1
|
Pustovalova Y, Li Y, Hoch JC, Hao B. Backbone assignment of the N-terminal domain of the A subunit of the Bacillus cereus GerI germinant receptor. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:47-52. [PMID: 39826051 DOI: 10.1007/s12104-025-10216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIANTD). Furthermore, we derive the secondary structure of GerIANTD in solution and compare it with the crystal structure of the NTD of the A subunit of a Bacillus megaterium GR. These findings lay the foundation for further NMR studies aimed at investigating the structure-function relationship of the GerI subunits, with a broader goal of understanding the molecular mechanism underlying germinant recognition and signal transduction in GRs across Bacillus species.
Collapse
Affiliation(s)
- Yulia Pustovalova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Tibocha-Bonilla JD, Lyda J, Riley E, Pogliano K, Zengler K. Deciphering metabolic differentiation during Bacillus subtilis sporulation. Nat Commun 2025; 16:129. [PMID: 39747067 PMCID: PMC11695771 DOI: 10.1038/s41467-024-55586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The bacterium Bacillus subtilis undergoes asymmetric cell division during sporulation, producing a mother cell and a smaller forespore connected by the SpoIIQ-SpoIIIA (or Q-A) channel. The two cells differentiate metabolically, and the forespore becomes dependent on the mother cell for essential building blocks. Here, we investigate the metabolic interactions between mother cell and forespore using genome-scale metabolic and expression models as well as experiments. Our results indicate that nucleotides are synthesized in the mother cell and transported in the form of nucleoside di- or tri-phosphates to the forespore via the Q-A channel. However, if the Q-A channel is inactivated later in sporulation, then glycolytic enzymes can form an ATP and NADH shuttle, providing the forespore with energy and reducing power. Our integrated in silico and in vivo approach sheds light into the intricate metabolic interactions underlying cell differentiation in B. subtilis, and provides a foundation for future studies of metabolic differentiation.
Collapse
Affiliation(s)
- Juan D Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Jelani Lyda
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Eammon Riley
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Ginkgo Bioworks, Inc., Boston, MA, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Shu Chien - Gene Lay Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
3
|
Ramírez-Guadiana FH, Brogan AP, Rudner DZ. Identification and characterization of the Bacillus subtilis spore germination protein GerY. J Bacteriol 2024; 206:e0039924. [PMID: 39530705 PMCID: PMC11656775 DOI: 10.1128/jb.00399-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In response to starvation, endospore-forming bacteria differentiate into stress-resistant spores that can remain dormant for years yet rapidly germinate and resume growth when nutrients become available. To identify uncharacterized factors involved in the exit from dormancy, we performed a transposon-sequencing screen taking advantage of the loss of spore heat resistance that accompanies germination. We reasoned that transposon insertions that impair but do not block germination will lose resistance more slowly than wild type after exposure to nutrients and will therefore survive heat treatment. Using this approach, we identified most of the known germination genes and several new ones. We report an initial characterization of 15 of these genes and a more detailed analysis of one (ymaF). Spores lacking ymaF (renamed gerY) are impaired in germination in response to both L-alanine and L-asparagine, D-glucose, D-fructose, and K+. GerY is a soluble protein synthesized under σE control in the mother cell. A YFP-GerY fusion localizes around the developing and mature spore in a manner that depends on CotE and SafA, indicating that it is a component of the spore coat. Coat proteins encoded by the gerP operon and gerT are also required for efficient germination, and we show that spores lacking two or all three of these loci have more severe defects in the exit from dormancy. Our data are consistent with a model in which GerY, GerT, and the GerP proteins are required for efficient transit of nutrients through the coat to access the germination receptors, but each acts independently in this process. IMPORTANCE Pathogens in the orders Bacillales and Clostridiales resist sterilization by differentiating into stress-resistant spores. Spores are metabolically inactive and can remain dormant for decades, yet upon exposure to nutrients, they rapidly resume growth, causing food spoilage, food-borne illness, or life-threatening disease. The exit from dormancy, called germination, is a key target in combating these important pathogens. Here, we report a high-throughput genetic screen using transposon sequencing to identify novel germination factors that ensure the efficient exit from dormancy. We identify several new factors and characterize one in greater detail. This factor, renamed GerY, is part of the proteinaceous coat that encapsulates the dormant spore. Our data suggest that GerY enables efficient transit of nutrients through the coat to trigger germination.
Collapse
Affiliation(s)
| | - Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Riley EP, Lyda JA, Reyes-Matte O, Sugie J, Kasu IR, Enustun E, Armbruster E, Ravishankar S, Isaacson RL, Camp AH, Lopez-Garrido J, Pogliano K. Developmentally-regulated proteolysis by MdfA and ClpCP mediates metabolic differentiation during Bacillus subtilis sporulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625531. [PMID: 39651166 PMCID: PMC11623654 DOI: 10.1101/2024.11.26.625531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Bacillus subtilis sporulation entails a dramatic transformation of the two cells required to assemble a dormant spore, with the larger mother cell engulfing the smaller forespore to produce the cell-within-a-cell structure that is a hallmark of endospore formation. Sporulation also entails metabolic differentiation, whereby key metabolic enzymes are depleted from the forespore but maintained in the mother cell. This reduces the metabolic potential of the forespore, which becomes dependent on mother-cell metabolism and the SpoIIQ-SpoIIIA channel to obtain metabolic building blocks necessary for development. We demonstrate that metabolic differentiation depends on the ClpCP protease and a forespore-produced protein encoded by the yjbA gene, which we have renamed MdfA (metabolic differentiation factor A). MdfA is conserved in aerobic endospore-formers and required for spore resistance to hypochlorite. Using mass spectrometry and quantitative fluorescence microscopy, we show that MdfA mediates the depletion of dozens of metabolic enzymes and key transcription factors from the forespore. An accompanying study by Massoni, Evans and collaborators demonstrates that MdfA is a ClpC adaptor protein that directly interacts with and stimulates ClpCP activity. Together, these results document a developmentally-regulated proteolytic pathway that reshapes forespore metabolism, reinforces differentiation, and is required to produce spores resistant to the oxidant hypochlorite.
Collapse
|
5
|
Perchat S, Nevers A, Kranzler M, Ehling-Schulz M, Lereclus D, Gohar M. The megaplasmid pCER270 of Bacillus cereus emetic strain affects the timing of the sporulation process, spore resistance properties, and germination. Appl Environ Microbiol 2024; 90:e0102924. [PMID: 39158315 PMCID: PMC11409700 DOI: 10.1128/aem.01029-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The Bacillus cereus group includes closely related spore-forming Gram-positive bacteria. In this group, plasmids play a crucial role in species differentiation and are essential for pathogenesis and adaptation to ecological niches. The B. cereus emetic strains are characterized by the presence of the pCER270 megaplasmid, which encodes the non-ribosomal peptide synthetase for the production of cereulide, the emetic toxin. This plasmid carries several genes that may be involved in the sporulation process. Furthermore, a transcriptomic analysis has revealed that pCER270 influences the expression of chromosome genes, particularly under sporulation conditions. In this study, we investigated the role of pCER270 on spore properties in different species of the B. cereus group. We showed that pCER270 plays a role in spore wet heat resistance and germination, with varying degrees of impact depending on the genetic background. In addition, pCER270 ensures that sporulation occurs at the appropriate time by delaying the expression of sporulation genes. This regulation of sporulation timing is controlled by the pCER270-borne Rap-Phr system, which likely regulates the phosphorylation state of Spo0A. Acquisition of the pCER270 plasmid by new strains could give them an advantage in adapting to new environments and lead to the emergence of new pathogenic strains. IMPORTANCE The acquisition of new mobile genetic elements, such as plasmids, is essential for the pathogenesis and adaptation of bacteria belonging to the Bacillus cereus group. This can confer new phenotypic traits and beneficial functions that enable bacteria to adapt to changing environments and colonize new ecological niches. Emetic B. cereus strains cause food poisoning linked to the production of cereulide, the emetic toxin whose synthesis is due to the presence of plasmid pCER270. In the environment, cereulide provides a competitive advantage in producing bacteria against various competitors or predators. This study demonstrates that pCER270 also regulates the sporulation process, resulting in spores with improved heat resistance and germination capacity. The transfer of plasmid pCER270 among different strains of the B. cereus group may enhance their adaptation to new environments. This raises the question of the emergence of new pathogenic strains, which could pose a serious threat to human health.
Collapse
Affiliation(s)
- Stéphane Perchat
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Alicia Nevers
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Markus Kranzler
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Monika Ehling-Schulz
- Department of Biological Sciences and Pathobiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Didier Lereclus
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| | - Michel Gohar
- Université Paris-Saclay, INRAe, AgroPariTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
6
|
Okutani A, Morikawa S, Maeda K. Green Tea Catechin Epigallocatechin Gallate Inhibits Vegetative Cell Outgrowth and Expression of Beta-Lactamase Genes in Penicillin-Resistant Bacillus anthracis Strain PCr. Pathogens 2024; 13:699. [PMID: 39204299 PMCID: PMC11356866 DOI: 10.3390/pathogens13080699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The green tea catechin epigallocatechin gallate (EGCg) has antimicrobial effects on many bacteria. In this study, we investigated the inhibitory effects of EGCg on Bacillus anthracis spores and vegetative cells. The B. anthracis spores were insensitive to EGCg, but the growth of vegetative cells derived from germinated spores was inhibited by EGCg. Moreover, EGCg decreased the minimum inhibitory concentration of penicillin and meropenem for penicillin-resistant B. anthracis. In the penicillin-resistant B. anthracis strain, the transcription levels of the beta-lactamase genes (bla1 and bla2) decreased significantly following the treatment with 50 µg/mL EGCg. These results suggest that the appropriate application of EGCg may effectively control the penicillin-resistant B. anthracis growth and beta-lactamase production.
Collapse
Affiliation(s)
- Akiko Okutani
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (S.M.); (K.M.)
| | | | | |
Collapse
|
7
|
Pedraza-Reyes M, Abundiz-Yañez K, Rangel-Mendoza A, Martínez LE, Barajas-Ornelas RC, Cuéllar-Cruz M, Leyva-Sánchez HC, Ayala-García VM, Valenzuela-García LI, Robleto EA. Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiol Mol Biol Rev 2024; 88:e0015823. [PMID: 38551349 PMCID: PMC11332352 DOI: 10.1128/mmbr.00158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Karen Abundiz-Yañez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Alejandra Rangel-Mendoza
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Rocío C. Barajas-Ornelas
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | |
Collapse
|
8
|
Kasu IR, Reyes-Matte O, Bonive-Boscan A, Derman AI, Lopez-Garrido J. Catabolism of germinant amino acids is required to prevent premature spore germination in Bacillus subtilis. mBio 2024; 15:e0056224. [PMID: 38564667 PMCID: PMC11077977 DOI: 10.1128/mbio.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium. IMPORTANCE Many bacterial species produce dormant cells called endospores, which are not killed by antibiotics or common disinfection practices. Endospores pose critical challenges in the food industry, where endospore contaminations cause food spoilage, and in hospitals, where infections by pathogenic endospore formers threaten the life of millions every year. Endospores lose their resistance properties and can be killed easily when they germinate and exit dormancy. We have discovered that the enzymes that break down the amino acids alanine and valine are critical for the production of stable endospores. If these enzymes are absent, endospores germinate as they are formed or shortly thereafter in response to alanine, which can initiate the germination of many different species' endospores, or to valine. By blocking the activity of alanine dehydrogenase, the enzyme that breaks down alanine and is not present in mammals, it may be possible to inactivate endospores by triggering premature and unproductive germination.
Collapse
Affiliation(s)
- Iqra R. Kasu
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
9
|
Gao Y, Amon JD, Brogan AP, Artzi L, Ramírez-Guadiana FH, Cofsky JC, Kruse AC, Rudner DZ. SpoVAF and FigP assemble into oligomeric ion channels that enhance spore germination. Genes Dev 2024; 38:31-45. [PMID: 38242633 PMCID: PMC10903944 DOI: 10.1101/gad.351353.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Bacterial spores can remain dormant for decades yet rapidly germinate and resume growth in response to nutrients. GerA family receptors that sense and respond to these signals have recently been shown to oligomerize into nutrient-gated ion channels. Ion release initiates exit from dormancy. Here, we report that a distinct ion channel, composed of SpoVAF (5AF) and its newly discovered partner protein, YqhR (FigP), amplifies the response. At high germinant concentrations, 5AF/FigP accelerate germination; at low concentrations, this complex becomes critical for exit from dormancy. 5AF is homologous to the channel-forming subunit of GerA family receptors and is predicted to oligomerize around a central pore. 5AF mutations predicted to widen the channel cause constitutive germination during spore formation and membrane depolarization in vegetative cells. Narrow-channel mutants are impaired in germination. A screen for suppressors of a constitutively germinating 5AF mutant identified FigP as an essential cofactor of 5AF activity. We demonstrate that 5AF and FigP interact and colocalize with GerA family receptors in spores. Finally, we show that 5AF/FigP accelerate germination in B. subtilis spores that have nutrient receptors from another species. Our data support a model in which nutrient-triggered ion release by GerA family receptors activates 5AF/FigP ion release, amplifying the response to germinant signals.
Collapse
Affiliation(s)
- Yongqiang Gao
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anna P Brogan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lior Artzi
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Joshua C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
10
|
Tezuka T, Mitsuyama K, Date R, Ohnishi Y. A unique sigma/anti-sigma system in the actinomycete Actinoplanes missouriensis. Nat Commun 2023; 14:8483. [PMID: 38123564 PMCID: PMC10733313 DOI: 10.1038/s41467-023-44291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Bacteria of the genus Actinoplanes form sporangia that contain dormant sporangiospores which, upon contact with water, release motile spores (zoospores) through a process called sporangium dehiscence. Here, we set out to study the molecular mechanisms behind sporangium dehiscence in Actinoplanes missouriensis and discover a sigma/anti-sigma system with unique features. Protein σSsdA contains a functional sigma factor domain and an anti-sigma factor antagonist domain, while protein SipA contains an anti-sigma factor domain and an anti-sigma factor antagonist domain. Remarkably, the two proteins interact with each other via the anti-sigma factor antagonist domain of σSsdA and the anti-sigma factor domain of SipA. Although it remains unclear whether the SipA/σSsdA system plays direct roles in sporangium dehiscence, the system seems to modulate oxidative stress responses in zoospores. In addition, we identify a two-component regulatory system (RsdK-RsdR) that represses initiation of sporangium dehiscence.
Collapse
Affiliation(s)
- Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan.
| | - Kyota Mitsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Risa Date
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
11
|
Li XG, Dai J, Zhang WJ, Jiang AJ, Li DH, Wu LF. Genome analysis of Tepidibacter sp. SWIR-1, an anaerobic endospore-forming bacterium isolated from a deep-sea hydrothermal vent. Mar Genomics 2023; 71:101049. [PMID: 37620056 DOI: 10.1016/j.margen.2023.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/26/2023]
Abstract
Tepidibacter sp. SWIR-1, a putative new species isolated from deep-sea hydrothermal vent field on the Southwest Indian Ridge (SWIR), is an anaerobic, mesophilic and endospore-forming bacterium belonging to the family Peptostreptococcaceae. In this study, we present the complete genome sequence of strain SWIR-1, consists of a single circular chromosome comprising 4,122,966 nucleotides with 29.25% G + C content and a circular plasmid comprising 38,843 nucleotides with 29.46% G + C content. In total, 3861 protein coding genes, 104 tRNA genes and 46 rRNA genes were obtained. SWIR-1 genome contains numerous genes related to sporulation and germination. Compared with the other three Tepidibacter species, SWIR-1 contained more spore germination receptor proteins. In addition, SWIR-1 contained more genes involved in chemotaxis and two-component systems than other Tepidibacter species. These results indicated that SWIR-1 has developed versatile adaptability to the Southwest Indian Ridge hydrothermal vent environment. The genome of strain SWIR-1 will be helpful for further understanding adaptive strategies used by bacteria dwelling in the deep-sea hydrothermal vent environments of different oceans.
Collapse
Affiliation(s)
- Xue-Gong Li
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Sanya, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, China.
| | - Jie Dai
- Aix Marseille Univ, CNRS, LCB, IMM, IM2B, Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Sanya, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, China
| | - Ai-Jun Jiang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Deng-Hui Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Sanya, China; Aix Marseille Univ, CNRS, LCB, IMM, IM2B, Marseille, France.
| |
Collapse
|
12
|
Moir A. Spore germination receptors - a new paradigm. Trends Microbiol 2023:S0966-842X(23)00165-8. [PMID: 37270332 DOI: 10.1016/j.tim.2023.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
David Rudner and his team (Gao et al.) predict a pentameric structure for the GerA alanine-responsive germination receptor of Bacillus subtilis and demonstrate that it behaves as a nutrient-gated ion channel, finally establishing a function for this novel family of receptors and focussing research on early ion movements in germination.
Collapse
Affiliation(s)
- Anne Moir
- School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
13
|
Gao Y, Amon JD, Artzi L, Ramírez-Guadiana FH, Brock KP, Cofsky JC, Marks DS, Kruse AC, Rudner DZ. Bacterial spore germination receptors are nutrient-gated ion channels. Science 2023; 380:387-391. [PMID: 37104613 PMCID: PMC11154005 DOI: 10.1126/science.adg9829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
Bacterial spores resist antibiotics and sterilization and can remain metabolically inactive for decades, but they can rapidly germinate and resume growth in response to nutrients. Broadly conserved receptors embedded in the spore membrane detect nutrients, but how spores transduce these signals remains unclear. Here, we found that these receptors form oligomeric membrane channels. Mutations predicted to widen the channel initiated germination in the absence of nutrients, whereas those that narrow it prevented ion release and germination in response to nutrients. Expressing receptors with widened channels during vegetative growth caused loss of membrane potential and cell death, whereas the addition of germinants to cells expressing wild-type receptors triggered membrane depolarization. Therefore, germinant receptors act as nutrient-gated ion channels such that ion release initiates exit from dormancy.
Collapse
Affiliation(s)
- Yongqiang Gao
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
| | - Jeremy D. Amon
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
- Present Address: Moderna Genomics, 200 Technology Square, Cambridge MA 02139
| | - Lior Artzi
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
- Present Address: Evolved By Nature, 196 Boston Ave, Medford MA 02155
| | | | - Kelly P. Brock
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115
- Present Address: Kernal Biologics, 238 Main Street, Cambrdige MA 02142
| | - Joshua C. Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston MA 02115
| | - Deborah S. Marks
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston MA 02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical ScF(2hool, 77 Avenue Louis Pasteur, Boston MA 02115
| |
Collapse
|
14
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
15
|
Romero-Rodríguez A, Ruiz-Villafán B, Martínez-de la Peña CF, Sánchez S. Targeting the Impossible: A Review of New Strategies against Endospores. Antibiotics (Basel) 2023; 12:antibiotics12020248. [PMID: 36830159 PMCID: PMC9951900 DOI: 10.3390/antibiotics12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Endospore-forming bacteria are ubiquitous, and their endospores can be present in food, in domestic animals, and on contaminated surfaces. Many spore-forming bacteria have been used in biotechnological applications, while others are human pathogens responsible for a wide range of critical clinical infections. Due to their resistant properties, it is challenging to eliminate spores and avoid the reactivation of latent spores that may lead to active infections. Furthermore, endospores play an essential role in the survival, transmission, and pathogenesis of some harmful strains that put human and animal health at risk. Thus, different methods have been applied for their eradication. Nevertheless, natural products are still a significant source for discovering and developing new antibiotics. Moreover, targeting the spore for clinical pathogens such as Clostridioides difficile is essential to disease prevention and therapeutics. These strategies could directly aim at the structural components of the spore or their germination process. This work summarizes the current advances in upcoming strategies and the development of natural products against endospores. This review also intends to highlight future perspectives in research and applications.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| | - Beatriz Ruiz-Villafán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Claudia Fabiola Martínez-de la Peña
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
16
|
Sharma S, Bahl V, Srivastava G, Shamim R, Bhatnagar R, Gaur D. Recombinant full-length Bacillus Anthracis protective antigen and its 63 kDa form elicits protective response in formulation with addavax. Front Immunol 2023; 13:1075662. [PMID: 36713362 PMCID: PMC9877290 DOI: 10.3389/fimmu.2022.1075662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Bacillus anthracis is the causative agent for the lethal disease anthrax, primarily affecting animals and humans in close contact with an infected host. The pathogenicity of B. anthracis is attributed to the secreted exotoxins and their outer capsule. The host cell-binding exotoxin component "protective antigen" (PA) is reported to be a potent vaccine candidate. The aim of our study is to produce several PA constructs and analyze their vaccine potential. Methods We have designed the various subunit, PA-based recombinant proteins, i.e., full-length Protective antigen (PA-FL), C-terminal 63 kDa fragment (PA63), Protective antigen domain 1-domain 4 chimeras (PA-D1-4) and protective antigen domain 4 (PA-D4) and analyzed their vaccine potential with different human-compatible adjuvants in the mouse model. We have optimized the process and successfully expressed our recombinant antigens as soluble proteins, except full-length PA. All the recombinant antigen formulations with three different adjuvants i.e., Addavax, Alhydrogel, and Montanide ISA 720, were immunized in different mouse groups. The vaccine efficacy of the formulations was analyzed by mouse serum antigen-specific antibody titer, toxin neutralization assay, and survival analysis of mouse groups challenged with a lethal dose of B. anthracis virulent spores. Results We have demonstrated that the PA-FL addavax and PA63 addavax formulations were most effective in protecting spore-challenged mice and serum from the mice immunized with PAFL addavax, PA-FL alhydrogel, PA63 addavax, and PA63 alhydrogel formulations were equivalently efficient in neutralizing the anthrax lethal toxin. The higher levels of serum Th1, Th2, and Th17 cytokines in PA-FL addavax immunized mice correspond to the enhanced protection provided by the formulation in challenged mice. Discussion We have demonstrated that the PA-FL addavax and PA63 addavax formulations exhibit equivalent efficiency as vaccine formulation both in a mouse model of anthrax and mammalian cell lines. However, PA63 is a smaller antigen than PA-FL and more importantly, PA63 is expressed as a soluble protein in E. coli, which imparts a translational advantage to PA63-based formulation. Thus, the outcome of our study has significant implications for the development of protective antigen-based vaccine formulations for human use against the lethal disease anthrax.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India,Department of Oncology Science, University of Oklahoma Health Science Center, Oklahoma City, OK, United States,*Correspondence: Shikhar Sharma, ;
| | - Vanndita Bahl
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Srivastava
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Risha Shamim
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria & Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Vohradsky J. Quantitative Aspect of Bacillus subtilis σB Regulatory Network-A Computational Simulation. BIOLOGY 2022; 11:biology11121729. [PMID: 36552239 PMCID: PMC9775250 DOI: 10.3390/biology11121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis is a model organism used to study molecular processes in prokaryotic cells. Sigma factor B, which associates with RNA polymerase, is one of the transcriptional regulators involved in the cell's response to environmental stress. This study addresses the key question of how the levels of free SigB, which acts as the actual regulator of gene expression, are controlled. A set of chemical equations describing the network controlling the levels of free SigB was designed, leading to a set of differential equations quantifying the dynamics of the network. Utilizing a microarray-measured gene expression time series then allowed the simulation of the kinetic behavior of the network in real conditions and investigation of the role of phosphatases RsbU/RsbP transmitting the environmental signal and controlling the amounts of free SigB. Moreover, the role of kinetic constants controlling the formation of the molecular complexes, which consequently influence the amount of free SigB, was investigated. The simulation showed that although the total amount of sigma B is relatively high in the unstressed population, the amount of free SigB, which actually controls its regulon, is quite low. The simulation also allowed determination of the proportion of all the network members that were free or bound in complexes. While previously the qualitative features of B. subtilis SigB have been studied in detail, the kinetics of the network have mostly been ignored. In summary, the computational results based on experimental data provide a quantitative insight into the functioning of the SigB-dependent circuit and provide a roadmap for its further exploration in this industrially important bacterium.
Collapse
Affiliation(s)
- Jiri Vohradsky
- Laboratory of Bioinformatics, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
18
|
Abstract
As important ecosystem engineers in soils, earthworms strongly influence carbon cycling through their burrowing and feeding activities. Earthworms do not perform these roles in isolation, because their intestines create a special habitat favorable for complex bacterial communities. However, how the ecological functioning of these earthworm-microbe interactions regulates carbon cycling remains largely unknown. To fill this knowledge gap, we investigated the bacterial community structure and carbon metabolic activities in the intestinal contents of earthworms and compared them to those of the adjacent soils in a long-term fertilization experiment. We discovered that earthworms harbored distinct bacterial communities compared to the surrounding soil under different fertilization conditions. The bacterial diversity was significantly larger in the adjacent soils than that in the earthworm gut. Three statistically identified keystone taxa in the bacterial networks, namely, Solirubrobacterales, Ktedonobacteraceae, and Jatrophihabitans, were shared across the earthworm gut and adjacent soil. Environmental factors (pH and organic matter) and keystone taxa were important determinants of the bacterial community composition in the earthworm gut. Both PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) and FAPROTAX (Functional Annotation of Prokaryotic Taxa) predicted that carbon metabolism was significantly higher in adjacent soil than in the earthworm gut, which was consistent with the average well color development obtained by the Biolog assay. Structural equation modeling combined with correlation analysis suggested that pH, organic matter, and potential keystone taxa exhibited significant relationships with carbon metabolism. This study deepens our understanding of the mechanisms underlying keystone taxa regulating carbon cycling in the earthworm gut. IMPORTANCE The intestinal microbiome of earthworms is a crucial component of the soil microbial community and nutrient cycling processes. If we could elucidate the role of this microbiome in regulating soil carbon metabolism, we would make a crucial contribution to understanding the ecological role of these gut bacterial taxa and to promoting sustainable agricultural development. However, the ecological functioning of these earthworm-microbe interactions in regulating carbon cycling has so far not been fully investigated. In this study, we revealed, first, that the bacterial groups of Solirubrobacterales, Ktedonobacteraceae, and Jatrophihabitans were core keystone taxa across the earthworm gut and adjacent soil and, second, that the environmental factors (pH and organic carbon) and keystone taxa strongly affected the bacterial community composition and exhibited close correlations with microbial carbon metabolism. Our results provide new insights into the community assembly of the earthworm gut microbiome and the ecological importance of potential keystone taxa in regulating carbon cycling dynamics.
Collapse
|
19
|
Landajuela A, Braun M, Martínez-Calvo A, Rodrigues CDA, Gomis Perez C, Doan T, Rudner DZ, Wingreen NS, Karatekin E. Membrane fission during bacterial spore development requires cellular inflation driven by DNA translocation. Curr Biol 2022; 32:4186-4200.e8. [PMID: 36041438 PMCID: PMC9730832 DOI: 10.1016/j.cub.2022.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/26/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Bacteria require membrane fission for both cell division and endospore formation. In Bacillus subtilis, sporulation initiates with an asymmetric division that generates a large mother cell and a smaller forespore that contains only a quarter of its genome. As the mother cell membranes engulf the forespore, a DNA translocase pumps the rest of the chromosome into the small forespore compartment, inflating it due to increased turgor. When the engulfing membrane undergoes fission, the forespore is released into the mother cell cytoplasm. The B. subtilis protein FisB catalyzes membrane fission during sporulation, but the molecular basis is unclear. Here, we show that forespore inflation and FisB accumulation are both required for an efficient membrane fission. Forespore inflation leads to higher membrane tension in the engulfment membrane than in the mother cell membrane, causing the membrane to flow through the neck connecting the two membrane compartments. Thus, the mother cell supplies some of the membrane required for the growth of the membranes surrounding the forespore. The oligomerization of FisB at the membrane neck slows the equilibration of membrane tension by impeding the membrane flow. This leads to a further increase in the tension of the engulfment membrane, promoting its fission through lysis. Collectively, our data indicate that DNA translocation has a previously unappreciated second function in energizing the FisB-mediated membrane fission under energy-limited conditions.
Collapse
Affiliation(s)
- Ane Landajuela
- Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA.
| | - Martha Braun
- Nanobiology Institute, Yale University, West Haven, CT, USA; Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - Alejandro Martínez-Calvo
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | - Carolina Gomis Perez
- Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Thierry Doan
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Aix-Marseille Université-CNRS UMR7255, Marseilles, France
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT, USA; Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), 75006 Paris, France.
| |
Collapse
|
20
|
Kikuchi K, Galera-Laporta L, Weatherwax C, Lam JY, Moon EC, Theodorakis EA, Garcia-Ojalvo J, Süel GM. Electrochemical potential enables dormant spores to integrate environmental signals. Science 2022; 378:43-49. [PMID: 36201591 PMCID: PMC10593254 DOI: 10.1126/science.abl7484] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The dormant state of bacterial spores is generally thought to be devoid of biological activity. We show that despite continued dormancy, spores can integrate environmental signals over time through a preexisting electrochemical potential. Specifically, we studied thousands of individual Bacillus subtilis spores that remain dormant when exposed to transient nutrient pulses. Guided by a mathematical model of bacterial electrophysiology, we modulated the decision to exit dormancy by genetically and chemically targeting potassium ion flux. We confirmed that short nutrient pulses result in step-like changes in the electrochemical potential of persistent spores. During dormancy, spores thus gradually release their stored electrochemical potential to integrate extracellular information over time. These findings reveal a decision-making mechanism that operates in physiologically inactive cells.
Collapse
Affiliation(s)
- Kaito Kikuchi
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Colleen Weatherwax
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Jamie Y Lam
- Department of Chemistry and Biochemistry, University of California San Diego; La Jolla, CA 92093, USA
| | - Eun Chae Moon
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Emmanuel A Theodorakis
- Department of Chemistry and Biochemistry, University of California San Diego; La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra; 08003 Barcelona, Spain
- Senior author
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
- San Diego Center for Systems Biology, University of California San Diego; La Jolla, CA 92093-0380, USA
- Center for Microbiome Innovation, University of California San Diego; La Jolla, CA 92093-0380, USA
- Senior author
| |
Collapse
|
21
|
Talukdar PK, Sarker MR. Characterization of Putative Sporulation and Germination Genes in Clostridium perfringens Food-Poisoning Strain SM101. Microorganisms 2022; 10:microorganisms10081481. [PMID: 35893539 PMCID: PMC9332280 DOI: 10.3390/microorganisms10081481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial sporulation and spore germination are two intriguing processes that involve the expression of many genes coherently. Phylogenetic analyses revealed gene conservation among spore-forming Firmicutes, especially in Bacilli and Clostridia. In this study, by homology search, we found Bacillus subtilis sporulation gene homologs of bkdR, ylmC, ylxY, ylzA, ytaF, ytxC, yyaC1, and yyaC2 in Clostridium perfringenes food-poisoning Type F strain SM101. The β-glucuronidase reporter assay revealed that promoters of six out of eight tested genes (i.e., bkdR, ylmC, ytaF, ytxC, yyaC1, and yyaC2) were expressed only during sporulation, but not vegetative growth, suggesting that these genes are sporulation-specific. Gene knock-out studies demonstrated that C. perfringens ΔbkdR, ΔylmC, ΔytxC, and ΔyyaC1 mutant strains produced a significantly lower number of spores compared to the wild-type strain. When the spores of these six mutant strains were examined for their germination abilities in presence of known germinants, an almost wild-type level germination was observed with spores of ΔytaF or ΔyyaC1 mutants; and a slightly lower level with spores of ΔbkdR or ΔylmC mutants. In contrast, almost no germination was observed with spores of ΔytxC or ΔyyaC2 mutants. Consistent with germination defects, ΔytxC or ΔyyaC2 spores were also defective in spore outgrowth and colony formation. The germination, outgrowth, and colony formation defects of ΔytxC or ΔyyaC2 spores were restored when ΔytxC or ΔyyaC2 mutant was complemented with wild-type ytxC or yyaC2, respectively. Collectively, our current study identified new sporulation and germination genes in C. perfringens.
Collapse
Affiliation(s)
- Prabhat K. Talukdar
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: (P.K.T.); (M.R.S.); Tel.: +1-509-335-4029 (P.K.T.); +1-541-737-6918 (M.R.S.)
| | - Mahfuzur R. Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: (P.K.T.); (M.R.S.); Tel.: +1-509-335-4029 (P.K.T.); +1-541-737-6918 (M.R.S.)
| |
Collapse
|
22
|
Visualization of SpoVAEa Protein Dynamics in Dormant Spores of Bacillus cereus and Dynamic Changes in Their Germinosomes and SpoVAEa during Germination. Microbiol Spectr 2022; 10:e0066622. [PMID: 35543559 PMCID: PMC9241617 DOI: 10.1128/spectrum.00666-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus spores, like most Bacillus spores, can survive for years and germinate when their surroundings become suitable, and germination proteins play an important role in the initiation of germination. Because germinated spores lose the extreme resistance of dormant spores, information on the function of germination proteins could be useful in developing new strategies to control B. cereus spores. Prior work has shown that (i) the channel protein SpoVAEa exhibits high-frequency movement in the outer leaflet of the inner membrane (IM) in dormant B. subtilis spores and (ii) the formation of the foci termed germinosomes between two germination proteins, the germinant receptor GerR and the scaffold protein GerD, in developing B. cereus spores is slower than foci formation by GerR and GerD individually. However, the movement dynamics of SpoVAEa in B. cereus spores, and the behavior of the germinosome upon B. cereus spore germination, are not known. In this study, we found that SpoVAEa fluorescent foci in dormant B. cereus spores move on the IM, but slower than in B. subtilis spores, and they likely co-localize transiently with GerD-mScarlet-I in the germinosome. Our results further indicate that (i) the expression of GerR-SGFP2 and SpoVAEa-SGFP2 with GerD-mScarlet-I from a plasmid leads to more heterogeneity and lower efficiency of spore germination in B. cereus, and (ii) germinosome foci observed by Fluorescence resonance energy transfer (FRET) between GerR-SGFP2 and GerD-mScarlet-I can be lost soon after the spore-phase transition. However, this is not always the case, as some GerR-SGFP2 and GerD-mScarlet-I foci continued to exist, co-localize, and even show a weak FRET signal. These data highlight the heterogeneous behavior of spore germination protein complexes and indicate that some complexes may persist beyond the initiation of germination. IMPORTANCEBacillus cereus is commonly present in soil and infects humans via contaminated food. In this study, we used B. cereus spores to investigate the movement of the spore-specific inner membrane (IM) channel protein SpoVAEa, the interaction between SpoVAEa and the germinosome scaffold protein GerD, and the dynamics of germinosomes with GerR and GerD in spore germination. Our results expand upon observations of interactions between specific B. cereus spore germination proteins, in particular the GerR germinant receptor A, B, and C subunits and GerD, as well as those between SpoVAEa and GerD. The approaches used in this work could also be used to examine the interactions between GerD and SpoVAEa and other germination proteins in spores of other Bacillus species.
Collapse
|
23
|
Gao Y, Barajas-Ornelas RDC, Amon JD, Ramírez-Guadiana FH, Alon A, Brock KP, Marks DS, Kruse AC, Rudner DZ. The SpoVA membrane complex is required for dipicolinic acid import during sporulation and export during germination. Genes Dev 2022; 36:634-646. [PMID: 35654455 PMCID: PMC9186386 DOI: 10.1101/gad.349488.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
In response to starvation, endospore-forming bacteria differentiate into stress-resistant spores that can remain dormant for years yet rapidly germinate and resume growth in response to nutrients. The small molecule dipicolinic acid (DPA) plays a central role in both the stress resistance of the dormant spore and its exit from dormancy during germination. The spoVA locus is required for DPA import during sporulation and has been implicated in its export during germination, but the molecular bases are unclear. Here, we define the minimal set of proteins encoded in the Bacillus subtilis spoVA operon required for DPA import and demonstrate that these proteins form a membrane complex. Structural modeling of these components combined with mutagenesis and in vivo analysis reveal that the C and Eb subunits form a membrane channel, while the D subunit functions as a cytoplasmic plug. We show that point mutations that impair the interactions between D and the C-Eb membrane complex reduce the efficiency of DPA import during sporulation and reciprocally accelerate DPA release during germination. Our data support a model in which DPA transport into spores involves cycles of unplugging and then replugging the C-Eb membrane channel, while nutrient detection during germination triggers DPA release by unplugging it.
Collapse
Affiliation(s)
- Yongqiang Gao
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. Int J Mol Sci 2022; 23:ijms23063405. [PMID: 35328823 PMCID: PMC8953710 DOI: 10.3390/ijms23063405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have suggested a major role for endospore forming bacteria within the gut microbiota, not only as pathogens but also as commensal and beneficial members contributing to gut homeostasis. In this review the sporulation processes, spore properties, and germination processes will be explained within the scope of the human gut. Within the gut, spore-forming bacteria are known to interact with the host’s immune system, both in vegetative cell and spore form. Together with the resistant nature of the spore, these characteristics offer potential for spores’ use as delivery vehicles for therapeutics. In the last part of the review, the therapeutic potential of spores as probiotics, vaccine vehicles, and drug delivery systems will be discussed.
Collapse
|
25
|
Burgess SA, Palevich FP, Gardner A, Mills J, Brightwell G, Palevich N. Occurrence of genes encoding spore germination in Clostridium species that cause meat spoilage. Microb Genom 2022; 8. [PMID: 35166653 PMCID: PMC8942025 DOI: 10.1099/mgen.0.000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Members of the genus Clostridium are frequently associated with meat spoilage. The ability for low numbers of spores of certain Clostridium species to germinate in cold-stored vacuum-packed meat can result in blown pack spoilage. However, little is known about the germination process of these clostridia, despite this characteristic being important for their ability to cause spoilage. This study sought to determine the genomic conditions for germination of 37 representative Clostridium strains from seven species (C. estertheticum, C. tagluense, C. frigoris, C. gasigenes, C. putrefaciens, C. aligidicarnis and C. frigdicarnis) by comparison with previously characterized germination genes from C. perfringens, C. sporogenes and C. botulinum. All the genomes analysed contained at least one gerX operon. Seven different gerX operon configuration types were identified across genomes from C. estertheticum, C. tagluense and C. gasigenes. Differences arose between the C. gasigenes genomes and those belonging to C. tagluense/C. estertheticum in the number and type of genes coding for cortex lytic enzymes, suggesting the germination pathway of C. gasigenes is different. However, the core components of the germination pathway were conserved in all the Clostridium genomes analysed, suggesting that these species undergo the same major steps as Bacillus subtilis for germination to occur.
Collapse
Affiliation(s)
- Sara A Burgess
- Molecular Epidemiology and Veterinary Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Faith P Palevich
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Amanda Gardner
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - John Mills
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand.,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
26
|
Amon JD, Artzi L, Rudner DZ. Genetic Evidence for Signal Transduction within the Bacillus subtilis GerA Germinant Receptor. J Bacteriol 2022; 204:e0047021. [PMID: 34780301 PMCID: PMC8846391 DOI: 10.1128/jb.00470-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
Bacterial spores can rapidly exit dormancy through the process of germination. This process begins with the activation of nutrient receptors embedded in the spore membrane. The prototypical germinant receptor in Bacillus subtilis responds to l-alanine and is thought to be a complex of proteins encoded by the genes in the gerA operon: gerAA, gerAB, and gerAC. The GerAB subunit has recently been shown to function as the nutrient sensor, but beyond contributing to complex stability, no additional functions have been attributed to the other two subunits. Here, we investigate the role of GerAA. We resurrect a previously characterized allele of gerA (termed gerA*) that carries a mutation in gerAA and show that it constitutively activates germination even in the presence of a wild-type copy of gerA. Using an enrichment strategy to screen for suppressors of gerA*, we identified mutations in all three gerA genes that restore a functional receptor. Characterization of two distinct gerAB suppressors revealed that one (gerAB[E105K]) reduces the GerA complex's ability to respond to l-alanine, while another (gerAB[F259S]) disrupts the germinant signal downstream of l-alanine recognition. These data argue against models in which GerAA is directly or indirectly involved in germinant sensing. Rather, our data suggest that GerAA is responsible for transducing the nutrient signal sensed by GerAB. While the steps downstream of gerAA have yet to be uncovered, these results validate the use of a dominant-negative genetic approach in elucidating the gerA signal transduction pathway. IMPORTANCE Endospore formers are a broad group of bacteria that can enter dormancy upon starvation and exit dormancy upon sensing the return of nutrients. How dormant spores sense and respond to these nutrients is poorly understood. Here, we identify a key step in the signal transduction pathway that is activated after spores detect the amino acid l-alanine. We present a model that provides a more complete picture of this process that is critical for allowing dormant spores to germinate and resume growth.
Collapse
Affiliation(s)
- Jeremy D. Amon
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lior Artzi
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Luu J, Mott CM, Schreiber OR, Giovinco HM, Betchen M, Carabetta VJ. Nε-Lysine Acetylation of the Histone-Like Protein HBsu Regulates the Process of Sporulation and Affects the Resistance Properties of Bacillus subtilis Spores. Front Microbiol 2022; 12:782815. [PMID: 35111139 PMCID: PMC8801598 DOI: 10.3389/fmicb.2021.782815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus subtilis produces dormant, highly resistant endospores in response to extreme environmental stresses or starvation. These spores are capable of persisting in harsh environments for many years, even decades, without essential nutrients. Part of the reason that these spores can survive such extreme conditions is because their chromosomal DNA is well protected from environmental insults. The α/β-type small acid-soluble proteins (SASPs) coat the spore chromosome, which leads to condensation and protection from such insults. The histone-like protein HBsu has been implicated in the packaging of the spore chromosome and is believed to be important in modulating SASP-mediated alterations to the DNA, including supercoiling and stiffness. Previously, we demonstrated that HBsu is acetylated at seven lysine residues, and one physiological function of acetylation is to regulate chromosomal compaction. Here, we investigate if the process of sporulation or the resistance properties of mature spores are influenced by the acetylation state of HBsu. Using our collection of point mutations that mimic the acetylated and unacetylated forms of HBsu, we first determined if acetylation affects the process of sporulation, by determining the overall sporulation frequencies. We found that specific mutations led to decreases in sporulation frequency, suggesting that acetylation of HBsu at some sites, but not all, is required to regulate the process of sporulation. Next, we determined if the spores produced from the mutant strains were more susceptible to heat, ultraviolet (UV) radiation and formaldehyde exposure. We again found that altering acetylation at specific sites led to less resistance to these stresses, suggesting that proper HBsu acetylation is important for chromosomal packaging and protection in the mature spore. Interestingly, the specific acetylation patterns were different for the sporulation process and resistance properties of spores, which is consistent with the notion that a histone-like code exists in bacteria. We propose that specific acetylation patterns of HBsu are required to ensure proper chromosomal arrangement, packaging, and protection during the process of sporulation.
Collapse
Affiliation(s)
- Jackson Luu
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Connor M. Mott
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Olivia R. Schreiber
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Holly M. Giovinco
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Melanie Betchen
- Department of Internal Medicine, Cooper University Hospital, Camden, NJ, United States
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- *Correspondence: Valerie J. Carabetta,
| |
Collapse
|
28
|
Lu S, Liao X, Zhang L, Fang Y, Xiang M, Guo X. Nutrient L-Alanine-Induced Germination of Bacillus Improves Proliferation of Spores and Exerts Probiotic Effects in vitro and in vivo. Front Microbiol 2021; 12:796158. [PMID: 34925306 PMCID: PMC8675871 DOI: 10.3389/fmicb.2021.796158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
As alternatives to antibiotics in feed, probiotic Bacillus carries multiple advantages in animal production. Spores undergo strain-related germination in the gastrointestinal tract, but it is still unknown whether the probiotic function of the Bacillus depends on the germination of spores in vivo. In this study, based on 14 potential probiotic Bacillus strains from fermented food and feed, we detected the germination response of these Bacillus spores in relation to different germinating agents. The results showed the germination response was strain-specific and germinant-related, and nutrient germinant L-alanine significantly promoted the growth of strains with germination potential. Two strains of Bacillus subtilis, S-2 and 312, with or without a high spore germination response to L-alanine, were selected to study their morphological and genic differences induced by L-alanine through transmission electron microscopy and comparative transcriptomics analysis. Consequently, after L-alanine treatment, the gray phase was largely increased under microscopy, and the expression of the germination response genes was significantly up-regulated in the B. subtilis S-2 spores compared to the B. subtilis 312 spores (p < 0.05). The protective effect of L-alanine-induced spore germination of the two strains was comparatively investigated both in the IPEC-J2 cell model and a Sprague–Dawley (SD) rat model challenged by enterotoxigenic Escherichia coli K99. The result indicated that L-alanine helped B. subtilis S-2 spores, but not 312 spores, to decrease inflammatory factors (IL-6, IL-8, IL-1 β, TNF-α; p < 0.05) and promote the expression of occludin in IPEC-J2 cells. Besides, supplement with L-alanine-treated B. subtilis S-2 spores significantly improved the growth of the SD rats, alleviated histopathological GIT lesions, and improved the ratio of jejunal villus length to crypt depth in comparison to the B. subtilis S-2 spores alone (p < 0.05). Improved species diversity and abundance of fecal microbiota were only observed in the group with L-alanine-treated S-2 spores (p < 0.05). The study demonstrates L-alanine works well as a probiotic Bacillus adjuvant in improving intestinal health, and it also provides a solution for the practical and accurate regulation of their use as antibiotic alternatives in animal production.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Xianyin Liao
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Ying Fang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
29
|
Zegeye ED, Pradhan B, Llarena AK, Aspholm M. Enigmatic Pilus-Like Endospore Appendages of Bacillus cereus Group Species. Int J Mol Sci 2021; 22:12367. [PMID: 34830248 PMCID: PMC8619143 DOI: 10.3390/ijms222212367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The endospores (spores) of many Bacillus cereus sensu lato species are decorated with multiple hair/pilus-like appendages. Although they have been observed for more than 50 years, all efforts to characterize these fibers in detail have failed until now, largely due to their extraordinary resilience to proteolytic digestion and chemical solubilization. A recent structural analysis of B. cereus endospore appendages (Enas) using cryo-electron microscopy has revealed the structure of two distinct fiber morphologies: the longer and more abundant "Staggered-type" (S-Ena) and the shorter "Ladder-like" type (L-Ena), which further enabled the identification of the genes encoding the S-Ena. Ena homologs are widely and uniquely distributed among B. cereus sensu lato species, suggesting that appendages play important functional roles in these species. The discovery of ena genes is expected to facilitate functional studies involving Ena-depleted mutant spores to explore the role of Enas in the interaction between spores and their environment. Given the importance of B. cereus spores for the food industry and in medicine, there is a need for a better understanding of their biological functions and physicochemical properties. In this review, we discuss the current understanding of the Ena structure and the potential roles these remarkable fibers may play in the adhesion of spores to biotic and abiotic surfaces, aggregation, and biofilm formation.
Collapse
Affiliation(s)
- Ephrem Debebe Zegeye
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; (E.D.Z.); (A.-K.L.)
| | - Brajabandhu Pradhan
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium;
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; (E.D.Z.); (A.-K.L.)
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; (E.D.Z.); (A.-K.L.)
| |
Collapse
|
30
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
31
|
Jessberger N, Dietrich R, Granum PE, Märtlbauer E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins (Basel) 2020; 12:E701. [PMID: 33167492 PMCID: PMC7694497 DOI: 10.3390/toxins12110701] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous soil bacterium Bacillus cereus presents major challenges to food safety. It is responsible for two types of food poisoning, the emetic form due to food intoxication and the diarrheal form emerging from food infections with enteropathogenic strains, also known as toxico-infections, which are the subject of this review. The diarrheal type of food poisoning emerges after production of enterotoxins by viable bacteria in the human intestine. Basically, the manifestation of the disease is, however, the result of a multifactorial process, including B. cereus prevalence and survival in different foods, survival of the stomach passage, spore germination, motility, adhesion, and finally enterotoxin production in the intestine. Moreover, all of these processes are influenced by the consumed foodstuffs as well as the intestinal microbiota which have, therefore, to be considered for a reliable prediction of the hazardous potential of contaminated foods. Current knowledge regarding these single aspects is summarized in this review aiming for risk-oriented diagnostics for enteropathogenic B. cereus.
Collapse
Affiliation(s)
- Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| | - Per Einar Granum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway;
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; (R.D.); (E.M.)
| |
Collapse
|
32
|
Secaira-Morocho H, Castillo JA, Driks A. Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales. Microb Genom 2020; 6. [PMID: 33052805 PMCID: PMC7725329 DOI: 10.1099/mgen.0.000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among members of the Bacillales order, there are several species capable of forming a structure called an endospore. Endospores enable bacteria to survive under unfavourable growth conditions and germinate when environmental conditions are favourable again. Spore-coat proteins are found in a multilayered proteinaceous structure encasing the spore core and the cortex. They are involved in coat assembly, cortex synthesis and germination. Here, we aimed to determine the diversity and evolutionary processes that have influenced spore-coat genes in various spore-forming species of Bacillales using an in silico approach. For this, we used sequence similarity searching algorithms to determine the diversity of coat genes across 161 genomes of Bacillales. The results suggest that among Bacillales, there is a well-conserved core genome, composed mainly by morphogenetic coat proteins and spore-coat proteins involved in germination. However, some spore-coat proteins are taxa-specific. The best-conserved genes among different species may promote adaptation to changeable environmental conditions. Because most of the Bacillus species harbour complete or almost complete sets of spore-coat genes, we focused on this genus in greater depth. Phylogenetic reconstruction revealed eight monophyletic groups in the Bacillus genus, of which three are newly discovered. We estimated the selection pressures acting over spore-coat genes in these monophyletic groups using classical and modern approaches and detected horizontal gene transfer (HGT) events, which have been further confirmed by scanning the genomes to find traces of insertion sequences. Although most of the genes are under purifying selection, there are several cases with individual sites evolving under positive selection. Finally, the HGT results confirm that sporulation is an ancestral feature in Bacillus.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Abstract
This study demonstrated the progress of macromolecular synthesis during Bacillus subtilis spore germination and outgrowth. The transcriptome analysis has additionally allowed us to trace gene expression during this transformation process. For the first time, the basic survival kit for spore-based life has been identified. In addition, in this analysis based on monitoring of protein levels in germinating and outgrowing spores, the transition from (ribo)nucleotide and amino acid biosynthesis to the restoration of all metabolic pathways can be clearly seen. The integrative multi-omics approach applied in this study thus has helped us to achieve a comprehensive overview of the molecular mechanisms at the basis of spore germination and outgrowth as well as to identify important knowledge gaps in need of further study. Bacillus subtilis spores can reactivate their metabolism through germination upon contact with germinants and can develop into vegetative cells upon outgrowth. However, the mechanisms at the basis of the molecular machinery that triggers the spore germination and outgrowth processes are still largely unclear. To gain further insights into these processes, the transcriptome and proteome changes occurring during the conversion of spores to vegetative cells were analyzed in the present study. For each time point sampled, the changes in the spore proteome were quantitatively monitored relative to the proteome of metabolically 15N-labeled vegetative cells. Of the quantified proteins, 60% are shared by vegetative cells and spores, indicating that the spores have a minimal protein set, sufficient to resume metabolism upon completion of germination. These shared proteins thus represent the most basic “survival kit” for spore-based life. We observed no significant change in the proteome or the transcriptome until the spore’s completion of germination. Our analysis identified 34 abundant mRNA transcripts in the dormant spores, 31 of which are rapidly degraded after germination. In outgrowing spores, we identified 3,152 differentially expressed genes and have demonstrated the differential expression of 322 proteins with our mass spectrometry analyses. Our data also showed that 173 proteins from dormant spores, including both proteins unique to spores and proteins shared with vegetative cells, were lost after completion of germination. The observed diverse timings of synthesis of different protein sets in spore outgrowth revealed a putative core strategy underlying the revival of ‘life’ from the B. subtilis spore. IMPORTANCE This study demonstrated the progress of macromolecular synthesis during Bacillus subtilis spore germination and outgrowth. The transcriptome analysis has additionally allowed us to trace gene expression during this transformation process. For the first time, the basic survival kit for spore-based life has been identified. In addition, in this analysis based on monitoring of protein levels in germinating and outgrowing spores, the transition from (ribo)nucleotide and amino acid biosynthesis to the restoration of all metabolic pathways can be clearly seen. The integrative multi-omics approach applied in this study thus has helped us to achieve a comprehensive overview of the molecular mechanisms at the basis of spore germination and outgrowth as well as to identify important knowledge gaps in need of further study.
Collapse
|
34
|
Xing Y, Harper WF. Bacillus spore awakening: recent discoveries and technological developments. Curr Opin Biotechnol 2020; 64:110-115. [DOI: 10.1016/j.copbio.2019.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
|
35
|
Cote CK, Weidner JM, Klimko C, Piper AE, Miller JA, Hunter M, Shoe JL, Hoover JC, Sauerbry BR, Buhr T, Bozue JA, Harbourt DE, Glass PJ. Biological Validation of a Chemical Effluent Decontamination System. APPLIED BIOSAFETY 2020. [DOI: 10.1177/1535676020937967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction: Failure of an existing effluent decontamination system (EDS) prompted the consideration of commercial off-the-shelf solutions for decontamination of containment laboratory waste. A bleach-based chemical EDS was purchased to serve as an interim solution. Methods: Studies were conducted in the laboratory to validate inactivation of Bacillus spores with bleach in complex matrices containing organic simulants including fetal bovine serum, humic acid, and animal room sanitation effluent. Results: These studies demonstrated effective decontamination of >106 spores at a free chlorine concentration of ≥5700 parts per million with a 2-hour contact time. Translation of these results to biological validation of the bleach-based chemical EDS required some modifications to the system and its operation. Discussion: The chemical EDS was validated for the treatment of biosafety levels 3 and 4 waste effluent using laboratory-prepared spore packets along with commercial biological indicators; however, several issues and lessons learned identified during the process of onboarding are also discussed, including bleach product source, method of validation, dechlorination, and treated waste disposal.
Collapse
Affiliation(s)
- Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jessica M. Weidner
- Medical Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Christopher Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Ashley E. Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jeremy A. Miller
- Biosafety Office, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jennifer C. Hoover
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Brian R. Sauerbry
- Logistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Tony Buhr
- Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA, USA
| | - Joel A. Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - David E. Harbourt
- Biosafety Office, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Pamela J. Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| |
Collapse
|
36
|
Amon JD, Yadav AK, Ramirez-Guadiana FH, Meeske AJ, Cava F, Rudner DZ. SwsB and SafA Are Required for CwlJ-Dependent Spore Germination in Bacillus subtilis. J Bacteriol 2020; 202:e00668-19. [PMID: 31871031 PMCID: PMC7043669 DOI: 10.1128/jb.00668-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
When Bacillus subtilis spores detect nutrients, they exit dormancy through the processes of germination and outgrowth. A key step in germination is the activation of two functionally redundant cell wall hydrolases (SleB and CwlJ) that degrade the specialized cortex peptidoglycan that surrounds the spore. How these enzymes are regulated remains poorly understood. To identify additional factors that affect their activity, we used transposon sequencing to screen for synthetic germination defects in spores lacking SleB or CwlJ. Other than the previously characterized protein YpeB, no additional factors were found to be specifically required for SleB activity. In contrast, our screen identified SafA and YlxY (renamed SwsB) in addition to the known factors GerQ and CotE as proteins required for CwlJ function. SafA is a member of the spore's proteinaceous coat and we show that, like GerQ and CotE, it is required for accumulation and retention of CwlJ in the dormant spore. SwsB is broadly conserved among spore formers, and we show that it is required for CwlJ to efficiently degrade the cortex during germination. Intriguingly, SwsB resembles polysaccharide deacetylases, and its putative catalytic residues are required for its role in germination. However, we find no chemical signature of its activity on the spore cortex or in vitro While the precise, mechanistic role of SwsB remains unknown, we explore and discuss potential activities.IMPORTANCE Spore formation in Bacillus subtilis has been studied for over half a century, and virtually every step in this developmental process has been characterized in molecular detail. In contrast, how spores exit dormancy remains less well understood. A key step in germination is the degradation of the specialized cell wall surrounding the spore called the cortex. Two enzymes (SleB and CwlJ) specifically target this protective layer, but how they are regulated and whether additional factors promote their activity are unknown. Here, we identified the coat protein SafA and a conserved but uncharacterized protein YlxY as additional factors required for CwlJ-dependent degradation of the cortex. Our analysis provides a more complete picture of this essential step in the exit from dormancy.
Collapse
Affiliation(s)
- Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå, Sweden
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | | - Alexander J Meeske
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Aspholm ME, Kollerud KK, Høgberg Hansen HC, Granum PE, Christie G, Lindbäck T. Biochemical and mutational analysis of spore cortex-lytic enzymes in the food spoiler Bacillus licheniformis. Food Microbiol 2019; 84:103259. [PMID: 31421778 DOI: 10.1016/j.fm.2019.103259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Bacillus licheniformis is frequently associated with food spoilage due to its ability to form highly resistant endospores. The present study reveals that B. licheniformis spore peptidoglycan shares a similar structure to spores of other species of Bacillus. Two enzymatic activities associated with depolymerisation of the cortical peptidoglycan, which represents a crucial step in spore germination, were detected by muropeptide analysis. These include lytic transglycosylase and N-acetylglucosaminidase activity, with non-lytic epimerase activity also being detected. The role of various putative cortex-lytic enzymes that account for the aforementioned activity was investigated by mutational analysis. These analyses indicate that SleB is the major lysin involved in cortex depolymerisation in B. licheniformis spores, with CwlJ and SleL having lesser roles. Collectively, the results of this work indicate that B. licheniformis spores employ a similar approach for cortical depolymerisation during germination as spores of other Bacillus species.
Collapse
Affiliation(s)
- Marina E Aspholm
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Kristian K Kollerud
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Helge C Høgberg Hansen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Per Einar Granum
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Toril Lindbäck
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway.
| |
Collapse
|
38
|
Abstract
Bacterial spores can remain dormant for years but possess the remarkable ability to germinate, within minutes, once nutrients become available. However, it still remains elusive how such instant awakening of cellular machineries is achieved. Utilizing Bacillus subtilis as a model, we show that YwlE arginine (Arg) phosphatase is crucial for spore germination. Accordingly, the absence of the Arg kinase McsB accelerated the process. Arg phosphoproteome of dormant spores uncovered a unique set of Arg-phosphorylated proteins involved in key biological functions, including translation and transcription. Consequently, we demonstrate that during germination, YwlE dephosphorylates an Arg site on the ribosome-associated chaperone Tig, enabling its association with the ribosome to reestablish translation. Moreover, we show that Arg dephosphorylation of the housekeeping σ factor A (SigA), mediated by YwlE, facilitates germination by activating the transcriptional machinery. Subsequently, we reveal that transcription is reinitiated at the onset of germination and its recommencement precedes that of translation. Thus, Arg dephosphorylation elicits the most critical stages of spore molecular resumption, placing this unusual post-translational modification as a major regulator of a developmental process in bacteria.
Collapse
|
39
|
Structural and functional analyses of the N-terminal domain of the A subunit of a Bacillus megaterium spore germinant receptor. Proc Natl Acad Sci U S A 2019; 116:11470-11479. [PMID: 31113879 DOI: 10.1073/pnas.1903675116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Germination of Bacillus spores is induced by the interaction of specific nutrient molecules with germinant receptors (GRs) localized in the spore's inner membrane. GRs typically consist of three subunits referred to as A, B, and C, although functions of individual subunits are not known. Here we present the crystal structure of the N-terminal domain (NTD) of the A subunit of the Bacillus megaterium GerK3 GR, revealing two distinct globular subdomains bisected by a cleft, a fold with strong homology to substrate-binding proteins in bacterial ABC transporters. Molecular docking, chemical shift perturbation measurement, and mutagenesis coupled with spore germination analyses support a proposed model that the interface between the two subdomains in the NTD of GR A subunits serves as the germinant binding site and plays a critical role in spore germination. Our findings provide a conceptual framework for understanding the germinant recruitment mechanism by which GRs trigger spore germination.
Collapse
|
40
|
Swarge BN, Roseboom W, Zheng L, Abhyankar WR, Brul S, de Koster CG, de Koning LJ. "One-Pot" Sample Processing Method for Proteome-Wide Analysis of Microbial Cells and Spores. Proteomics Clin Appl 2018; 12:e1700169. [PMID: 29484825 PMCID: PMC6174930 DOI: 10.1002/prca.201700169] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Indexed: 11/15/2022]
Abstract
PURPOSE Bacterial endospores, the transmissible forms of pathogenic bacilli and clostridia, are heterogeneous multilayered structures composed of proteins. These proteins protect the spores against a variety of stresses, thus helping spore survival, and assist in germination, by interacting with the environment to form vegetative cells. Owing to the complexity, insolubility, and dynamic nature of spore proteins, it has been difficult to obtain their comprehensive protein profiles. EXPERIMENTAL DESIGN The intact spores of Bacillus subtilis, Bacillus cereus, and Peptoclostridium difficile and their vegetative counterparts were disrupted by bead beating in 6 m urea under reductive conditions. The heterogeneous mixture was then double digested with LysC and trypsin. Next, the peptide mixture was pre-fractionated with zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) followed by reverse-phase LC-FT-MS analysis of the fractions. RESULTS "One-pot" method is a simple, robust method that yields identification of >1000 proteins with high confidence, across all spore layers from B. subtilis, B. cereus, and P. difficile. CONCLUSIONS AND MEDICAL RELEVANCE This method can be employed for proteome-wide analysis of non-spore-forming as well as spore-forming pathogens. Analysis of spore protein profile will help to understand the sporulation and germination processes and to distinguish immunogenic protein markers.
Collapse
Affiliation(s)
- Bhagyashree Nandakishor Swarge
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Winfried Roseboom
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
| | - Linli Zheng
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Wishwas R Abhyankar
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institutes of Life Sciences, University of Amsterdam, The Netherlands
| | - Chris G de Koster
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo J de Koning
- Department of Mass Spectrometry of Bio macromolecules, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Intracellular membranes of bacterial endospores are reservoirs for spore core membrane expansion during spore germination. Sci Rep 2018; 8:11388. [PMID: 30061638 PMCID: PMC6065386 DOI: 10.1038/s41598-018-29879-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 11/08/2022] Open
Abstract
Bacterial endospores are formed by certain bacteria, such as Bacillus subtilis or the pathogenic Bacillus anthracis and Clostridioides difficile, to allow survival in environmental conditions which are lethal to vegetative bacteria. The spores possess a particular architecture and molecular inventory which endow them with a remarkable resistance against desiccation, heat and radiation. Another remarkable spore feature is their rapid return to vegetative growth during spore germination and outgrowth. The underlying processes of this latter physiological and morphological transformation involve a number of different events, some of which are mechanistically not entirely understood. One of these events is the expansion of the central spore core, which contains the DNA, RNA and most spore enzymes. To date, it has been unclear how the ~1.3- to 1.6-fold expansion of the core membrane surface area that accompanies core expansion takes place, since this occurs in the absence of significant if any ATP synthesis. In the current work, we demonstrate the presence of intracellular membrane structures in spores located just below the core membrane. During spore germination these internal core membranes disappear when the core size increases, suggesting that they are integrated into the core membrane to allow core expansion. These intracellular membranes are most probably present as more or less compressed vesicles or tubules within the dormant spore core. Investigations of spores from different species suggest that these intracellular membrane structures below the core membrane are a general feature of endospore forming bacteria.
Collapse
|
42
|
Abhyankar WR, Wen J, Swarge BN, Tu Z, de Boer R, Smelt JPPM, de Koning LJ, Manders E, de Koster CG, Brul S. Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores. Food Microbiol 2018; 81:89-96. [PMID: 30910091 DOI: 10.1016/j.fm.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Bacterial spores are ubiquitous in nature and can withstand both chemical and physical stresses. Spores can survive food preservation processes and upon outgrowth cause food spoilage as well as safety risks. The heterogeneous germination and outgrowth behavior of isogenic spore populations exacerbates this risk. A major unknown factor of spores is likely to be the inherently heterogeneous spore protein composition. The proteomics methods discussed here help in broadening the knowledge about spore structure and identification of putative target proteins from spores of different spore formers. Approaches to synchronize Bacillus subtilis spore formation, and to analyze spore proteins as well as the physiology of spore germination and outgrowth are also discussed. Live-imaging and fluorescence microscopy techniques discussed here allow analysis, at single cell level, of the 'germinosome', the process of spore germination itself, spore outgrowth and the spore intracellular pH dynamics. For the latter, a recently published improved pHluorin (IpHluorin) under control of the ptsG promoter is applicable. While the data obtained from such tools offers novel insight in the mechanisms of bacterial spore awakening, it may also be used to probe candidate antimicrobial compounds for inhibitory effects on spore germination and strengthen microbial risk assessment.
Collapse
Affiliation(s)
- W R Abhyankar
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J Wen
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B N Swarge
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Z Tu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - R de Boer
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J P P M Smelt
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - L J de Koning
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - E Manders
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - C G de Koster
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - S Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Ramírez-Guadiana FH, Meeske AJ, Rodrigues CDA, Barajas-Ornelas RDC, Kruse AC, Rudner DZ. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis. PLoS Genet 2017; 13:e1007015. [PMID: 28945739 PMCID: PMC5629000 DOI: 10.1371/journal.pgen.1007015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/05/2017] [Accepted: 09/09/2017] [Indexed: 11/18/2022] Open
Abstract
One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5–15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria. All pathogenic and non-pathogenic bacteria that differentiate into dormant endospores including Clostridium difficile, Bacillus anthracis, and Bacillus subtilis, contain very high concentrations of the small molecule dipicolinic acid (DPA). This molecule displaces water in the spore core where it plays an integral role in spore resistance and dormancy. DPA and its contribution to spore dehydration were discovered in 1953 but the molecular basis for its accumulation in the spore has remained unclear. The developing endospore resides within a mother cell that assembles protective layers around the spore and nurtures it by providing mother-cell-produced molecules. DPA is produced in the mother cell at a late stage in development and then must be translocated across two membranes into the spore core. Here, we report the discovery of the missing DPA transporter, homologs of which are present in virtually all endospore-forming bacteria. Our data provide evidence for a simple two-step transport pathway in which the mother cell nurtures the developing spore by sequentially moving DPA across the two membranes that surround it.
Collapse
Affiliation(s)
| | - Alexander J. Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | | | | | - Andrew C. Kruse
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
Dormant Bacillales and Clostridiales spores begin to grow when small molecules (germinants) trigger germination, potentially leading to food spoilage or disease. Germination-specific proteins sense germinants, transport small molecules, and hydrolyze specific bonds in cortex peptidoglycan and specific proteins. Major events in germination include (a) germinant sensing; (b) commitment to germinate; (c) release of spores' depot of dipicolinic acid (DPA); (d) hydrolysis of spores' peptidoglycan cortex; and (e) spore core swelling and water uptake, cell wall peptidoglycan remodeling, and restoration of core protein and inner spore membrane lipid mobility. Germination is similar between Bacillales and Clostridiales, but some species differ in how germinants are sensed and how cortex hydrolysis and DPA release are triggered. Despite detailed knowledge of the proteins and signal transduction pathways involved in germination, precisely what some germination proteins do and how they do it remain unclear.
Collapse
Affiliation(s)
- Peter Setlow
- Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305;
| | - Shiwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yong-Qing Li
- Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353;
| |
Collapse
|
45
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
46
|
Ramírez-Guadiana FH, Meeske AJ, Wang X, Rodrigues CDA, Rudner DZ. The Bacillus subtilis germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Mol Microbiol 2017; 105:689-704. [PMID: 28605069 DOI: 10.1111/mmi.13728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
During sporulation in Bacillus subtilis, germinant receptors assemble in the inner membrane of the developing spore. In response to specific nutrients, these receptors trigger germination and outgrowth. In a transposon-sequencing screen, we serendipitously discovered that loss of function mutations in the gerA receptor partially suppress the phenotypes of > 25 sporulation mutants. Most of these mutants have modest defects in the assembly of the spore protective layers that are exacerbated in the presence of a functional GerA receptor. Several lines of evidence indicate that these mutants inappropriately trigger the activation of GerA during sporulation resulting in premature germination. These findings led us to discover that up to 8% of wild-type sporulating cells trigger premature germination during differentiation in a GerA-dependent manner. This phenomenon was observed in domesticated and undomesticated wild-type strains sporulating in liquid and on solid media. Our data indicate that the GerA receptor is poised on a knife's edge during spore development. We propose that this sensitized state ensures a rapid response to nutrient availability and also elicits premature germination of spores with improperly assembled protective layers resulting in the elimination of even mildly defective individuals from the population.
Collapse
Affiliation(s)
- Fernando H Ramírez-Guadiana
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Alexander J Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
47
|
Abstract
The ability of Clostridium perfringens to form spores plays a key role during the transmission of this Gram-positive bacterium to cause disease. Of particular note, the spores produced by food poisoning strains are often exceptionally resistant to food environment stresses such as heat, cold, and preservatives, which likely facilitates their survival in temperature-abused foods. The exceptional resistance properties of spores made by most type A food poisoning strains and some type C foodborne disease strains involve their production of a variant small acid-soluble protein-4 that binds more tightly to spore DNA than to the small acid-soluble protein-4 made by most other C. perfringens strains. Sporulation and germination by C. perfringens and Bacillus spp. share both similarities and differences. Finally, sporulation is essential for production of C. perfringens enterotoxin, which is responsible for the symptoms of C. perfringens type A food poisoning, the second most common bacterial foodborne disease in the United States. During this foodborne disease, C. perfringens is ingested with food and then, by using sporulation-specific alternate sigma factors, this bacterium sporulates and produces the enterotoxin in the intestines.
Collapse
|
48
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
49
|
Warda AK, Xiao Y, Boekhorst J, Wells-Bennik MHJ, Nierop Groot MN, Abee T. Analysis of Germination Capacity and Germinant Receptor (Sub)clusters of Genome-Sequenced Bacillus cereus Environmental Isolates and Model Strains. Appl Environ Microbiol 2017; 83:e02490-16. [PMID: 27881417 PMCID: PMC5288832 DOI: 10.1128/aem.02490-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022] Open
Abstract
Spore germination of 17 Bacillus cereus food isolates and reference strains was evaluated using flow cytometry analysis in combination with fluorescent staining at a single-spore level. This approach allowed for rapid collection of germination data under more than 20 conditions, including heat activation of spores, germination in complex media (brain heart infusion [BHI] and tryptone soy broth [TSB]), and exposure to saturating concentrations of single amino acids and the combination of alanine and inosine. Whole-genome sequence comparison revealed a total of 11 clusters of operons encoding germinant receptors (GRs): GerK, GerI, and GerL were present in all strains, whereas GerR, GerS, GerG, GerQ, GerX, GerF, GerW, and GerZ (sub)clusters showed a more diverse presence/absence in different strains. The spores of tested strains displayed high diversity with regard to their sensitivity and responsiveness to selected germinants and heat activation. The two laboratory strains, B. cereus ATCC 14579 and ATCC 10987, and 11 food isolates showed a good germination response under a range of conditions, whereas four other strains (B. cereus B4085, B4086, B4116, and B4153) belonging to phylogenetic group IIIA showed a very weak germination response even in BHI and TSB media. Germination responses could not be linked to specific (combinations of) GRs, but it was noted that the four group IIIA strains contained pseudogenes or variants of subunit C in their gerL cluster. Additionally, two of those strains (B4086 and B4153) carried pseudogenes in the gerK and gerRI (sub)clusters that possibly affected the functionality of these GRs. IMPORTANCE Germination of bacterial spores is a critical step before vegetative growth can resume. Food products may contain nutrient germinants that trigger germination and outgrowth of Bacillus species spores, possibly leading to food spoilage or foodborne illness. Prediction of spore germination behavior is, however, very challenging, especially for spores of natural isolates that tend to show more diverse germination responses than laboratory strains. The approach used has provided information on the genetic diversity in GRs and corresponding subclusters encoded by B. cereus strains, as well as their germination behavior and possible associations with GRs, and it provides a basis for further extension of knowledge on the role of GRs in B. cereus (group member) ecology and transmission to the host.
Collapse
Affiliation(s)
- Alicja K Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Marjon H J Wells-Bennik
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Masja N Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
50
|
Boone T, Driks A. Protein Synthesis during Germination: Shedding New Light on a Classical Question. J Bacteriol 2016; 198:3251-3253. [PMID: 27736794 PMCID: PMC5116928 DOI: 10.1128/jb.00721-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite over a century of research into the mystery of bacterial spore dormancy and germination, a key question remains unresolved: is protein synthesis required for germination? The development of more sophisticated techniques for assessing and preventing protein synthesis has renewed interest in this long-standing question in recent years. In this issue, Korza et al. (G. Korza, B. Setlow, L. Rao, Q. Li, and P. Setlow, J. Bacteriol 198:3254-3264, 2016, http://dx.doi.org/10.1128/JB.00583-16) address this with a novel approach. We discuss their results in the context of recently published data.
Collapse
Affiliation(s)
- Tyler Boone
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|