1
|
Wencker FDR, Lyon SE, Breaker RR. Evidence that ribosomal protein bS21 is a component of the OLE ribonucleoprotein complex. RNA Biol 2025; 22:1-14. [PMID: 40322971 PMCID: PMC12054373 DOI: 10.1080/15476286.2025.2491842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
OLE RNAs represent a large and highly structured noncoding RNA (ncRNA) class that is mostly found in Gram-positive extremophiles and/or anaerobes of the Bacillota phylum. These ~600-nucleotide RNAs are among the most structurally complex and well-conserved large ncRNAs whose precise biochemical functions remain to be established. In Halalkalibacterium halodurans, OLE RNA is involved in the adaptation to various unfavourable growth conditions, including exposure to cold (≤20°C), ethanol (≥3% [v/v]), excess Mg2+ (≥4 mM), and non-glucose carbon/energy sources. OLE forms a ribonucleoprotein (RNP) complex with the OLE-associated proteins A, B and C, which are known to be essential for OLE RNP complex function in this species. Bacteria lacking OLE RNA (Δole) or a functional OLE RNP complex exhibit growth defects under the stresses listed above. Here, we demonstrate that ribosomal protein bS21 is a natural component of the OLE RNP complex and we map its precise RNA binding site. The presence of bS21 results in a conformational change in OLE RNA resembling a k-turn substructure previously reported to be relevant to the function of the OLE RNP complex. Mutational disruption of the bS21 protein or its OLE RNA binding site results in growth inhibition under cold and ethanol stress to the same extent as the deletion of the gene for OLE RNA. These findings are consistent with the hypothesis that bS21 is a biologically relevant component of the OLE RNP complex under a subset of stresses managed by the OLE RNP complex.
Collapse
Affiliation(s)
- Freya D. R. Wencker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Seth E. Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Kesler BK, Adams J, Neuert G. Transcriptional stochasticity reveals multiple mechanisms of long non-coding RNA regulation at the Xist-Tsix locus. Nat Commun 2025; 16:4223. [PMID: 40328749 PMCID: PMC12056010 DOI: 10.1038/s41467-025-59496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Long noncoding RNAs (LncRNAs) are increasingly recognized as being involved in human physiology and diseases, but there is a lack of mechanistic understanding for the majority of lncRNAs. We comparatively test proposed mechanisms of antisense lncRNA regulation at the X-chromosome Inactivation (XCI) locus. We find that due to stochasticity in transcription, different mechanisms based on the act of transcription regulate Xist and Tsix at different levels of nascent transcription. At medium levels, RNA polymerases transcribe Xist and Tsix on each strand at the same transcription site and deposit significant amounts of the histone mark H3K36me3, which inhibits Xist. At high levels of nascent transcription, many RNA polymerases transcribe Xist or Tsix resulting in transcriptional interference. Therefore, lncRNA expression variability is not just a quirk of transcription but an important aspect of regulation that allows multiple mechanisms to be employed by the same gene locus within the same cell population.
Collapse
Affiliation(s)
- Benjamin K Kesler
- Department of Molecular Physiology and Biophysics, Basic Sciences, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - John Adams
- Department of Molecular Physiology and Biophysics, Basic Sciences, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, Basic Sciences, School of Medicine, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Basic Sciences, School of Medicine, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Computational Systems Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Treinen C, Peternell C, Noll P, Magosch O, Hausmann R, Henkel M. Molecular process control for industrial biotechnology. Trends Biotechnol 2025:S0167-7799(25)00130-1. [PMID: 40335343 DOI: 10.1016/j.tibtech.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
The development of sustainable and economically competitive biotechnological processes is a central challenge of modern industrial biotechnology. Conventional strategies such as macroscopic and molecular bioprocess design are often insufficient to exploit their full potential. To circumvent this, molecular process control provides the missing link to further consolidate various optimization strategies to achieve multilayered process design. This review highlights the molecular mechanisms that can be exploited for molecular process control. These can either be endogenous or specifically implemented into the organism, and comprise regulatory mechanisms at the transcriptional, translational, and system levels. In addition to serving as a design tool to enhance existing bioprocesses, molecular process control is the gateway to biotechnological advances that will extend the boundaries of future process design.
Collapse
Affiliation(s)
- Chantal Treinen
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Christina Peternell
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Philipp Noll
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Olivia Magosch
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany.
| |
Collapse
|
4
|
Wang L, Xie J, Gong T, Wu H, Tu Y, Peng X, Shang S, Jia X, Ma H, Zou J, Xu S, Zheng X, Zhang D, Liu Y, Zhang C, Luo Y, Huang Z, Shao B, Ying B, Cheng Y, Guo Y, Lai Y, Huang D, Liu J, Wei Y, Sun S, Zhou X, Su Z. Cryo-EM reveals mechanisms of natural RNA multivalency. Science 2025; 388:545-550. [PMID: 40080543 DOI: 10.1126/science.adv3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Homo-oligomerization of biological macromolecules leads to functional assemblies that are critical to understanding various cellular processes. However, RNA quaternary structures have rarely been reported. Comparative genomics analysis has identified RNA families containing hundreds of sequences that adopt conserved secondary structures and likely fold into complex three-dimensional structures. In this study, we used cryo-electron microscopy (cryo-EM) to determine structures from four RNA families, including ARRPOF and OLE forming dimers and ROOL and GOLLD forming hexameric, octameric, and dodecameric nanostructures, at 2.6- to 4.6-angstrom resolutions. These homo-oligomeric assemblies reveal a plethora of structural motifs that contribute to RNA multivalency, including kissing-loop, palindromic base-pairing, A-stacking, metal ion coordination, pseudoknot, and minor-groove interactions. These results provide the molecular basis of intermolecular interactions driving RNA multivalency with potential functional relevance.
Collapse
Affiliation(s)
- Liu Wang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Tao Gong
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Wu
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Yifan Tu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin Peng
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sitong Shang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyu Jia
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyun Ma
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sheng Xu
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xin Zheng
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dong Zhang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zirui Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Cheng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yingqiang Guo
- Cardiovascular Surgery Research Laboratory, Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lai
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianquan Liu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xuedong Zhou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Mayo-Muñoz D, Li H, Mestre MR, Pinilla-Redondo R. The role of noncoding RNAs in bacterial immunity. Trends Microbiol 2025; 33:208-222. [PMID: 39396887 DOI: 10.1016/j.tim.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
The evolutionary arms race between bacteria and phages has driven the development of diverse anti-phage defense mechanisms. Recent studies have identified noncoding RNAs (ncRNAs) as key players in bacteria-phage conflicts, including CRISPR-Cas, toxin-antitoxin (TA), and reverse transcriptase (RT)-based defenses; however, our understanding of their roles in immunity is still emerging. In this review, we explore the multifaceted roles of ncRNAs in bacterial immunity, offering insights into their contributions to defense and anti-defense mechanisms, their influence on immune regulatory networks, and potential biotechnological applications. Finally, we highlight key outstanding questions in the field to spark future research directions.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Huijuan Li
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Mario Rodríguez Mestre
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Badepally NG, de Moura TR, Purta E, Baulin EF, Bujnicki JM. Cryo-EM Structure of raiA ncRNA From Clostridium Reveals a New RNA 3D Fold. J Mol Biol 2024; 436:168833. [PMID: 39454748 DOI: 10.1016/j.jmb.2024.168833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Advancements in genome-wide sequence analysis have led to the discovery of numerous novel bacterial non-coding RNAs (ncRNAs). These ncRNAs have been categorized into various RNA families and classes based on their size, structure, function, and evolutionary relationships. One such ncRNA family, raiA, is notably abundant in the bacterial phyla Firmicutes and Actinobacteria and is remarkably well-conserved across many Gram-positive bacteria. In this study, we integrated cryo-electron microscopy single-particle analysis with computational modeling and biochemical techniques to elucidate the structural characteristics of raiA from Clostridium sp. CAG 138. Our findings reveal the globular 3D fold of raiA, providing valuable structural insights. This analysis paves the way for future investigations into the functional properties of raiA, potentially uncovering new regulatory mechanisms in bacterial ncRNAs.
Collapse
Affiliation(s)
- Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Tales Rocha de Moura
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
7
|
Eschbach SH, Hien EDM, Ghosh T, Lamontagne AM, Lafontaine DA. The Escherichia coli ribB riboswitch senses flavin mononucleotide within a defined transcriptional window. RNA (NEW YORK, N.Y.) 2024; 30:1660-1673. [PMID: 39366707 PMCID: PMC11571811 DOI: 10.1261/rna.080074.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Riboswitches are metabolite-binding RNA regulators that modulate gene expression at the levels of transcription and translation. One of the hallmarks of riboswitch regulation is that they undergo structural changes upon metabolite binding. While a lot of effort has been put to characterize how the metabolite is recognized by the riboswitch, there is still relatively little information regarding how ligand sensing is performed within a transcriptional context. Here, we study the ligand-dependent cotranscriptional folding of the FMN-sensing ribB riboswitch of Escherichia coli Using RNase H assays to study nascent ribB riboswitch transcripts, DNA probes targeting the P1 and sequestering stems indicate that FMN binding leads to the protection of these regions from RNase H cleavage, consistent with the riboswitch inhibiting translation initiation when bound to FMN. Our results show that ligand sensing is strongly affected by the position of elongating RNA polymerase, which is defining an FMN-binding transcriptional window that is bordered in its 3' extremity by a transcriptional pause site. Also, using successively overlapping DNA probes targeting a subdomain of the riboswitch, our data suggest the presence of a previously unsuspected helical region involving the 3' strand of the P1 stem. Our results show that this helical region is conserved across bacterial species, thus suggesting that this predicted structure, the anti*-P1 stem, is involved in the FMN-free conformation of the ribB riboswitch. Overall, our study further demonstrates that intricate folding strategies may be used by riboswitches to perform metabolite sensing during the transcriptional process.
Collapse
Affiliation(s)
- Sébastien H Eschbach
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Elsa D M Hien
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Tithi Ghosh
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Anne-Marie Lamontagne
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| |
Collapse
|
8
|
Silva RG, Amaral PP, Franco GR, Góes-Neto A. Exploring the hidden hot world of long non-coding RNAs in thermophilic fungus using a robust computational pipeline. Sci Rep 2024; 14:19797. [PMID: 39187522 PMCID: PMC11347667 DOI: 10.1038/s41598-024-67975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are versatile RNA molecules recently identified as key regulators of gene expression in response to environmental stress. Our primary focus in this study was to develop a robust computational pipeline for identifying structurally identical lncRNAs across replicates from publicly available bulk RNA-seq datasets. In order to demonstrate the effectiveness of the pipeline, we utilized the transcriptome of the thermophilic fungus Thermothelomyces thermophilus and assessed the expression pattern of lncRNAs in conjunction with Heat Shock Proteins (HSP), a well-known protein family critical for the cell's response to high temperatures. Our findings demonstrate that the identification of structurally identical transcripts among replicates in this thermophilic fungus ensures the reliability and accuracy of RNA studies, contributing to the validity of biological interpretations. Furthermore, the majority of lncRNAs exhibited a distinct expression pattern compared to HSPs. Our study contributes to advancing the understanding of the biological mechanisms comprising lncRNAs in thermophilic fungi.
Collapse
Affiliation(s)
- Roger G Silva
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paulo P Amaral
- Institute of Education and Research, São Paulo, SP, Brazil
| | - Glória R Franco
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
Fernando CM, Breaker RR. Bioinformatic prediction of proteins relevant to functions of the bacterial OLE ribonucleoprotein complex. mSphere 2024; 9:e0015924. [PMID: 38771028 PMCID: PMC11332333 DOI: 10.1128/msphere.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
OLE (ornate, large, extremophilic) RNAs are members of a noncoding RNA class present in many Gram-positive, extremophilic bacteria. The large size, complex structure, and extensive sequence conservation of OLE RNAs are characteristics consistent with the hypothesis that they likely function as ribozymes. The OLE RNA representative from Halalkalibacterium halodurans is known to localize to the phospholipid membrane and requires at least three essential protein partners: OapA, OapB, and OapC. However, the precise biochemical functions of this unusual ribonucleoprotein (RNP) complex remain unknown. Genetic disruption of OLE RNA or its partners revealed that the complex is beneficial under diverse stress conditions. To search for additional links between OLE RNA and other cellular components, we used phylogenetic profiling to identify proteins that are either correlated or anticorrelated with the presence of OLE RNA in various bacterial species. This analysis revealed strong correlations between the essential protein-binding partners of OLE RNA and organisms that carry the ole gene. Similarly, proteins involved in sporulation are correlated, suggesting a potential role for the OLE RNP complex in spore formation. Intriguingly, the Mg2+ transporter MpfA is strongly anticorrelated with OLE RNA. Evidence indicates that MpfA is structurally related to OapA and therefore MpfA may serve as a functional replacement for some contributions otherwise performed by the OLE RNP complex in species that lack this device. Indeed, OLE RNAs might represent an ancient RNA class that enabled primitive organisms to sense and respond to major cellular stresses.IMPORTANCEOLE (ornate, large, extremophilic) RNAs were first reported nearly 20 years ago, and they represent one of the largest and most intricately folded noncoding RNA classes whose biochemical function remains to be established. Other RNAs with similar size, structural complexity, and extent of sequence conservation have proven to catalyze chemical transformations. Therefore, we speculate that OLE RNAs likewise operate as ribozymes and that they might catalyze a fundamental reaction that has persisted since the RNA World era-a time before the emergence of proteins in evolution. To seek additional clues regarding the function of OLE RNA, we undertook a computational effort to identify potential protein components of the OLE ribonucleoprotein (RNP) complex or other proteins that have functional links to this device. This analysis revealed known protein partners and several additional proteins that might be physically or functionally linked to the OLE RNP complex. Finally, we identified a Mg2+ transporter protein, MpfA, that strongly anticorrelates with the OLE RNP complex. This latter result suggests that MpfA might perform at least some functions that are like those carried out by the OLE RNP complex.
Collapse
Affiliation(s)
- Chrishan M. Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Narunsky A, Higgs GA, Torres BM, Yu D, de Andrade GB, Kavita K, Breaker RR. The discovery of novel noncoding RNAs in 50 bacterial genomes. Nucleic Acids Res 2024; 52:5152-5165. [PMID: 38647067 PMCID: PMC11109978 DOI: 10.1093/nar/gkae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Structured noncoding RNAs (ncRNAs) contribute to many important cellular processes involving chemical catalysis, molecular recognition and gene regulation. Few ncRNA classes are broadly distributed among organisms from all three domains of life, but the list of rarer classes that exhibit surprisingly diverse functions is growing. We previously developed a computational pipeline that enables the near-comprehensive identification of structured ncRNAs expressed from individual bacterial genomes. The regions between protein coding genes are first sorted based on length and the fraction of guanosine and cytidine nucleotides. Long, GC-rich intergenic regions are then examined for sequence and structural similarity to other bacterial genomes. Herein, we describe the implementation of this pipeline on 50 bacterial genomes from varied phyla. More than 4700 candidate intergenic regions with the desired characteristics were identified, which yielded 44 novel riboswitch candidates and numerous other putative ncRNA motifs. Although experimental validation studies have yet to be conducted, this rate of riboswitch candidate discovery is consistent with predictions that many hundreds of novel riboswitch classes remain to be discovered among the bacterial species whose genomes have already been sequenced. Thus, many thousands of additional novel ncRNA classes likely remain to be discovered in the bacterial domain of life.
Collapse
Affiliation(s)
- Aya Narunsky
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Gadareth A Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Blake M Torres
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Gabriel Belem de Andrade
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
11
|
Soares LW, King CG, Fernando CM, Roth A, Breaker RR. Genetic disruption of the bacterial raiA motif noncoding RNA causes defects in sporulation and aggregation. Proc Natl Acad Sci U S A 2024; 121:e2318008121. [PMID: 38306478 PMCID: PMC10861870 DOI: 10.1073/pnas.2318008121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/02/2023] [Indexed: 02/04/2024] Open
Abstract
Several structured noncoding RNAs in bacteria are essential contributors to fundamental cellular processes. Thus, discoveries of additional ncRNA classes provide opportunities to uncover and explore biochemical mechanisms relevant to other major and potentially ancient processes. A candidate structured ncRNA named the "raiA motif" has been found via bioinformatic analyses in over 2,500 bacterial species. The gene coding for the RNA typically resides between the raiA and comFC genes of many species of Bacillota and Actinomycetota. Structural probing of the raiA motif RNA from the Gram-positive anaerobe Clostridium acetobutylicum confirms key features of its sophisticated secondary structure model. Expression analysis of raiA motif RNA reveals that the RNA is constitutively produced but reaches peak abundance during the transition from exponential growth to stationary phase. The raiA motif RNA becomes the fourth most abundant RNA in C. acetobutylicum, excluding ribosomal RNAs and transfer RNAs. Genetic disruption of the raiA motif RNA causes cells to exhibit substantially decreased spore formation and diminished ability to aggregate. Restoration of normal cellular function in this knock-out strain is achieved by expression of a raiA motif gene from a plasmid. These results demonstrate that raiA motif RNAs normally participate in major cell differentiation processes by operating as a trans-acting factor.
Collapse
Affiliation(s)
- Lucas W. Soares
- Department of Microbial Pathogenesis, Yale University, New Haven, CT06536
| | - Christopher G. King
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
| | - Chrishan M. Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
| | - Adam Roth
- HHMI, Yale University, New Haven, CT06511-8103
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
- HHMI, Yale University, New Haven, CT06511-8103
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511-8103
| |
Collapse
|
12
|
Lyon SE, Wencker FDR, Fernando CM, Harris KA, Breaker RR. Disruption of the bacterial OLE RNP complex impairs growth on alternative carbon sources. PNAS NEXUS 2024; 3:pgae075. [PMID: 38415217 PMCID: PMC10898510 DOI: 10.1093/pnasnexus/pgae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Ornate, large, extremophilic (OLE) RNAs comprise a class of large noncoding RNAs in bacteria whose members form a membrane-associated ribonucleoprotein (RNP) complex. This complex facilitates cellular adaptation to diverse stresses such as exposure to cold, short-chain alcohols, and elevated Mg2+ concentrations. Here, we report additional phenotypes exhibited by Halalkalibacterium halodurans (formerly called Bacillus halodurans) strains lacking functional OLE RNP complexes. Genetic disruption of the complex causes restricted growth compared to wild-type cells when cultured in minimal media (MM) wherein glucose is replaced with alternative carbon/energy sources. Genetic suppressor selections conducted in glutamate MM yielded isolates that carry mutations in or near genes relevant to Mn2+ homeostasis (ykoY and mntB), phosphate homeostasis (phoR), and putative multidrug resistance (bmrCD). These functional links between OLE RNA, carbon/energy management, and other fundamental processes including protein secretion are consistent with the hypothesis that the OLE RNP complex is a major contributor to cellular adaptation to unfavorable growth conditions.
Collapse
Affiliation(s)
- Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Freya D R Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
13
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Breaker RR, Harris KA, Lyon SE, Wencker FDR, Fernando CM. Evidence that OLE RNA is a component of a major stress-responsive ribonucleoprotein particle in extremophilic bacteria. Mol Microbiol 2023; 120:324-340. [PMID: 37469248 DOI: 10.1111/mmi.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Freya D R Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Kornienko M, Bespiatykh D, Gorodnichev R, Abdraimova N, Shitikov E. Transcriptional Landscapes of Herelleviridae Bacteriophages and Staphylococcus aureus during Phage Infection: An Overview. Viruses 2023; 15:1427. [PMID: 37515114 PMCID: PMC10383478 DOI: 10.3390/v15071427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The issue of antibiotic resistance in healthcare worldwide has led to a pressing need to explore and develop alternative approaches to combat infectious diseases. Among these methods, phage therapy has emerged as a potential solution to tackle this growing challenge. Virulent phages of the Herelleviridae family, known for their ability to cause lysis of Staphylococcus aureus, a clinically significant pathogen frequently associated with multidrug resistance, have proven to be one of the most effective viruses utilized in phage therapy. In order to utilize phages for therapeutic purposes effectively, a thorough investigation into their physiology and mechanisms of action on infected cells is essential. The use of omics technologies, particularly total RNA sequencing, is a promising approach for analyzing the interaction between phages and their hosts, allowing for the assessment of both the behavior of the phage during infection and the cell's response. This review aims to provide a comprehensive overview of the physiology of the Herelleviridae family, utilizing existing analyses of their total phage transcriptomes. Additionally, it sheds light on the changes that occur in the metabolism of S. aureus when infected with virulent bacteriophages, contributing to a deeper understanding of the phage-host interaction.
Collapse
Affiliation(s)
- Maria Kornienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Roman Gorodnichev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Narina Abdraimova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| |
Collapse
|
16
|
Sapkota KP, Li S, Zhang J. Cotranscriptional Assembly and Native Purification of Large RNA-RNA Complexes for Structural Analyses. Methods Mol Biol 2023; 2568:1-12. [PMID: 36227558 PMCID: PMC11275850 DOI: 10.1007/978-1-0716-2687-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent technological developments such as cryogenic electron microscopy (Cryo-EM) and X-ray free electron lasers (XFEL) have significantly expanded the available toolkit to visualize large, complex noncoding RNAs and their complexes. Consequently, the quality of the RNA sample, as measured by its chemical monodispersity and conformational homogeneity, has become the bottleneck that frequently precludes effective structural analyses. Here we describe a general RNA sample preparation protocol that combines cotranscriptional RNA folding and RNA-RNA complex assembly, followed by native purification of stoichiometric complexes. We illustrate and discuss the utility of this versatile method in overcoming RNA misfolding and enabling the structural and mechanistic elucidations of the T-box riboswitch-tRNA complexes.
Collapse
Affiliation(s)
- Krishna P Sapkota
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Structural Biochemistry Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
17
|
Aliaga Goltsman DS, Alexander LM, Lin JL, Fregoso Ocampo R, Freeman B, Lamothe RC, Perez Rivas A, Temoche-Diaz MM, Chadha S, Nordenfelt N, Janson OP, Barr I, Devoto AE, Cost GJ, Butterfield CN, Thomas BC, Brown CT. Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nat Commun 2022; 13:7602. [PMID: 36522342 PMCID: PMC9755519 DOI: 10.1038/s41467-022-35257-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Programmable, RNA-guided nucleases are diverse enzymes that have been repurposed for biotechnological applications. However, to further expand the therapeutic application of these tools there is a need for targetable systems that are small enough to be delivered efficiently. Here, we mined an extensive genome-resolved metagenomics database and identified families of uncharacterized RNA-guided, compact nucleases (between 450 and 1,050 aa). We report that Cas9d, a new CRISPR type II subtype, contains Zinc-finger motifs and high arginine content, features that we also found in nucleases related to HEARO effectors. These enzymes exhibit diverse biochemical characteristics and are broadly targetable. We show that natural Cas9d enzymes are capable of genome editing in mammalian cells with >90% efficiency, and further engineered nickase variants into the smallest base editors active in E. coli and human cells. Their small size, broad targeting potential, and translatability suggest that Cas9d and HEARO systems will enable a variety of genome editing applications.
Collapse
Affiliation(s)
| | | | - Jyun-Liang Lin
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | | | | | | | | | | | | | | | - Owen P Janson
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | - Ian Barr
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | - Audra E Devoto
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | - Gregory J Cost
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | | | - Brian C Thomas
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | | |
Collapse
|
18
|
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li Huang
- The Future Laboratory, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Lyon SE, Harris KA, Odzer NB, Wilkins SG, Breaker RR. Ornate, large, extremophilic (OLE) RNA forms a kink turn necessary for OapC protein recognition and RNA function. J Biol Chem 2022; 298:102674. [PMID: 36336078 PMCID: PMC9723947 DOI: 10.1016/j.jbc.2022.102674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
Ornate, large, extremophilic (OLE) RNAs represent a class of noncoding RNAs prevalent in Gram-positive, extremophilic/anaerobic bacterial species. OLE RNAs (∼600 nt), whose precise biochemical functions remain mysterious, form an intricate secondary structure interspersed with regions of highly conserved nucleotides. In the alkali-halophilic bacterium Bacillus halodurans, OLE RNA is a component of a ribonucleoprotein (RNP) complex involving at least two proteins named OapA and OapB, but additional components may exist that could point to functional roles for the RNA. Disruption of the genes for either OLE RNA, OapA, or OapB result in the inability of cells to overcome cold, alcohol, or Mg2+ stresses. In the current study, we used in vivo crosslinking followed by OLE RNA isolation to identify the protein YbxF as a potential additional partner in the OLE RNP complex. Notably, a mutation in the gene for this same protein was also reported to be present in a strain wherein the complex is nonfunctional. The B. halodurans YbxF (herein renamed OapC) is homologous to a bacterial protein earlier demonstrated to bind kink turn (k-turn) RNA structural motifs. In vitro RNA-protein binding assays reveal that OLE RNA forms a previously unrecognized k-turn that serves as the natural binding site for YbxF/OapC. Moreover, B. halodurans cells carrying OLE RNAs with disruptive mutations in the k-turn exhibit phenotypes identical to cells lacking functional OLE RNP complexes. These findings reveal that the YbxF/OapC protein of B. halodurans is important for the formation of a functional OLE RNP complex.
Collapse
Affiliation(s)
- Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Nicole B Odzer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Sarah G Wilkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA; Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
20
|
Majumder R, Ghosh S, Das A, Singh MK, Samanta S, Saha A, Saha RP. Prokaryotic ncRNAs: Master regulators of gene expression. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100136. [PMID: 36568271 PMCID: PMC9780080 DOI: 10.1016/j.crphar.2022.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
ncRNA plays a very pivotal role in various biological activities ranging from gene regulation to controlling important developmental networks. It is imperative to note that this small molecule is not only present in all three domains of cellular life, but is an important modulator of gene regulation too in all these domains. In this review, we discussed various aspects of ncRNA biology, especially their role in bacteria. The last two decades of scientific research have proved that this molecule plays an important role in the modulation of various regulatory pathways in bacteria including the adaptive immune system and gene regulation. It is also very surprising to note that this small molecule is also employed in various processes related to the pathogenicity of virulent microorganisms.
Collapse
Affiliation(s)
- Rajib Majumder
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Sanmitra Ghosh
- Department of Biological Sciences, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Arpita Das
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Manoj Kumar Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India,Corresponding authors.
| | - Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India,Corresponding authors.
| |
Collapse
|
21
|
Finstrlová A, Mašlaňová I, Blasdel Reuter BG, Doškař J, Götz F, Pantůček R. Global Transcriptomic Analysis of Bacteriophage-Host Interactions between a Kayvirus Therapeutic Phage and Staphylococcus aureus. Microbiol Spectr 2022; 10:e0012322. [PMID: 35435752 PMCID: PMC9241854 DOI: 10.1128/spectrum.00123-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Kayviruses are polyvalent broad host range staphylococcal phages with a potential to combat staphylococcal infections. However, the implementation of rational phage therapy in medicine requires a thorough understanding of the interactions between bacteriophages and pathogens at omics level. To evaluate the effect of a phage used in therapy on its host bacterium, we performed differential transcriptomic analysis by RNA-Seq from bacteriophage K of genus Kayvirus infecting two Staphylococcus aureus strains, prophage-less strain SH1000 and quadruple lysogenic strain Newman. The temporal transcriptional profile of phage K was comparable in both strains except for a few loci encoding hypothetical proteins. Stranded sequencing revealed transcription of phage noncoding RNAs that may play a role in the regulation of phage and host gene expression. The transcriptional response of S. aureus to phage K infection resembles a general stress response with differential expression of genes involved in a DNA damage response. The host transcriptional changes involved upregulation of nucleotide, amino acid and energy synthesis and transporter genes and downregulation of host transcription factors. The interaction of phage K with variable genetic elements of the host showed slight upregulation of gene expression of prophage integrases and antirepressors. The virulence genes involved in adhesion and immune evasion were only marginally affected, making phage K suitable for therapy. IMPORTANCE Bacterium Staphylococcus aureus is a common human and veterinary pathogen that causes mild to life-threatening infections. As strains of S. aureus are becoming increasingly resistant to multiple antibiotics, the need to search for new therapeutics is urgent. A promising alternative to antibiotic treatment of staphylococcal infections is a phage therapy using lytic phages from the genus Kayvirus. Here, we present a comprehensive view on the phage-bacterium interactions on transcriptomic level that improves the knowledge of molecular mechanisms underlying the Kayvirus lytic action. The results will ensure safer usage of the phage therapeutics and may also serve as a basis for the development of new antibacterial strategies.
Collapse
Affiliation(s)
- Adéla Finstrlová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
22
|
Gonçalves KB, Appel RJC, Bôas LAV, Cardoso PF, Bôas GTV. Genomic insights into the diversity of non-coding RNAs in Bacillus cereus sensu lato. Curr Genet 2022; 68:449-466. [PMID: 35552506 DOI: 10.1007/s00294-022-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Bacillus cereus sensu lato is a group of bacteria of medical and agricultural importance in different ecological niches and with controversial taxonomic relationships. Studying the composition of non-coding RNAs (ncRNAs) in several bacterial groups has been an important tool for identifying genetic information and better understanding genetic regulation towards environment adaptation. However, to date, no comparative genomics study of ncRNA has been performed in this group. Thus, this study aimed to identify and characterize the set of ncRNAs from 132 strains of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis to obtain an overview of the diversity and distribution of these genetic elements in these species. We observed that the number of ncRNAs differs in the chromosomes of the three species, but not in the plasmids, when species or phylogenetic clusters were compared. The prevailing functional/structural category was Cis-reg and the most frequent class was Riboswitch. However, in plasmids, the class Group II intron was the most frequent. Also, nine ncRNAs were selected for validation in the strain B. thuringiensis 407 by RT-PCR, which allowed to identify the expression of the ncRNAs. The wide distribution and diversity of ncRNAs in the B. cereus group, and more intensely in B. thuringiensis, may help improve the abilities of these species to adapt to various environmental changes. Further studies should address the expression of these genetic elements in different conditions.
Collapse
Affiliation(s)
- Kátia B Gonçalves
- Depto Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | | | | |
Collapse
|
23
|
Study of the diversity of 16S-23S rDNA internal transcribed spacer (ITS) typing of Escherichia coli strains isolated from various biotopes in Tunisia. Arch Microbiol 2021; 204:32. [PMID: 34923609 DOI: 10.1007/s00203-021-02684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
We investigated the 16S-23S rRNA intergenic spacer region (ISR)-PCR and the phylogenetic PCR analyses of 150 Escherichia coli isolates as tools to explore their diversity, according to their sampling origins, and their relative dominance in these sampling sources. These genetic markers are used to explore phylogenetic and genetic relationships of these 150 E. coli isolates recovered from different environmental sources (water, food, animal, human and vegetables). These isolates are tested for their biochemical pattern and later genotyped through the 16S-23S rRNA intergenic spacer PCR amplification and their polymorphism investigation of PCR-amplified 16S-23S rDNA ITS. The main results of the pattern band profile revealed one to four DNA fragments. Distributing 150 E. coli isolates according to their ITS and using RS-PCR, revealed four genotypes and four subtypes. The DNA fragment size ranged from 450 to 550 bp. DNA band patterns analysis revealed considerable genetic diversity in interspecies. Thus, the 450 and 550 bp sizes of the common bands in all E. coli isolates are highly diversified. Genotype I appeared as the most frequent with 77.3% (116 isolates), genotype II with 12% (18 isolates); genotype III with 9.7% (14 isolates), and the IV rarely occurred with 4% (2 isolates). Distributing the E. coli phylogroups showed 84 isolates (56%) of group A, 35 isolates (23.3%) of group B1, 28 isolates (18.7%) of group B2 and only three isolates (2%) of group D.
Collapse
|
24
|
Roth A, Weinberg Z, Vanderschuren K, Murdock MH, Breaker RR. Natural circularly permuted group II introns in bacteria produce RNA circles. iScience 2021; 24:103431. [PMID: 34901790 PMCID: PMC8637638 DOI: 10.1016/j.isci.2021.103431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Group II self-splicing introns are large structured RNAs that remove themselves from transcripts while simultaneously sealing the resulting gaps. Some representatives can subsequently reverse splice into DNA, accounting for their pervasive distribution in bacteria. The catalytically active tertiary structure of each group II intron is assembled from six domains that are arranged in a conserved order. Here, we report structural isomers of group II introns, called CP group II ribozymes, wherein the characteristic order of domains has been altered. Domains five and six, which normally reside at the 3' end of group II introns, instead occupy the 5' end to form circularly permuted variants. These unusual group II intron derivatives are catalytically active and generate large linear branched and small circular RNAs, reaction products that are markedly different from those generated by canonical group II introns. The biological role of CP group II ribozymes is currently unknown.
Collapse
Affiliation(s)
- Adam Roth
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA
| | - Zasha Weinberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA
| | - Koen Vanderschuren
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Mitchell H. Murdock
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA
| |
Collapse
|
25
|
A workflow to identify novel proteins based on the direct mapping of peptide-spectrum-matches to genomic locations. BMC Bioinformatics 2021; 22:277. [PMID: 34039272 PMCID: PMC8157683 DOI: 10.1186/s12859-021-04159-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Background Small Proteins have received increasing attention in recent years. They have in particular been implicated as signals contributing to the coordination of bacterial communities. In genome annotations they are often missing or hidden among large numbers of hypothetical proteins because genome annotation pipelines often exclude short open reading frames or over-predict hypothetical proteins based on simple models. The validation of novel proteins, and in particular of small proteins (sProteins), therefore requires additional evidence. Proteogenomics is considered the gold standard for this purpose. It extends beyond established annotations and includes all possible open reading frames (ORFs) as potential sources of peptides, thus allowing the discovery of novel, unannotated proteins. Typically this results in large numbers of putative novel small proteins fraught with large fractions of false-positive predictions. Results We observe that number and quality of the peptide-spectrum matches (PSMs) that map to a candidate ORF can be highly informative for the purpose of distinguishing proteins from spurious ORF annotations. We report here on a workflow that aggregates PSM quality information and local context into simple descriptors and reliably separates likely proteins from the large pool of false-positive, i.e., most likely untranslated ORFs. We investigated the artificial gut microbiome model SIHUMIx, comprising eight different species, for which we validate 5114 proteins that have previously been annotated only as hypothetical ORFs. In addition, we identified 37 non-annotated protein candidates for which we found evidence at the proteomic and transcriptomic level. Half (19) of these candidates have close functional homologs in other species. Another 12 candidates have homologs designated as hypothetical proteins in other species. The remaining six candidates are short (< 100 AA) and are most likely bona fide novel proteins. Conclusions The aggregation of PSM quality information for predicted ORFs provides a robust and efficient method to identify novel proteins in proteomics data. The workflow is in particular capable of identifying small proteins and frameshift variants. Since PSMs are explicitly mapped to genomic locations, it furthermore facilitates the integration of transcriptomics data and other sources of genome-level information. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04159-8.
Collapse
|
26
|
Liu B, Thippabhotla S, Zhang J, Zhong C. DRAGoM: Classification and Quantification of Noncoding RNA in Metagenomic Data. Front Genet 2021; 12:669495. [PMID: 34025724 PMCID: PMC8131839 DOI: 10.3389/fgene.2021.669495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) play important regulatory and functional roles in microorganisms, such as regulation of gene expression, signaling, protein synthesis, and RNA processing. Hence, their classification and quantification are central tasks toward the understanding of the function of the microbial community. However, the majority of the current metagenomic sequencing technologies generate short reads, which may contain only a partial secondary structure that complicates ncRNA homology detection. Meanwhile, de novo assembly of the metagenomic sequencing data remains challenging for complex communities. To tackle these challenges, we developed a novel algorithm called DRAGoM (Detection of RNA using Assembly Graph from Metagenomic data). DRAGoM first constructs a hybrid graph by merging an assembly string graph and an assembly de Bruijn graph. Then, it classifies paths in the hybrid graph and their constituent readsinto differentncRNA families based on both sequence and structural homology. Our benchmark experiments show that DRAGoMcan improve the performance and robustness over traditional approaches on the classification and quantification of a wide class of ncRNA families.
Collapse
Affiliation(s)
- Ben Liu
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, United States
| | - Sirisha Thippabhotla
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, United States
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, United States.,Bioengineering Program, The University of Kansas, Lawrence, KS, United States.,Center for Computational Biology, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
27
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
28
|
Aroonsri A, Kongsee J, Gunawan JD, Aubry DA, Shaw PJ. A cell-based ribozyme reporter system employing a chromosomally-integrated 5' exonuclease gene. BMC Mol Cell Biol 2021; 22:20. [PMID: 33726662 PMCID: PMC7967978 DOI: 10.1186/s12860-021-00357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bioinformatic genome surveys indicate that self-cleaving ribonucleic acids (ribozymes) appear to be widespread among all domains of life, although the functions of only a small number have been validated by biochemical methods. Alternatively, cell-based reporter gene assays can be used to validate ribozyme function. However, reporter activity can be confounded by phenomena unrelated to ribozyme-mediated cleavage of RNA. Results We established a ribozyme reporter system in Escherichia coli in which a significant reduction of reporter activity is manifest when an active ribozyme sequence is fused to the reporter gene and the expression of a foreign Bacillus subtilis RNaseJ1 5′ exonuclease is induced from a chromosomally-integrated gene in the same cell. Conclusions The reporter system could be useful for validating ribozyme function in candidate sequences identified from bioinformatics. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00357-7.
Collapse
Affiliation(s)
- Aiyada Aroonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Jindaporn Kongsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Jeremy David Gunawan
- School of Life Science, Indonesia International Institute for Life Sciences (i3L), Jakarta, 13210, Indonesia
| | - Daniel Abidin Aubry
- School of Life Science, Indonesia International Institute for Life Sciences (i3L), Jakarta, 13210, Indonesia
| | - Philip James Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
29
|
Structure of a bacterial OapB protein with its OLE RNA target gives insights into the architecture of the OLE ribonucleoprotein complex. Proc Natl Acad Sci U S A 2021; 118:2020393118. [PMID: 33619097 PMCID: PMC7936274 DOI: 10.1073/pnas.2020393118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial noncoding RNAs (ncRNAs) play key roles in many biological processes including gene regulation, RNA processing and modification, and protein synthesis and translocation. OLE RNAs, found in many Gram-positive species, are one of the largest highly structured ncRNA classes whose biochemical functions remain unknown. In Bacillus halodurans, OLE RNAs interact with at least two proteins, OapA and OapB, which are required to assemble a functional OLE ribonucleoprotein (RNP) complex contributing to cellular responses to certain environmental stresses. We established X-ray structural models that reveal the sequence elements and tertiary structural features of OLE RNA that are critical for its specific recognition by OapB, which will aid future exploration of the biological and biochemical functions of the unusual OLE RNP complex. The OLE (ornate, large, and extremophilic) RNA class is one of the most complex and well-conserved bacterial noncoding RNAs known to exist. This RNA is known to be important for bacterial responses to stress caused by short-chain alcohols, cold, and elevated Mg2+ concentrations. These biological functions have been shown to require the formation of a ribonucleoprotein (RNP) complex including at least two protein partners: OLE-associated protein A (OapA) and OLE-associated protein B (OapB). OapB directly binds OLE RNA with high-affinity and specificity and is believed to assist in assembling the functional OLE RNP complex. To provide the atomic details of OapB–OLE RNA interaction and to potentially reveal previously uncharacterized protein–RNA interfaces, we determined the structure of OapB from Bacillus halodurans alone and in complex with an OLE RNA fragment at resolutions of 1.0 Å and 2.0 Å, respectively. The structure of OapB exhibits a K-shaped overall architecture wherein its conserved KOW motif and additional unique structural elements of OapB form a bipartite RNA-binding surface that docks to the P13 hairpin and P12.2 helix of OLE RNA. These high-resolution structures elucidate the molecular contacts used by OapB to form a stable RNP complex and explain the high conservation of sequences and structural features at the OapB–OLE RNA-binding interface. These findings provide insight into the role of OapB in the assembly and biological function of OLE RNP complex and can guide the exploration of additional possible OLE RNA-binding interactions present in OapB.
Collapse
|
30
|
Geissler AS, Anthon C, Alkan F, González-Tortuero E, Poulsen LD, Kallehauge TB, Breüner A, Seemann SE, Vinther J, Gorodkin J. BSGatlas: a unified Bacillus subtilis genome and transcriptome annotation atlas with enhanced information access. Microb Genom 2021; 7:000524. [PMID: 33539279 PMCID: PMC8208703 DOI: 10.1099/mgen.0.000524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
A large part of our current understanding of gene regulation in Gram-positive bacteria is based on Bacillus subtilis, as it is one of the most well studied bacterial model systems. The rapid growth in data concerning its molecular and genomic biology is distributed across multiple annotation resources. Consequently, the interpretation of data from further B. subtilis experiments becomes increasingly challenging in both low- and large-scale analyses. Additionally, B. subtilis annotation of structured RNA and non-coding RNA (ncRNA), as well as the operon structure, is still lagging behind the annotation of the coding sequences. To address these challenges, we created the B. subtilis genome atlas, BSGatlas, which integrates and unifies multiple existing annotation resources. Compared to any of the individual resources, the BSGatlas contains twice as many ncRNAs, while improving the positional annotation for 70 % of the ncRNAs. Furthermore, we combined known transcription start and termination sites with lists of known co-transcribed gene sets to create a comprehensive transcript map. The combination with transcription start/termination site annotations resulted in 717 new sets of co-transcribed genes and 5335 untranslated regions (UTRs). In comparison to existing resources, the number of 5' and 3' UTRs increased nearly fivefold, and the number of internal UTRs doubled. The transcript map is organized in 2266 operons, which provides transcriptional annotation for 92 % of all genes in the genome compared to the at most 82 % by previous resources. We predicted an off-target-aware genome-wide library of CRISPR-Cas9 guide RNAs, which we also linked to polycistronic operons. We provide the BSGatlas in multiple forms: as a website (https://rth.dk/resources/bsgatlas/), an annotation hub for display in the UCSC genome browser, supplementary tables and standardized GFF3 format, which can be used in large scale -omics studies. By complementing existing resources, the BSGatlas supports analyses of the B. subtilis genome and its molecular biology with respect to not only non-coding genes but also genome-wide transcriptional relationships of all genes.
Collapse
Affiliation(s)
- Adrian Sven Geissler
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Christian Anthon
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ferhat Alkan
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Enrique González-Tortuero
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- Present address: School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Line Dahl Poulsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 1165 Copenhagen, Denmark
| | | | | | - Stefan Ernst Seemann
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jeppe Vinther
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| |
Collapse
|
31
|
A Family of Viral Satellites Manipulates Invading Virus Gene Expression and Can Affect Cholera Toxin Mobilization. mSystems 2020; 5:5/5/e00358-20. [PMID: 33051375 PMCID: PMC7567579 DOI: 10.1128/msystems.00358-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many viruses possess temporally unfolding gene expression patterns aimed at subverting host defenses, commandeering host metabolism, and ultimately producing a large number of progeny virions. High-throughput omics tools, such as RNA sequencing (RNA-seq), have dramatically enhanced the resolution of expression patterns during infection. Less studied have been viral satellites, mobile genomes that parasitize viruses. By performing RNA-seq on infection time courses, we have obtained the first time-resolved transcriptomes for bacteriophage satellites during lytic infection. Specifically, we have acquired transcriptomes for the lytic Vibrio cholerae phage ICP1 and all five known variants of ICP1's parasite, the phage inducible chromosomal island-like elements (PLEs). PLEs rely on ICP1 for both DNA replication and mobilization and abolish production of ICP1 progeny in infected cells. We investigated PLEs' impact on ICP1 gene expression and found that PLEs did not broadly restrict or reduce ICP1 gene expression. A major exception occurred in ICP1's capsid morphogenesis operon, which was downregulated by each of the PLE variants. Surprisingly, PLEs were also found to alter the gene expression of CTXΦ, the integrative phage that encodes cholera toxin and is necessary for virulence of toxigenic V. cholerae One PLE, PLE1, upregulated CTXΦ genes involved in replication and integration and boosted CTXΦ mobility following induction of the SOS response.IMPORTANCE Viral satellites are found in all domains of life and can have profound fitness effects on both the viruses they parasitize and the cells they reside in. In this study, we have acquired the first RNA sequencing (RNA-seq) transcriptomes of viral satellites outside plants, as well as the transcriptome of the phage ICP1, a predominant predator of pandemic Vibrio cholerae Capsid downregulation, previously observed in an unrelated phage satellite, is conserved among phage inducible chromosomal island-like elements (PLEs), suggesting that viral satellites are under strong selective pressure to reduce the capsid expression of their larger host viruses. Despite conserved manipulation of capsid expression, PLEs exhibit divergent effects on CTXΦ transcription and mobility. Our results demonstrate that PLEs can influence both their hosts' resistance to phage and the mobility of virulence-encoding elements, suggesting that PLEs can play a substantial role in shaping Vibrio cholerae evolution.
Collapse
|
32
|
Exosomal Long Non-coding RNAs: Emerging Players in the Tumor Microenvironment. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1371-1383. [PMID: 33738133 PMCID: PMC7940039 DOI: 10.1016/j.omtn.2020.09.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in exosome biology have uncovered a significant role of exosomes in cancer and make them a determining factor in intercellular communication. Exosomes are types of extracellular vesicles that are involved in the communication between cells by exchanging various signaling molecules between the surrounding cells. Among various signaling molecules, long non-coding RNAs (lncRNAs), a type of non-coding RNA having a size of more than 200 nt in length and lacking protein-coding potential, have emerged as crucial regulators of intercellular communication. Tumor-derived exosomes containing various lncRNAs, known as exosomal lncRNAs, reprogram the microenvironment by regulating numerous cellular functions, including the regulation of gene transcription that favors cancer growth and progression, thus significantly determining the biological effects of exosomes. In addition, deregulated expression of lncRNAs is found in various human cancers and serves as a diagnostic biomarker to predict cancer type. The present review discusses the role of exosomal lncRNAs in the crosstalk between tumor cells and the surrounding cells of the microenvironment. Furthermore, we also discuss the involvement of exosomal lncRNAs within the tumor microenvironment in favoring tumor growth, metabolic reprogramming of tumor cells, and tumor-supportive autophagy. Therefore, lncRNAs can be used as a therapeutic target in the treatment of various human cancers.
Collapse
|
33
|
Giosa D, Felice MR, Giuffrè L, Aiese Cigliano R, Paytuví-Gallart A, Lo Passo C, Barresi C, D'Alessandro E, Huang H, Criseo G, Mora-Montes HM, de Hoog S, Romeo O. Transcriptome-wide expression profiling of Sporothrix schenckii yeast and mycelial forms and the establishment of the Sporothrix Genome DataBase. Microb Genom 2020; 6:mgen000445. [PMID: 33034552 PMCID: PMC7660252 DOI: 10.1099/mgen.0.000445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Sporothrix schenckii is a dimorphic fungus existing as mould in the environment and as yeast in the host. The morphological shift between mycelial/yeast phases is crucial for its virulence, but the transcriptional networks implicated in dimorphic transition are still not fully understood. Here, we report the global transcriptomic differences occurring between mould and yeast phases of S. schenckii, including changes in gene expression profiles associated with these distinct cellular phenotypes. Moreover, we also propose a new genome annotation, which reveals a more complex transcriptional architecture than previously assumed. Using RNA-seq, we identified a total of 17 307 genes, of which 11 217 were classified as protein-encoding genes, whereas 6090 were designated as non-coding RNAs (ncRNAs). Approximately ~71 % of all annotated genes were found to overlap and the different-strand overlapping type was the most common. Gene expression analysis revealed that 8795 genes were differentially regulated among yeast and mould forms. Differential gene expression was also observed for antisense ncRNAs overlapping neighbouring protein-encoding genes. The release of transcriptome-wide data and the establishment of the Sporothrix Genome DataBase (http://sporothrixgenomedatabase.unime.it) represent an important milestone for Sporothrix research, because they provide a strong basis for future studies on the molecular pathways involved in numerous biological processes.
Collapse
Affiliation(s)
- Domenico Giosa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina 98125, Italy
| | - Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina 98168, Italy
| | | | | | - Carla Lo Passo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Cinzia Barresi
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina 98168, Italy
| | - Enrico D'Alessandro
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina 98168, Italy
| | - Huaiqiu Huang
- Department of Dermatology and Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, PR China
- Department of Dermatology and Venereology, Baoan District People’s Hospital of Shenzhen, Shenzhen 518012, PR China
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| |
Collapse
|
34
|
Widner DL, Harris KA, Corey L, Breaker RR. Bacillus halodurans OapB forms a high-affinity complex with the P13 region of the noncoding RNA OLE. J Biol Chem 2020; 295:9326-9334. [PMID: 32376692 DOI: 10.1074/jbc.ra120.012676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/28/2020] [Indexed: 11/06/2022] Open
Abstract
Noncoding RNAs (ncRNAs) longer than 200 nucleotides are rare in bacteria, likely because bacterial genomes are under strong evolutionary pressures to maintain a small genome size. Of the long ncRNAs unique to bacteria, the OLE (ornate, large, extremophilic) RNA class is among the largest and most structurally complex. OLE RNAs form a ribonucleoprotein (RNP) complex by partnering with at least two proteins, OapA and OapB, that directly bind OLE RNA. The biochemical functions of the OLE RNP complex remain unknown, but are required for proper adaptation to certain environmental stresses, such as cold temperatures, short chain alcohols, and high magnesium concentrations. In the current study, we used electrophoretic mobility shift assays to examine the binding of OLE RNA fragments by OapB and found that OapB recognizes a small subregion of OLE RNA, including stem P13, with a dissociation constant (KD ) of ∼700 pm Analyses with mutated RNA constructs, and the application of in vitro selection, revealed that strong binding of OLE RNA by OapB requires a stem containing a precisely located single-nucleotide bulge and a GNRA tetraloop. Although the vast majority of bacteria with the ole gene also have the oapB gene, there are many whose genomes contain oapB but lack ole, suggesting that OapB has other RNA partners in some species that might exhibit similar structural features.
Collapse
Affiliation(s)
- Danielle L Widner
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Lukas Corey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
35
|
Morgado S, Antunes D, Caffarena E, Vicente AC. The rare lncRNA GOLLD is widespread and structurally conserved among Mycobacterium tRNA arrays. RNA Biol 2020; 17:1001-1008. [PMID: 32275844 DOI: 10.1080/15476286.2020.1748922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Noncoding RNA (ncRNA) genes produce transcripts involved in a wide range of functions, including catalytic and regulatory functions. Besides, some transcripts have highly complex structures that may impact their activities. Among the largest bacterial ncRNAs, there is the rare GOLLD RNA, which is associated with tRNA genes and supposed to be chromosome- and phage-encoded in specialized groups of bacteria, including those from Lactobacillales and Actinomycetales orders. The only GOLLD structure was inferred from a variety of sequences, including many marine metagenomes. To explore GOLLD RNA in bacterial genomes, we mined the GOLLD gene in thousands of Mycobacterium and virus genomes using Infernal software. We identified this gene in 350 mycobacteria, including megaplasmids, and 39 bacteriophages, mainly in the genomic context of tRNA arrays. Mycobacterium GOLLD genes presented a high diversity and were distributed in three phylogenetic groups: (i) Mycobacterium exclusive; (ii) Mycobacterium and mycobacteriophages; and (iii) mycobacteriophage exclusive. We also determined the GOLLD secondary structure of each group using R2 R software based on GOLLD alignments generated by Infernal software. All GOLLD groups displayed a 3' half conserved structure, including utter E-loops pseudoknots substructures, also shared by non-Mycobacterium GOLLD while the 5' half motif was different among the groups. Here, we showed that the lncRNA GOLLD is widespread in Mycobacterium within tRNA arrays and corroborated the previously predicted GOLLD secondary structure.
Collapse
Affiliation(s)
- Sergio Morgado
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC - FIOCRUZ) , Rio de Janeiro, Brazil
| | - Deborah Antunes
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (IOC - FIOCRUZ) , Rio de Janeiro, Brazil
| | - Ernesto Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Program (PROCC - FIOCRUZ) , Rio de Janeiro, Brazil
| | - Ana Carolina Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC - FIOCRUZ) , Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Harris KA, Odzer NB, Breaker RR. Disruption of the OLE ribonucleoprotein complex causes magnesium toxicity in Bacillus halodurans. Mol Microbiol 2019; 112:1552-1563. [PMID: 31461569 DOI: 10.1111/mmi.14379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
OLE RNAs represent an unusual class of bacterial noncoding RNAs common in Gram-positive anaerobes. The OLE RNA of the alkaliphile Bacillus halodurans is highly expressed and naturally interacts with at least two RNA-binding proteins called OapA and OapB. The phenotypes of the corresponding knockouts include growth inhibition when exposed to ethanol or other short-chain alcohols or when incubated at modestly reduced temperatures (e.g. 20°C). Intriguingly, the OapA 'PM1' mutant, which carries two amino acid changes to a highly conserved region, yields a dominant-negative phenotype that causes more severe growth defects under these same stress conditions. Herein, we report that the PM1 strain also exhibits extreme sensitivity to elevated Mg2+ concentrations, beginning as low as 2 mM. Suppressor mutants predominantly map to genes for aconitate hydratase and isocitrate dehydrogenase, which are expected to alter cellular citrate concentrations. Citrate reduces the severity of the Mg2+ toxicity phenotype, but neither the genomic mutations nor the addition of citrate to the medium overcomes ethanol toxicity or temperature sensitivity. These findings reveal that OLE RNA and its protein partners are involved in biochemical responses under several stress conditions, wherein the unusual sensitivity to Mg2+ can be independently suppressed by specific genomic mutations.
Collapse
Affiliation(s)
- Kimberly A Harris
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Nicole B Odzer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ronald R Breaker
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
37
|
Koirala D, Shao Y, Koldobskaya Y, Fuller JR, Watkins AM, Shelke SA, Pilipenko EV, Das R, Rice PA, Piccirilli JA. A conserved RNA structural motif for organizing topology within picornaviral internal ribosome entry sites. Nat Commun 2019; 10:3629. [PMID: 31399592 PMCID: PMC6689051 DOI: 10.1038/s41467-019-11585-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/09/2019] [Indexed: 12/30/2022] Open
Abstract
Picornaviral IRES elements are essential for initiating the cap-independent viral translation. However, three-dimensional structures of these elements remain elusive. Here, we report a 2.84-Å resolution crystal structure of hepatitis A virus IRES domain V (dV) in complex with a synthetic antibody fragment-a crystallization chaperone. The RNA adopts a three-way junction structure, topologically organized by an adenine-rich stem-loop motif. Despite no obvious sequence homology, the dV architecture shows a striking similarity to a circularly permuted form of encephalomyocarditis virus J-K domain, suggesting a conserved strategy for organizing the domain architecture. Recurrence of the motif led us to use homology modeling tools to compute a 3-dimensional structure of the corresponding domain of foot-and-mouth disease virus, revealing an analogous domain organizing motif. The topological conservation observed among these IRESs and other viral domains implicates a structured three-way junction as an architectural scaffold to pre-organize helical domains for recruiting the translation initiation machinery.
Collapse
Affiliation(s)
- Deepak Koirala
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Yaming Shao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Yelena Koldobskaya
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - James R Fuller
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sandip A Shelke
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Evgeny V Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
38
|
van den Esker MH, Koets AP. Application of Transcriptomics to Enhance Early Diagnostics of Mycobacterial Infections, with an Emphasis on Mycobacterium avium ssp. paratuberculosis. Vet Sci 2019; 6:vetsci6030059. [PMID: 31247942 PMCID: PMC6789504 DOI: 10.3390/vetsci6030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Mycobacteria cause a wide variety of disease in human and animals. Species that infect ruminants include M. bovis and M. avium ssp. paratuberculosis (MAP). MAP is the causative agent of Johne’s disease in ruminants, which is a chronic granulomatous enteric infection that leads to severe economic losses worldwide. Characteristic of MAP infection is the long, latent phase in which intermittent shedding can take place, while diagnostic tests are unable to reliably detect an infection in this stage. This leads to unnoticed dissemination within herds and the presence of many undetected, silent carriers, which makes the eradication of Johne’s disease difficult. To improve the control of MAP infection, research is aimed at improving early diagnosis. Transcriptomic approaches can be applied to characterize host-pathogen interactions during infection, and to develop novel biomarkers using transcriptional profiles. Studies have focused on the identification of specific RNAs that are expressed in different infection stages, which will assist in the development and clinical implementation of early diagnostic tests.
Collapse
Affiliation(s)
- Marielle H van den Esker
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | - Ad P Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
39
|
Cheng W, Zhou Y, Miao X, An C, Gao H. The Putative Smallest Introns in the Arabidopsis Genome. Genome Biol Evol 2018; 10:2551-2557. [PMID: 30184083 PMCID: PMC6161759 DOI: 10.1093/gbe/evy197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Most eukaryotic genes contain introns, which are noncoding sequences that are removed during premRNA processing. Introns are usually preserved across evolutionary time. However, the sizes of introns vary greatly. In Arabidopsis, some introns are longer than 10 kilo base pairs (bp) and others are predicted to be shorter than 10 bp. To identify the shortest intron in the genome, we analyzed the predicted introns in annotated version 10 of the Arabidopsis thaliana genome and found 103 predicted introns that are 30 bp or shorter, which make up only 0.08% of all introns in the genome. However, our own bioinformatics and experimental analyses found no evidence for the existence of these predicted introns. The predicted introns of 30–39 bp, 40–49 bp, and 50–59 bp in length are also rare and constitute only 0.07%, 0.2%, and 0.28% of all introns in the genome, respectively. An analysis of 30 predicted introns 31–59 bp long verified two in this range, both of which were 59 bp long. Thus, this study suggests that there is a limit to how small introns in A. thaliana can be, which is useful for the understanding of the evolution and processing of small introns in plants in general.
Collapse
Affiliation(s)
- Wenzhen Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, China
| | - Yunlin Zhou
- College of Biological Sciences and Technology, Beijing Forestry University, China
| | - Xin Miao
- College of Biological Sciences and Technology, Beijing Forestry University, China
| | - Chuanjing An
- College of Biological Sciences and Technology, Beijing Forestry University, China
| | - Hongbo Gao
- College of Biological Sciences and Technology, Beijing Forestry University, China
| |
Collapse
|
40
|
A second RNA-binding protein is essential for ethanol tolerance provided by the bacterial OLE ribonucleoprotein complex. Proc Natl Acad Sci U S A 2018; 115:E6319-E6328. [PMID: 29915070 DOI: 10.1073/pnas.1803191115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OLE (ornate, large, extremophilic) RNAs comprise a class of structured noncoding RNAs (ncRNAs) found in many extremophilic bacteria species. OLE RNAs constitute one of the longest and most widespread bacterial ncRNA classes whose major biochemical function remains unknown. In the Gram-positive alkaliphile Bacillus halodurans, OLE RNA is abundant, and localizes to the cell membrane by association with the transmembrane OLE-associated protein called OapA (formerly OAP). These characteristics, along with the well-conserved sequence and structural features of OLE RNAs, suggest that the OLE ribonucleoprotein (RNP) complex performs important biological functions. B. halodurans strains lacking OLE RNA (∆ole) or OapA (∆oapA) are less tolerant of cold (20 °C) and short-chain alcohols (e.g., ethanol). Here, we describe the effects of a mutant OapA (called PM1) that more strongly inhibits growth under cold or ethanol stress compared with strains lacking the oapA gene, even when wild-type OapA is present. This dominant-negative effect of PM1 is reversed by mutations that render OLE RNA nonfunctional. This finding demonstrates that the deleterious PM1 phenotype requires an intact RNP complex, and suggests that the complex has one or more additional undiscovered components. A genetic screen uncovered PM1 phenotype suppressor mutations in the ybzG gene, which codes for a putative RNA-binding protein of unknown biological function. We observe that YbzG protein (also called OapB) selectively binds OLE RNA in vitro, whereas a mutant version of the protein is not observed to bind OLE RNA. Thus, YbzG/OapB is an important component of the functional OLE RNP complex in B. halodurans.
Collapse
|