS exists in C. hutchinsonii and is involved in cellulose degradation and motility. However, the main components of the C. hutchinsonii T9SS and their functions are still unclear. Our study characterized the function of GldN, which is a core component of the T9SS. GldN was proved to play vital roles in cellulose degradation and cell motility. Notably, GldN is essential for the acquisition of Ca2+ and Mg2+ ions under Ca2+- and Mg2+-deficient conditions, revealing a link between the T9SS and the metal ion transport system. The outer membrane abundance of CHU_2807, which is essential for Ca2+ and Mg2+ uptake in PY6 medium, was affected by the deletion of GldN. This study demonstrated that the C. hutchinsonii T9SS has extensive functions, including cellulose degradation, motility, and metal ion assimilation, and contributes to further understanding of the function of the T9SS in the phylum Bacteroidetes.
Collapse
|
46
|
Abstract
The translocation of proteins across membranes is a fundamental cellular function. Bacteria have evolved a striking array of pathways for delivering proteins into or across cytoplasmic membranes and, when present, outer membranes. Translocated proteins can form part of the membrane landscape, reside in the periplasmic space situated between the inner and outer membranes of Gram-negative bacteria, deposit on the cell surface, or be released to the extracellular milieu or injected directly into target cells. One protein translocation system, the general secretory pathway, is conserved in all domains of life. A second, the twin-arginine translocation pathway, is also phylogenetically distributed among most bacteria and plant chloroplasts. While all cell types have evolved additional systems dedicated to the translocation of protein cargoes, the number of such systems in bacteria is now known to exceed nine. These dedicated protein translocation systems, which include the types 1 through 9 secretion systems (T1SSs-T9SSs), the chaperone-usher pathway, and type IV pilus system, are the subject of this review. Most of these systems were originally identified and have been extensively characterized in Gram-negative or diderm (two-membrane) species. It is now known that several of these systems also have been adapted to function in Gram-positive or monoderm (single-membrane) species, and at least one pathway is found only in monoderms. This review briefly summarizes the distinctive mechanistic and structural features of each dedicated pathway, as well as the shared properties, that together account for the broad biological diversity of protein translocation in bacteria.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St., Houston, TX, USA.
| |
Collapse
|
47
|
Larsbrink J, McKee LS. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:63-98. [PMID: 32386606 DOI: 10.1016/bs.aambs.2019.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The secretion of extracellular enzymes by soil microbes is rate-limiting in the recycling of biomass. Fungi and bacteria compete and collaborate for nutrients in the soil, with wide ranging ecological impacts. Within soil microbiota, the Bacteroidetes tend to be a dominant phylum, just like in human and animal intestines. The Bacteroidetes thrive because of their ability to secrete diverse arrays of carbohydrate-active enzymes (CAZymes) that target the highly varied glycans in the soil. Bacteroidetes use an energy-saving system of genomic organization, whereby most of their CAZymes are grouped into Polysaccharide Utilization Loci (PULs). These loci enable high level production of specific CAZymes only when their substrate glycans are abundant in the local environment. This gives the Bacteroidetes a clear advantage over other species in the competitive soil environment, further enhanced by the phylum-specific Type IX Secretion System (T9SS). The T9SS is highly effective at secreting CAZymes and/or tethering them to the cell surface, and is tightly coupled to the ability to rapidly glide over solid surfaces, a connection that promotes an active hunt for nutrition. Although the soil Bacteroidetes are less well studied than human gut symbionts, research is uncovering important biochemical and physiological phenomena. In this review, we summarize the state of the art on research into the CAZymes secreted by soil Bacteroidetes in the contexts of microbial soil ecology and the discovery of novel CAZymes for use in industrial biotechnology. We hope that this review will stimulate further investigations into the somewhat neglected enzymology of non-gut Bacteroidetes.
Collapse
Affiliation(s)
- Johan Larsbrink
- Wallenberg Wood Science Center, Gothenburg and Stockholm, Sweden; Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lauren Sara McKee
- Wallenberg Wood Science Center, Gothenburg and Stockholm, Sweden; Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.
| |
Collapse
|