1
|
Takacs L, Gerontogianni L, Quililan K, Flynn H, Uhlmann F. Evidence of substrate control of Cdk phosphorylation during the budding yeast cell cycle. Cell Rep 2025; 44:115534. [PMID: 40220295 DOI: 10.1016/j.celrep.2025.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
A series of sequential events orchestrates cell growth and division, set in motion by cyclin-dependent kinases (Cdks). In the "qualitative model" for Cdk control, order is achieved by cell cycle stage-specific cyclins. However, single-cyclin cells retain cell cycle order. In an alternative "quantitative model," increasing Cdk activity triggers substrate phosphorylation at sequential thresholds. Here, we test a key prediction from the quantitative model: the best Cdk substrates should be the first to be phosphorylated. Phosphoproteome analysis of synchronous budding yeast cultures, against expectations, reveals little correlation between known in vitro Cdk phosphorylation rates and observed in vivo phosphorylation timing. Incorporating Cdk-counteracting phosphatases that impose phosphorylation thresholds does not improve the correlation. Instead of kinase-phosphatase control (i.e., "regulator control"), our phosphoproteome patterns reveal signatures of "substrate control," including substrate-defined phosphorylation waves. The changing behavior of the substrates themselves therefore contributes to ordering their Cdk phosphorylation during the budding yeast cell cycle.
Collapse
Affiliation(s)
- Luca Takacs
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lina Gerontogianni
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Kimberly Quililan
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Helen Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
2
|
Geck RC, Moresi NG, Anderson LM, Brewer R, Renz TR, Taylor MB, Dunham MJ. Experimental evolution of Saccharomyces cerevisiae for caffeine tolerance alters multidrug resistance and target of rapamycin signaling pathways. G3 (BETHESDA, MD.) 2024; 14:jkae148. [PMID: 38989875 PMCID: PMC11373655 DOI: 10.1093/g3journal/jkae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Caffeine is a natural compound that inhibits the major cellular signaling regulator target of rapamycin (TOR), leading to widespread effects including growth inhibition. Saccharomyces cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors Pdr1, Pdr3, and Yrr1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors Sit4, Sky1, and Tip41 and showed that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.
Collapse
Affiliation(s)
- Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Naomi G Moresi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Leah M Anderson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Marq JB, Gosetto M, Altenried A, Vadas O, Maco B, Dos Santos Pacheco N, Tosetti N, Soldati-Favre D, Lentini G. Cytokinetic abscission in Toxoplasma gondii is governed by protein phosphatase 2A and the daughter cell scaffold complex. EMBO J 2024; 43:3752-3786. [PMID: 39009675 PMCID: PMC11377541 DOI: 10.1038/s44318-024-00171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Cytokinetic abscission marks the final stage of cell division, during which the daughter cells physically separate through the generation of new barriers, such as the plasma membrane or cell wall. While the contractile ring plays a central role during cytokinesis in bacteria, fungi and animal cells, the process diverges in Apicomplexa. In Toxoplasma gondii, two daughter cells are formed within the mother cell by endodyogeny. The mechanism by which the progeny cells acquire their plasma membrane during the disassembly of the mother cell, allowing daughter cells to emerge, remains unknown. Here we identify and characterize five T. gondii proteins, including three protein phosphatase 2A subunits, which exhibit a distinct and dynamic localization pattern during parasite division. Individual downregulation of these proteins prevents the accumulation of plasma membrane at the division plane, preventing the completion of cellular abscission. Remarkably, the absence of cytokinetic abscission does not hinder the completion of subsequent division cycles. The resulting progeny are able to egress from the infected cells but fail to glide and invade, except in cases of conjoined twin parasites.
Collapse
Affiliation(s)
- Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Margaux Gosetto
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Aline Altenried
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Geck RC, Moresi NG, Anderson LM, Brewer R, Renz TR, Taylor MB, Dunham MJ. Experimental evolution of S. cerevisiae for caffeine tolerance alters multidrug resistance and TOR signaling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591555. [PMID: 38746122 PMCID: PMC11092465 DOI: 10.1101/2024.04.28.591555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Caffeine is a natural compound that inhibits the major cellular signaling regulator TOR, leading to widespread effects including growth inhibition. S. cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors PDR1, PDR3, and YRR1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors SIT4, SKY1, and TIP41, and show that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance, and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.
Collapse
Affiliation(s)
- Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Naomi G Moresi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Leah M Anderson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | - M Bryce Taylor
- Program in Biology, Loras College, Dubuque, IA 52001, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Leite AC, Martins TS, Campos A, Costa V, Pereira C. Phosphoregulation of the ATP synthase beta subunit stimulates mitochondrial activity for G2/M progression. Adv Biol Regul 2022; 85:100905. [PMID: 36030696 DOI: 10.1016/j.jbior.2022.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Mitochondrial ATP synthase is a multifunctional enzyme complex involved in ATP production. We previously reported that the ATP synthase catalytic beta subunit (Atp2p in yeast) is regulated by the 2A-like protein phosphatase Sit4p, which targets Atp2p at T124/T317 impacting on ATP synthase levels and mitochondrial respiration. Here we report that Atp2-T124/T317 is also potentially regulated by Cdc5p, a polo-like mitotic kinase. Since both Cdc5p and Sit4p have established roles in cell cycle regulation, we investigated whether Atp2-T124/T317 phosphorylation was cell cycle-related. We present evidence that Atp2p levels and phosphorylation vary during cell cycle progression, with an increase at G2/M phase. Atp2-T124/T317 phosphorylation stimulates mitochondrial membrane potential, respiration and ATP levels at G2/M phase, indicating that dynamic Atp2p phosphorylation contributes to mitochondrial activity at this specific cell cycle phase. Preventing Atp2p phosphorylation delays G2/M to G1 transition, suggesting that enhanced bioenergetics at G2/M may help meet the energetic demands of cell cycle progression. However, mimicking constitutive T124/T317 phosphorylation or overexpressing Atp2p leads to mitochondrial DNA instability, indicating that reversible Atp2p phosphorylation is critical for homeostasis. These results indicate that transient phosphorylation of Atp2p, a protein at the core of the ATP production machinery, impacts on mitochondrial bioenergetics and supports cell cycle progression at G2/M.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Telma Silva Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Ana Campos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Clara Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| |
Collapse
|
6
|
Fréville A, Gnangnon B, Khelifa AS, Gissot M, Khalife J, Pierrot C. Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics? Microorganisms 2022; 10:microorganisms10030585. [PMID: 35336160 PMCID: PMC8949495 DOI: 10.3390/microorganisms10030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/10/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites’ life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, UK
- Correspondence: (A.F.); (C.P.)
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Epidemiology, Center for Communicable Diseases Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Asma S. Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Correspondence: (A.F.); (C.P.)
| |
Collapse
|
7
|
Sule A, Golding SE, Ahmad SF, Watson J, Ahmed MH, Kellogg GE, Bernas T, Koebley S, Reed JC, Povirk LF, Valerie K. ATM phosphorylates PP2A subunit A resulting in nuclear export and spatiotemporal regulation of the DNA damage response. Cell Mol Life Sci 2022; 79:603. [PMID: 36434396 PMCID: PMC9700600 DOI: 10.1007/s00018-022-04550-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
Ataxia telangiectasia mutated (ATM) is a serine-threonine protein kinase and important regulator of the DNA damage response (DDR). One critical ATM target is the structural subunit A (PR65-S401) of protein phosphatase 2A (PP2A), known to regulate diverse cellular processes such as mitosis and cell growth as well as dephosphorylating many proteins during the recovery from the DDR. We generated mouse embryonic fibroblasts expressing PR65-WT, -S401A (cannot be phosphorylated), and -S401D (phospho-mimetic) transgenes. Significantly, S401 mutants exhibited extensive chromosomal aberrations, impaired DNA double-strand break (DSB) repair and underwent increased mitotic catastrophe after radiation. Both S401A and the S401D cells showed impaired DSB repair (nonhomologous end joining and homologous recombination repair) and exhibited delayed DNA damage recovery, which was reflected in reduced radiation survival. Furthermore, S401D cells displayed increased ERK and AKT signaling resulting in enhanced growth rate further underscoring the multiple roles ATM-PP2A signaling plays in regulating prosurvival responses. Time-lapse video and cellular localization experiments showed that PR65 was exported to the cytoplasm after radiation by CRM1, a nuclear export protein, in line with the very rapid pleiotropic effects observed. A putative nuclear export sequence (NES) close to S401 was identified and when mutated resulted in aberrant PR65 shuttling. Our study demonstrates that the phosphorylation of a single, critical PR65 amino acid (S401) by ATM fundamentally controls the DDR, and balances DSB repair quality, cell survival and growth by spatiotemporal PR65 nuclear-cytoplasmic shuttling mediated by the nuclear export receptor CRM1.
Collapse
Affiliation(s)
- Amrita Sule
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sarah E Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
| | - Syed F Ahmad
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - James Watson
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tytus Bernas
- Department of Anatomy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sean Koebley
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jason C Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, 23298-0058, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
8
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
9
|
Plank M, Berti M, Loewith R. Phosphoproteomic Effects of Acute Depletion of PP2A Regulatory Subunit Cdc55. Proteomics 2020; 21:e2000166. [PMID: 32970932 DOI: 10.1002/pmic.202000166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Indexed: 11/08/2022]
Abstract
Protein phosphatase regulatory subunits are increasingly recognized as promising drug targets. In the absence of an existing drug, inducible degradation provides a means of predicting candidate targets. Here auxin-inducible degradation of Saccharomyces cerevisiae PP2A regulatory subunit Cdc55 in combination with quantitative phosphoproteomics is employed. A prevalence of hyperphosphorylated phosphopeptides indicates that the approach successfully identified direct PP2ACdc55 targets. PRM follow up of data-dependent acquisition results confirmed that vacuolar amino acid transporters are among the proteins most strongly affected by Cdc55 depletion.
Collapse
Affiliation(s)
- Michael Plank
- Department of Molecular Biology, University of Geneva, Geneva, CH-1211, Switzerland.,National Centre of Competence in Research-Chemical Biology, University of Geneva, Geneva, CH-1211, Switzerland
| | - Marina Berti
- Department of Molecular Biology, University of Geneva, Geneva, CH-1211, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva, CH-1211, Switzerland.,National Centre of Competence in Research-Chemical Biology, University of Geneva, Geneva, CH-1211, Switzerland
| |
Collapse
|
10
|
Sharmin T, Morshed S, Ushimaru T. PP2A promotes ESCRT-0 complex formation on vacuolar membranes and microautophagy induction after TORC1 inactivation. Biochem Biophys Res Commun 2020; 524:614-620. [DOI: 10.1016/j.bbrc.2020.01.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
|
11
|
PP2A Functions during Mitosis and Cytokinesis in Yeasts. Int J Mol Sci 2019; 21:ijms21010264. [PMID: 31906018 PMCID: PMC6981662 DOI: 10.3390/ijms21010264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is a common mechanism for the regulation of cell cycle progression. The opposing functions of cell cycle kinases and phosphatases are crucial for accurate chromosome segregation and exit from mitosis. Protein phosphatases 2A are heterotrimeric complexes that play essential roles in cell growth, proliferation, and regulation of the cell cycle. Here, we review the function of the protein phosphatase 2A family as the counteracting force for the mitotic kinases. We focus on recent findings in the regulation of mitotic exit and cytokinesis by PP2A phosphatases in S. cerevisiae and other fungal species.
Collapse
|
12
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
13
|
Sahu PK, Tomar RS. The natural anticancer agent cantharidin alters GPI-anchored protein sorting by targeting Cdc1-mediated remodeling in endoplasmic reticulum. J Biol Chem 2019; 294:3837-3852. [PMID: 30659098 DOI: 10.1074/jbc.ra118.003890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/10/2019] [Indexed: 11/06/2022] Open
Abstract
Cantharidin (CTD) is a potent anticancer small molecule produced by several species of blister beetle. It has been a traditional medicine for the management of warts and tumors for many decades. CTD suppresses tumor growth by inducing apoptosis, cell cycle arrest, and DNA damage and inhibits protein phosphatase 2 phosphatase activator (PP2A) and protein phosphatase 1 (PP1). CTD also alters lipid homeostasis, cell wall integrity, endocytosis, adhesion, and invasion in yeast cells. In this study, we identified additional molecular targets of CTD using a Saccharomyces cerevisiae strain that expresses a cantharidin resistance gene (CRG1), encoding a SAM-dependent methyltransferase that methylates and inactivates CTD. We found that CTD specifically affects phosphatidylethanolamine (PE)-associated functions that can be rescued by supplementing the growth media with ethanolamine (ETA). CTD also perturbed endoplasmic reticulum (ER) homeostasis and cell wall integrity by altering the sorting of glycosylphosphatidylinositol (GPI)-anchored proteins. A CTD-dependent genetic interaction profile of CRG1 revealed that the activity of the lipid phosphatase cell division control protein 1 (Cdc1) in GPI-anchor remodeling is the key target of CTD, independently of PP2A and PP1 activities. Moreover, experiments with human cells further suggested that CTD functions through a conserved mechanism in higher eukaryotes. Altogether, we conclude that CTD induces cytotoxicity by targeting Cdc1 activity in GPI-anchor remodeling in the ER.
Collapse
Affiliation(s)
- Pushpendra Kumar Sahu
- From the Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066 Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- From the Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066 Madhya Pradesh, India
| |
Collapse
|
14
|
Hao S, Song H, Zhang W, Seldomridge A, Jung J, Giles AJ, Hutchinson MK, Cao X, Colwell N, Lita A, Larion M, Maric D, Abu-Asab M, Quezado M, Kramp T, Camphausen K, Zhuang Z, Gilbert MR, Park DM. Protein phosphatase 2A inhibition enhances radiation sensitivity and reduces tumor growth in chordoma. Neuro Oncol 2019; 20:799-809. [PMID: 29294092 DOI: 10.1093/neuonc/nox241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Standard therapy for chordoma consists of surgical resection followed by high-dose irradiation. Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase involved in signal transduction, cell cycle progression, cell differentiation, and DNA repair. LB100 is a small-molecule inhibitor of PP2A designed to sensitize cancer cells to DNA damage from irradiation and chemotherapy. A recently completed phase I trial of LB100 in solid tumors demonstrated its safety. Here, we show the therapeutic potential of LB100 in chordoma. Methods Three patient-derived chordoma cell lines were used: U-CH1, JHC7, and UM-Chor1. Cell proliferation was determined with LB100 alone and in combination with irradiation. Cell cycle progression was assessed by flow cytometry. Quantitative γ-H2AX immunofluorescence and immunoblot evaluated the effect of LB100 on radiation-induced DNA damage. Ultrastructural evidence for nuclear damage was investigated using Raman imaging and transmission electron microscopy. A xenograft model was established to determine potential clinical utility of adding LB100 to irradiation. Results PP2A inhibition in concert with irradiation demonstrated in vitro growth inhibition. The combination of LB100 and radiation also induced accumulation at the G2/M phase of the cell cycle, the stage most sensitive to radiation-induced damage. LB100 enhanced radiation-induced DNA double-strand breaks. Animals implanted with chordoma cells and treated with the combination of LB100 and radiation demonstrated tumor growth delay. Conclusions Combining LB100 and radiation enhanced DNA damage-induced cell death and delayed tumor growth in an animal model of chordoma. PP2A inhibition by LB100 treatment may improve the effectiveness of radiation therapy for chordoma.
Collapse
Affiliation(s)
- Shuyu Hao
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ashlee Seldomridge
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jinkyu Jung
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Amber J Giles
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Marsha-Kay Hutchinson
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiaoyu Cao
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nicole Colwell
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Adrian Lita
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mioara Larion
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Dragan Maric
- Flow Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Mones Abu-Asab
- Ultrastructural Pathology Section, National Eye Institute, Bethesda, Maryland, USA
| | - Martha Quezado
- Neuropathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Tamalee Kramp
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deric M Park
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Offley SR, Schmidt MC. Protein phosphatases of Saccharomyces cerevisiae. Curr Genet 2018; 65:41-55. [PMID: 30225534 DOI: 10.1007/s00294-018-0884-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/27/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
Abstract
The phosphorylation status of a protein is highly regulated and is determined by the opposing activities of protein kinases and protein phosphatases within the cell. While much is known about the protein kinases found in Saccharomyces cerevisiae, the protein phosphatases are much less characterized. Of the 127 protein kinases in yeast, over 90% are in the same evolutionary lineage. In contrast, protein phosphatases are fewer in number (only 43 have been identified in yeast) and comprise multiple, distinct evolutionary lineages. Here we review the protein phosphatase families of yeast with regard to structure, catalytic mechanism, regulation, and signal transduction participation.
Collapse
Affiliation(s)
- Sarah R Offley
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Martin C Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
16
|
The PP2A-like Protein Phosphatase Ppg1 and the Far Complex Cooperatively Counteract CK2-Mediated Phosphorylation of Atg32 to Inhibit Mitophagy. Cell Rep 2018; 23:3579-3590. [DOI: 10.1016/j.celrep.2018.05.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/07/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
|
17
|
Cdc14 Phosphatase Promotes TORC1-Regulated Autophagy in Yeast. J Mol Biol 2018; 430:1671-1684. [DOI: 10.1016/j.jmb.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
|
18
|
Cai X, Guo L, Pei F, Chang X, Zhang R. Polyphyllin G exhibits antimicrobial activity and exerts anticancer effects on human oral cancer OECM-1 cells by triggering G2/M cell cycle arrest by inactivating cdc25C-cdc2. Arch Biochem Biophys 2018; 644:93-99. [PMID: 29352966 DOI: 10.1016/j.abb.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/29/2022]
Abstract
Plant natural products have long been considered to be important sources of bioactive molecules. A large number of antimicrobial and anticancer agents have been isolated form plants. In the present study we evaluated the antimicrobial and anticancer activity of a plant derived secondery metabolite, Polyphyllin G. The results of antibacterial assays showed that Polyphyllin G prevented the growth of both Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) ranging from 13.1 to 78 μg/ml. Antifungal activity measured as inhibition of mycelium growth ranged between 38.32 and 56.50%. Further Polyphyllin G was also evaluated against a panel of cancer cell lines. The IC50 of Polyphyllin G ranged from 10 to 65 μM. However the IC50 of Polyphyllin G was found to be comparatively high (120 μM) against the normal FR2 cancer cell line. The lowest IC50 of 10 μM was found against the oral cancer cell line OECM-1. Therefore further studies were carried out on this cell line only. Our results indicated that Polyphyllin G induced cell arrest in oral cancer OECM-1 cells by inactivation of cdc25C-cdc22 via ATM-Chk 1/2 stimulation. Therefore, we propose that Polyphyllin G might prove a lead molecule in the management of oral cancers and at the same time may prevent the growth of opportunistic microbes.
Collapse
Affiliation(s)
- Xiaoqing Cai
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China.
| | - Lele Guo
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Fei Pei
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Xiaoyun Chang
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Rui Zhang
- Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| |
Collapse
|
19
|
Povea-Cabello S, Oropesa-Ávila M, de la Cruz-Ojeda P, Villanueva-Paz M, de la Mata M, Suárez-Rivero JM, Álvarez-Córdoba M, Villalón-García I, Cotán D, Ybot-González P, Sánchez-Alcázar JA. Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis. Int J Mol Sci 2017; 18:ijms18112393. [PMID: 29137119 PMCID: PMC5713361 DOI: 10.3390/ijms18112393] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/05/2023] Open
Abstract
During apoptosis, cells undergo characteristic morphological changes in which the cytoskeleton plays an active role. The cytoskeleton rearrangements have been mainly attributed to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reorganized during the execution phase of apoptosis forming an apoptotic microtubule network (AMN). Evidence suggests that AMN is required to maintain plasma membrane integrity and cell morphology during the execution phase of apoptosis. The new “two coffins” hypothesis proposes that both AMN and apoptotic cells can adopt two morphological patterns, round or irregular, which result from different cytoskeleton kinetic reorganization during the execution phase of apoptosis induced by genotoxic agents. In addition, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocyte responses. These findings suggest that knowing the type of apoptosis may be important to predict how fast apoptotic cells undergo secondary necrosis and the subsequent immune response. From a pathological point of view, round-shaped apoptosis can be seen as a physiological and controlled type of apoptosis, while irregular-shaped apoptosis can be considered as a pathological type of cell death closer to necrosis.
Collapse
Affiliation(s)
- Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| | - Patricia de la Cruz-Ojeda
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| | - Juan Miguel Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Unidad de Gestión de Pediatría, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain.
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Consejo Superior de Investigaciones Científicas, Universidad Pablo de, Carretera de Utrera Km 1, 41013 Sevilla, Spain.
| |
Collapse
|
20
|
Samofalova DO, Karpov PA, Raevsky AV, Blume YB. Protein phosphatases potentially associated with regulation of microtubules, their spatial structure reconstruction and analysis. Cell Biol Int 2017; 43:1081-1090. [PMID: 28653783 DOI: 10.1002/cbin.10810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/24/2017] [Indexed: 11/12/2022]
Abstract
According to the sequence and profile comparison with known catalytic domains, where identified protein phosphatases potentially involved in regulation of microtubule dynamics and structure from Arabidopsis thaliana, Nicotiana tabacum, Medicago sativa, Oryza sativa subsp. japonica, Zea mays, and Triticum aestivum. Selected proteins were related to classical non-receptor, serine/threonine-specific and dual protein phosphatases. By application of template structures of human protein phosphatases, it was performed homology modelling of the catalytic domains of 17 plant protein phosphatases. Based on the results of the structural alignment, molecular dynamics, and conservatism in positions of functionally importance, it was confirmed homology of selected plant proteins and known protein phosphatases regulating structure and dynamics of microtubules.
Collapse
Affiliation(s)
- Dariya O Samofalova
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sci. of Ukraine, Osipovskogo str. 2a, Kyiv, 04123, Ukraine
| | - Pavel A Karpov
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sci. of Ukraine, Osipovskogo str. 2a, Kyiv, 04123, Ukraine
| | - Alexey V Raevsky
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sci. of Ukraine, Osipovskogo str. 2a, Kyiv, 04123, Ukraine
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sci. of Ukraine, Osipovskogo str. 2a, Kyiv, 04123, Ukraine
| |
Collapse
|
21
|
Ferrari E, Bruhn C, Peretti M, Cassani C, Carotenuto WV, Elgendy M, Shubassi G, Lucca C, Bermejo R, Varasi M, Minucci S, Longhese MP, Foiani M. PP2A Controls Genome Integrity by Integrating Nutrient-Sensing and Metabolic Pathways with the DNA Damage Response. Mol Cell 2017. [PMID: 28648781 PMCID: PMC5526790 DOI: 10.1016/j.molcel.2017.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mec1ATR mediates the DNA damage response (DDR), integrating chromosomal signals and mechanical stimuli. We show that the PP2A phosphatases, ceramide-activated enzymes, couple cell metabolism with the DDR. Using genomic screens, metabolic analysis, and genetic and pharmacological studies, we found that PP2A attenuates the DDR and that three metabolic circuits influence the DDR by modulating PP2A activity. Irc21, a putative cytochrome b5 reductase that promotes the condensation reaction generating dihydroceramides (DHCs), and Ppm1, a PP2A methyltransferase, counteract the DDR by activating PP2A; conversely, the nutrient-sensing TORC1-Tap42 axis sustains DDR activation by inhibiting PP2A. Loss-of-function mutations in IRC21, PPM1, and PP2A and hyperactive tap42 alleles rescue mec1 mutants. Ceramides synergize with rapamycin, a TORC1 inhibitor, in counteracting the DDR. Hence, PP2A integrates nutrient-sensing and metabolic pathways to attenuate the Mec1ATR response. Our observations imply that metabolic changes affect genome integrity and may help with exploiting therapeutic options and repositioning known drugs.
Collapse
Affiliation(s)
- Elisa Ferrari
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Christopher Bruhn
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Marta Peretti
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Corinne Cassani
- Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | | | - Mohamed Elgendy
- Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milan, Italy
| | - Ghadeer Shubassi
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Chiara Lucca
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
| | - Mario Varasi
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Saverio Minucci
- Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
22
|
Deng L, Lee ME, Schutt KL, Moseley JB. Phosphatases Generate Signal Specificity Downstream of Ssp1 Kinase in Fission Yeast. Mol Cell Biol 2017; 37:e00494-16. [PMID: 28223368 PMCID: PMC5477550 DOI: 10.1128/mcb.00494-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/10/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022] Open
Abstract
AMPK-related protein kinases (ARKs) coordinate cell growth, proliferation, and migration with environmental status. It is unclear how specific ARKs are activated at specific times. In the fission yeast Schizosaccharomyces pombe, the CaMKK-like protein kinase Ssp1 promotes cell cycle progression by activating the ARK Cdr2 according to cell growth signals. Here, we demonstrate that Ssp1 activates a second ARK, Ssp2/AMPKα, for cell proliferation in low environmental glucose. Ssp1 activates these two related targets by the same biochemical mechanism: direct phosphorylation of a conserved residue in the activation loop (Cdr2-T166 and Ssp2-T189). Despite a shared upstream kinase and similar phosphorylation sites, Cdr2 and Ssp2 have distinct regulatory input cues and distinct functional outputs. We investigated this specificity and found that distinct protein phosphatases counteract Ssp1 activity toward its different substrates. We identified the PP6 family phosphatase Ppe1 as the primary phosphatase for Ssp2-T189 dephosphorylation. The phosphatase inhibitor Sds23 acts upstream of PP6 to regulate Ssp2-T189 phosphorylation in a manner that depends on energy but not on the intact AMPK heterotrimer. In contrast, Cdr2-T166 phosphorylation is regulated by protein phosphatase 2A but not by the Sds23-PP6 pathway. Thus, our study provides a phosphatase-driven mechanism to induce specific physiological responses downstream of a master protein kinase.
Collapse
Affiliation(s)
- Lin Deng
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Mid Eum Lee
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine L Schutt
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
23
|
The serine/threonine phosphatase DhSIT4 modulates cell cycle, salt tolerance and cell wall integrity in halo tolerant yeast Debaryomyces hansenii. Gene 2016; 606:1-9. [PMID: 28027965 DOI: 10.1016/j.gene.2016.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 11/23/2022]
Abstract
The highly conserved family of Phosphoprotein phosphatases (PPP) regulates several major physiological processes in yeast. However, very little is known about the PPP orthologs from the yeast species inhabiting extreme environmental niches. In the present study we have identified DhSIT4, a member of PPP6 class of serine threonine phosphatases from the halotolerant yeast Debaryomyces hansenii. Deletion of DhSIT4 in D. hansenii was not lethal but the mutant exhibited reduced growth due to its effect on the cell cycle. The knock out mutant Dhsit4Δ showed sensitivity towards Li+, Na+ and cell wall damaging agents. The expression of DhSit4p rescued salt, caffeine and calcofluor white sensitivity of Dhmpk1Δ strain and thereby indicating a genetic interaction of this phosphatase with the cell wall integrity pathway in this species. Our study also demonstrated the antagonistic roles of DhSit4p and DhPpz1p in maintaining the cell cycle and ion homeostasis in D. hansenii.
Collapse
|
24
|
Orchestrated Action of PP2A Antagonizes Atg13 Phosphorylation and Promotes Autophagy after the Inactivation of TORC1. PLoS One 2016; 11:e0166636. [PMID: 27973551 PMCID: PMC5156417 DOI: 10.1371/journal.pone.0166636] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/01/2016] [Indexed: 12/30/2022] Open
Abstract
Target of rapamycin complex 1 (TORC1) phosphorylates autophagy-related Atg13 and represses autophagy under nutrient-rich conditions. However, when TORC1 becomes inactive upon nutrient depletion or treatment with the TORC1 inhibitor rapamycin, Atg13 dephosphorylation occurs rapidly, and autophagy is induced. At present, the phosphatases involved in Atg13 dephosphorylation remain unknown. Here, we show that two protein phosphatase 2A (PP2A) phosphatases, PP2A-Cdc55 and PP2A-Rts1, which are activated by inactivation of TORC1, are required for sufficient Atg13 dephosphorylation and autophagy induction after TORC1 inactivation in budding yeast. After rapamycin treatment, dephosphorylation of Atg13, activation of Atg1 kinase, pre-autophagosomal structure (PAS) formation and autophagy induction are all impaired in PP2A-deleted cells. Conversely, overexpression of non-phosphorylatable Atg13 suppressed defects in autophagy in PP2A mutant. This study revealed that the orchestrated action of PP2A antagonizes Atg13 phosphorylation and promotes autophagy after the inactivation of TORC1.
Collapse
|
25
|
Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae. Genetics 2016; 203:1693-707. [PMID: 27317677 DOI: 10.1534/genetics.116.189506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023] Open
Abstract
Histone modifications direct chromatin-templated events in the genome and regulate access to DNA sequence information. There are multiple types of modifications, and a common feature is their dynamic nature. An essential step for understanding their regulation, therefore, lies in characterizing the enzymes responsible for adding and removing histone modifications. Starting with a dosage-suppressor screen in Saccharomyces cerevisiae, we have discovered a functional interaction between the acetyltransferase Gcn5 and the protein phosphatase 2A (PP2A) complex, two factors that regulate post-translational modifications. We find that RTS1, one of two genes encoding PP2A regulatory subunits, is a robust and specific high-copy suppressor of temperature sensitivity of gcn5∆ and a subset of other gcn5∆ phenotypes. Conversely, loss of both PP2A(Rts1) and Gcn5 function in the SAGA and SLIK/SALSA complexes is lethal. RTS1 does not restore global transcriptional defects in gcn5∆; however, histone gene expression is restored, suggesting that the mechanism of RTS1 rescue includes restoration of specific cell cycle transcripts. Pointing to new mechanisms of acetylation-phosphorylation cross-talk, RTS1 high-copy rescue of gcn5∆ growth requires two residues of H2B that are phosphorylated in human cells. These data highlight the potential significance of dynamic phosphorylation and dephosphorylation of these deeply conserved histone residues for cell viability.
Collapse
|
26
|
Jonasson EM, Rossio V, Hatakeyama R, Abe M, Ohya Y, Yoshida S. Zds1/Zds2-PP2ACdc55 complex specifies signaling output from Rho1 GTPase. J Cell Biol 2016; 212:51-61. [PMID: 26728856 PMCID: PMC4700482 DOI: 10.1083/jcb.201508119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Zds1/Zds2–PP2ACdc55 forms a complex with Rho1 GTPase and specifies Rho1 signaling outcome by regulating Rho1 GAPs in budding yeast. Budding yeast Rho1 guanosine triphosphatase (GTPase) plays an essential role in polarized cell growth by regulating cell wall glucan synthesis and actin organization. Upon cell wall damage, Rho1 blocks polarized cell growth and repairs the wounds by activating the cell wall integrity (CWI) Pkc1–mitogen-activated protein kinase (MAPK) pathway. A fundamental question is how active Rho1 promotes distinct signaling outputs under different conditions. Here we identified the Zds1/Zds2–protein phosphatase 2ACdc55 (PP2ACdc55) complex as a novel Rho1 effector that regulates Rho1 signaling specificity. Zds1/Zds2–PP2ACdc55 promotes polarized growth and cell wall synthesis by inhibiting Rho1 GTPase-activating protein (GAP) Lrg1 but inhibits CWI pathway by stabilizing another Rho1 GAP, Sac7, suggesting that active Rho1 is biased toward cell growth over stress response. Conversely, upon cell wall damage, Pkc1–Mpk1 activity inhibits cortical PP2ACdc55, ensuring that Rho1 preferentially activates the CWI pathway for cell wall repair. We propose that PP2ACdc55 specifies Rho1 signaling output and that reciprocal antagonism between Rho1–PP2ACdc55 and Rho1–Pkc1 explains how only one signaling pathway is robustly activated at a time.
Collapse
Affiliation(s)
- Erin M Jonasson
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Valentina Rossio
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Riko Hatakeyama
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Mitsuhiro Abe
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Yoshikazu Ohya
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Satoshi Yoshida
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454 Gunma University Initiative for Advanced Research and Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
27
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
28
|
Oropesa Ávila M, Fernández Vega A, Garrido Maraver J, Villanueva Paz M, De Lavera I, De La Mata M, Cordero MD, Alcocer Gómez E, Delgado Pavón A, Álvarez Córdoba M, Cotán D, Sánchez-Alcázar JA. Emerging roles of apoptotic microtubules during the execution phase of apoptosis. Cytoskeleton (Hoboken) 2015; 72:435-46. [PMID: 26382917 DOI: 10.1002/cm.21254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/01/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022]
Abstract
Apoptosis is a genetically programmed energy-dependent process of cell demise, characterized by specific morphological and biochemical events in which the activation of caspases has an essential role. During apoptosis the cytoskeleton participates actively in characteristic morphological rearrangements of the dying cell. This reorganisation has been assigned mainly to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent reports have showed that microtubules are reformed during the execution phase of apoptosis organizing an apoptotic microtubule network (AMN). AMN is organized behind plasma membrane, forming a cortical structure. Apoptotic microtubules repolymerization takes place in many cell types and under different apoptotic inducers. It has been hypothesized that AMN is critical for maintaining plasma membrane integrity and cell morphology during the execution phase of apoptosis. AMN disorganization leads apoptotic cells to secondary necrosis and the release of potential toxic molecules which can damage neighbor cells and promotes inflammation. Therefore, AMN formation during physiological apoptosis or in pathological apoptosis induced by anti-cancer treatments is essential for tissue homeostasis and the prevention of additional cell damage and inflammation.
Collapse
Affiliation(s)
- Manuel Oropesa Ávila
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Alejandro Fernández Vega
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Juan Garrido Maraver
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Marina Villanueva Paz
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Isabel De Lavera
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Mario De La Mata
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Mario D Cordero
- Facultad De Odontología. Universidad De Sevilla, Sevilla, 41009, Spain
| | - Elizabet Alcocer Gómez
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - Mónica Álvarez Córdoba
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - David Cotán
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz De Biología Del Desarrollo (CABD), and Centro De Investigación Biomédica En Red: Enfermedades Raras, Instituto De Salud Carlos III, Universidad Pablo De Olavide-Consejo Superior De Investigaciones Científicas, Sevilla, 41013, Spain
| |
Collapse
|
29
|
Moreno-Torres M, Jaquenoud M, De Virgilio C. TORC1 controls G1-S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway. Nat Commun 2015; 6:8256. [PMID: 26356805 PMCID: PMC4579850 DOI: 10.1038/ncomms9256] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/03/2015] [Indexed: 01/16/2023] Open
Abstract
The target of rapamycin complex 1 (TORC1) pathway couples nutrient, energy and hormonal signals with eukaryotic cell growth and division. In yeast, TORC1 coordinates growth with G1–S cell cycle progression, also coined as START, by favouring the expression of G1 cyclins that activate cyclin-dependent protein kinases (CDKs) and by destabilizing the CDK inhibitor Sic1. Following TORC1 downregulation by rapamycin treatment or nutrient limitation, clearance of G1 cyclins and C-terminal phosphorylation of Sic1 by unknown protein kinases are both required for Sic1 to escape ubiquitin-dependent proteolysis prompted by its flagging via the SCFCdc4 (Skp1/Cul1/F-box protein) ubiquitin ligase complex. Here we show that the stabilizing phosphorylation event within the C-terminus of Sic1 requires stimulation of the mitogen-activated protein kinase, Mpk1, and inhibition of the Cdc55 protein phosphatase 2A (PP2ACdc55) by greatwall kinase-activated endosulfines. Thus, Mpk1 and the greatwall kinase pathway serve TORC1 to coordinate the phosphorylation status of Sic1 and consequently START with nutrient availability. The target of rapamycin complex 1 (TORC1) pathway couples nutrient availability with cell growth and division by destabilizing the cyclin-dependent kinase (CDK) inhibitor Sic1. Here the authors show that TORC1 downregulation leads to stabilization of Sic1 via phosphorylation by the MAP kinase Mpk1 and inhibition of dephosphorylation via the greatwall kinase pathway.
Collapse
Affiliation(s)
- Marta Moreno-Torres
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Malika Jaquenoud
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| |
Collapse
|
30
|
Lin CH, Li HY, Lee YC, Calkins MJ, Lee KH, Yang CN, Lu PJ. Landscape of Pin1 in the cell cycle. Exp Biol Med (Maywood) 2015; 240:403-408. [PMID: 25662955 PMCID: PMC4935233 DOI: 10.1177/1535370215570829] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pin1 is a peptidyl-prolyl isomerase which plays a critical role in many diseases including cancer and Alzheimer's disease. The essential role of Pin1 is to affect stability, localization or function of phosphoproteins by catalyzing structural changes. Among the collection of Pin1 substrates, many have been shown to be involved in regulating cell cycle progression. The cell cycle disorder caused by dysregulation of these substrates is believed to be a common phenomenon in cancer. A number of recent studies have revealed possible functions of several important Pin1-binding cell cycle regulators. Investigating the involvement of Pin1 in the cell cycle may assist in the development of future cancer therapeutics. In this review, we summarize current knowledge regarding the network of Pin1 substrates and Pin1 regulators in cell cycle progression. In G1/S progression, cyclin D1, RB, p53, p27, and cyclin E are all well-known cell cycle regulators that are modulated by Pin1. During G2/M transition, our lab has shown that Aurora A suppresses Pin1 activity through phosphorylation at Ser16 and cooperates with hBora to modulate G2/M transition. We conclude that Pin1 may be thought of as a molecular timer which modulates cell cycle progression networks.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| | - Hao-Yi Li
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Cheng Lee
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan
| | - Chia-Ning Yang
- Institute of Biotechnology, National University of Kaohsiung, 811, Kaohsiung, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
31
|
Lillo C, Kataya ARA, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM. Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. PLANT, CELL & ENVIRONMENT 2014; 37:2631-48. [PMID: 24810976 DOI: 10.1111/pce.12364] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 05/23/2023]
Abstract
The three closely related groups of serine/threonine protein phosphatases PP2A, PP4 and PP6 are conserved throughout eukaryotes. The catalytic subunits are present in trimeric and dimeric complexes with scaffolding and regulatory subunits that control activity and confer substrate specificity to the protein phosphatases. In Arabidopsis, three scaffolding (A subunits) and 17 regulatory (B subunits) proteins form complexes with five PP2A catalytic subunits giving up to 255 possible combinations. Three SAP-domain proteins act as regulatory subunits of PP6. Based on sequence similarities with proteins in yeast and mammals, two putative PP4 regulatory subunits are recognized in Arabidopsis. Recent breakthroughs have been made concerning the functions of some of the PP2A and PP6 regulatory subunits, for example the FASS/TON2 in regulation of the cellular skeleton, B' subunits in brassinosteroid signalling and SAL proteins in regulation of auxin transport. Reverse genetics is starting to reveal also many more physiological functions of other subunits. A system with key regulatory proteins (TAP46, TIP41, PTPA, LCMT1, PME-1) is present in all eukaryotes to stabilize, activate and inactivate the catalytic subunits. In this review, we present the status of knowledge concerning physiological functions of PP2A, PP4 and PP6 in Arabidopsis, and relate these to yeast and mammals.
Collapse
Affiliation(s)
- Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | | | | | | | | | | | | |
Collapse
|
32
|
Yu F, Gu Q, Yun Y, Yin Y, Xu JR, Shim WB, Ma Z. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. THE NEW PHYTOLOGIST 2014; 203:219-32. [PMID: 24684168 DOI: 10.1111/nph.12776] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/14/2014] [Indexed: 05/28/2023]
Abstract
The target of rapamycin (TOR) signaling pathway plays critical roles in controlling cell growth in a variety of eukaryotes. However, the contribution of this pathway in regulating virulence of plant pathogenic fungi is unknown. We identified and characterized nine genes encoding components of the TOR pathway in Fusarium graminearum. Biological, genetic and biochemical functions of each component were investigated. The FgFkbp12-rapamycin complex binds to the FgTor kinase. The type 2A phosphatases FgPp2A, FgSit4 and FgPpg1 were found to interact with FgTap42, a downstream component of FgTor. Among these, we determined that FgPp2A is likely to be essential for F. graminearum survival, and FgSit4 and FgPpg1 play important roles in cell wall integrity by positively regulating the phosphorylation of FgMgv1, a key MAP kinase in the cell wall integrity pathway. In addition, the FgPpg1 interacting protein, FgTip41, is involved in regulating mycelial growth and virulence. Notably, FgTip41 does not interact with FgTap42 but with FgPpg1, suggesting the existence of FgTap42:FgPpg1:FgTip41 heterotrimer in F. graminearum, a complex not observed in the yeast model. Collectively, we defined a genetic regulatory framework that elucidates how the TOR pathway regulates virulence and vegetative development in F. graminearum.
Collapse
Affiliation(s)
- Fangwei Yu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
33
|
PhosphoTyrosyl phosphatase activator of Plasmodium falciparum: identification of its residues involved in binding to and activation of PP2A. Int J Mol Sci 2014; 15:2431-53. [PMID: 24521882 PMCID: PMC3958860 DOI: 10.3390/ijms15022431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022] Open
Abstract
In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V283, G292 and M296) of PfPTPA are indispensable for the interaction and that the G292 residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity.
Collapse
|
34
|
Hu R, Zhu Y, Shen G, Zhang H. TAP46 plays a positive role in the ABSCISIC ACID INSENSITIVE5-regulated gene expression in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:721-34. [PMID: 24357600 PMCID: PMC3912101 DOI: 10.1104/pp.113.233684] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 05/19/2023]
Abstract
TAP46 is a protein phosphatase2A (PP2A)-associated protein that regulates PP2A activity in Arabidopsis (Arabidopsis thaliana). To study how PP2A is involved in abscisic acid (ABA) signaling in plants, we studied the function of TAP46 in ABA-regulated seed maturation and seedling development. Expression of TAP46 coincides with the action of ABA in developing seeds and during seed germination, and the TAP46 transcript reaches to the highest level in mature seeds. Real-time polymerase chain reaction analysis indicates that external ABA can increase TAP46 transcript level transiently during seed germination. Overexpression of TAP46 increases plant sensitivity to ABA, while tap46 knockdown mutants are less sensitive to ABA during seed germination, suggesting that TAP46 functions positively in ABA signaling. Overexpression of TAP46 also leads to lower PP2A activity, while tap46-1 knockdown mutant displays higher PP2A activity, suggesting that TAP46 negatively regulates PP2A activity in Arabidopsis. Both TAP46 and PP2A interact with the ABA-regulated transcription factor ABA INSENSITIVE5 (ABI5) in vivo, and TAP46's binding to ABI5 can stabilize ABI5. Furthermore, TAP46's binding to the phosphorylated ABI5 may prevent PP2A or PP2A-like protein phosphatases from removing the phosphate from ABI5, thereby maintaining ABI5 in its active form. Overexpression of TAP46 and inhibition of activities of PP2A or PP2A-like protein phosphatases can increase transcript levels of several ABI5-regulated genes, suggesting that TAP46 is a positive factor in the ABA-regulated gene expression in Arabidopsis.
Collapse
|
35
|
Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2014; 111:1473-8. [PMID: 24474773 DOI: 10.1073/pnas.1312399111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
Collapse
|
36
|
Rossio V, Michimoto T, Sasaki T, Ohbayashi I, Kikuchi Y, Yoshida S. Nuclear PP2A-Cdc55 prevents APC-Cdc20 activation during the spindle assembly checkpoint. J Cell Sci 2013; 126:4396-405. [PMID: 23886942 DOI: 10.1242/jcs.127365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdc55, a regulatory B-subunit of protein phosphatase 2A (PP2A) complex, is essential for the spindle assembly checkpoint (SAC) in budding yeast, but the regulation and molecular targets of PP2A-Cdc55 have not been clearly defined or are controversial. Here, we show that an important target of Cdc55 in the SAC is the anaphase-promoting complex (APC) coupled with Cdc20 and that APC-Cdc20 is kept inactive by dephosphorylation by nuclear PP2A-Cdc55 when spindle is damaged. By isolating a new class of Cdc55 mutants specifically defective in the SAC and by artificially manipulating nucleocytoplasmic distribution of Cdc55, we further show that nuclear Cdc55 is essential for the SAC. Because the Cdc55-binding proteins Zds1 and Zds2 inhibit both nuclear accumulation of Cdc55 and SAC activity, we propose that spatial control of PP2A by Zds1 family proteins is important for tight control of SAC and mitotic progression.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
37
|
Juanes MA, Khoueiry R, Kupka T, Castro A, Mudrak I, Ogris E, Lorca T, Piatti S. Budding yeast greatwall and endosulfines control activity and spatial regulation of PP2A(Cdc55) for timely mitotic progression. PLoS Genet 2013; 9:e1003575. [PMID: 23861665 PMCID: PMC3701715 DOI: 10.1371/journal.pgen.1003575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/02/2013] [Indexed: 12/29/2022] Open
Abstract
Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2ACdc55 phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2) bind to PP2ACdc55 in a cell cycle-regulated manner upon Greatwall (Rim15)-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2ACdc55 activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2ACdc55, timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2ACdc55, which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms. In all eukaryotic cells chromosome partition during mitosis requires a number of processes, including the formation of the mitotic spindle, i.e. the machinery that drives chromosome segregation to the daughter cells. Mitotic entry requires a delicate balance between protein phosphorylation, driven by cyclin-dependent kinases (CDKs), and protein dephosphorylation, carried out by specific phosphatases that counteract CDK activity. A critical threshold in CDK activity is indeed required for mitotic entry. In the past few years the Greatwall kinase has also been implicated in mitotic entry through phosphorylation of proteins of the endosulfine family, which in turn inhibit the activity of the PP2A phosphatase that would otherwise dephosphorylate CDK targets. Whether Greatwall and endosulfines have a mitotic function in budding yeast, where PP2A promotes, rather than inhibits, mitotic entry has not been established. Here we show that the Greatwall-endosulfine-PP2A regulatory module is conserved also in budding yeast and that endosulfines from different species are interchangeable for their mitotic function. However, in budding yeast cells endosulfines contribute to full activation and proper localization of PP2A, suggesting that they act as both inhibitors and activators of PP2A. Our data emphasize how the same regulatory module is adapted to meet specific mitotic features in different organisms.
Collapse
Affiliation(s)
| | - Rita Khoueiry
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Thomas Kupka
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Anna Castro
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Ingrid Mudrak
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Egon Ogris
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thierry Lorca
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Simonetta Piatti
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- * E-mail:
| |
Collapse
|
38
|
Yeast protein phosphatase 2A-Cdc55 regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 chromatin recruitment. Mol Cell Biol 2012; 33:1057-72. [PMID: 23275436 DOI: 10.1128/mcb.00834-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified Cdc55, a regulatory B subunit of protein phosphatase 2A (PP2A), as an essential activating factor for stress gene transcription in Saccharomyces cerevisiae. The presence of PP2A-Cdc55 is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. We show that PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 during hyperosmolarity stress. PP2A-Cdc55 also enhances Msn2-dependent transactivation, required for extended chromatin recruitment of the transcription factor. We analyzed a possible direct regulatory role for PP2A-Cdc55 on the phosphorylation status of Msn2. Detailed mass spectrometric and genetic analysis of Msn2 showed that stress exposure causes immediate transient dephosphorylation of Msn2 which is not dependent on PP2A-Cdc55 activity. Furthermore, the Hog1 mitogen-activated protein kinase pathway activity is not influenced by PP2A-Cdc55. We therefore propose that the PP2A-Cdc55 phosphatase is not involved in cytosolic stress signal perception but is involved in a specific intranuclear mechanism to regulate Msn2 and Msn4 nuclear accumulation and chromatin association under stress conditions.
Collapse
|
39
|
Du Y, Shi Y, Yang J, Chen X, Xue M, Zhou W, Peng YL. A serine/threonine-protein phosphatase PP2A catalytic subunit is essential for asexual development and plant infection in Magnaporthe oryzae. Curr Genet 2012; 59:33-41. [PMID: 23269362 DOI: 10.1007/s00294-012-0385-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/19/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
Protein phosphatase 2A is a subgroup of widely conserved serine/threonine phosphatases and plays diverse roles in transcription, translation, differentiation, cell cycle, and signal transduction in many organisms. However, its roles in biotrophic and hemi-biotrophic phytopathogenic fungi remain to be investigated. In this study, we isolated an insertional mutant of the rice blast fungus Magnaporthe oryzae that was defective in vegetative hyphal growth. In the mutant, the T-DNA fragment was found to be inserted in the promoter region of a putative serine/threonine protein phosphatase 2A catalytic subunit (PP2Ac) gene MoPPG1. Deletion of MoPPG1 leads to severe defects in vegetative hyphal growth and conidiation. Conidia of the ∆Moppg1 null mutants were misshaped, and most of them were two-celled. The deletion mutants of MoPPG1 did not penetrate into host plant cells and failed to cause any disease lesions on rice leaves. Interestingly, significant reduction was found in the ∆Moppg1 null mutants in expression levels of several Rho GTPase family genes including MgCDC42, MgRHO3, and MgRAC1, which were important for pathogenesis of M. oryzae. Taken together, our results indicated that PP2Ac plays vital roles in asexual development and plant infection by regulating Rho GTPases in the rice blast fungus and perhaps other plant pathogenic fungi.
Collapse
Affiliation(s)
- Yanxiu Du
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Bontron S, Jaquenoud M, Vaga S, Talarek N, Bodenmiller B, Aebersold R, De Virgilio C. Yeast endosulfines control entry into quiescence and chronological life span by inhibiting protein phosphatase 2A. Cell Rep 2012; 3:16-22. [PMID: 23273919 DOI: 10.1016/j.celrep.2012.11.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/12/2012] [Accepted: 11/28/2012] [Indexed: 01/31/2023] Open
Abstract
The TORC1 and PKA protein kinases are central elements of signaling networks that regulate eukaryotic cell proliferation in response to growth factors and/or nutrients. In yeast, attenuation of signaling by these kinases following nitrogen and/or carbon limitation activates the protein kinase Rim15, which orchestrates the initiation of a reversible cellular quiescence program to ensure normal chronological life span. The molecular elements linking Rim15 to distal readouts including the expression of Msn2/4- and Gis1-dependent genes involve the endosulfines Igo1/2. Here, we show that Rim15, analogous to the greatwall kinase in Xenopus, phosphorylates endosulfines to directly inhibit the Cdc55-protein phosphatase 2A (PP2A(Cdc55)). Inhibition of PP2A(Cdc55) preserves Gis1 in a phosphorylated state and consequently promotes its recruitment to and activation of transcription from promoters of specific nutrient-regulated genes. These results close a gap in our perception of and delineate a role for PP2A(Cdc55) in TORC1-/PKA-mediated regulation of quiescence and chronological life span.
Collapse
Affiliation(s)
- Séverine Bontron
- Department of Biology, Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Feller A, Georis I, Tate JJ, Cooper TG, Dubois E. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation. J Biol Chem 2012. [PMID: 23184930 DOI: 10.1074/jbc.m112.385054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ure2 is a phosphoprotein and central negative regulator of nitrogen-responsive Gln3/Gat1 localization and their ability to activate transcription. This negative regulation is achieved by the formation of Ure2-Gln3 and -Gat1 complexes that are thought to sequester these GATA factors in the cytoplasm of cells cultured in excess nitrogen. Ure2 itself is a dimer the monomer of which consists of two core domains and a flexible protruding αcap. Here, we show that alterations in this αcap abolish rapamycin-elicited nuclear Gln3 and, to a more limited extent, Gat1 localization. In contrast, these alterations have little demonstrable effect on the Gln3 and Gat1 responses to nitrogen limitation. Using two-dimensional PAGE we resolved eight rather than the two previously reported Ure2 isoforms and demonstrated Ure2 dephosphorylation to be stimulus-specific, occurring after rapamycin treatment but only minimally if at all in nitrogen-limited cells. Alteration of the αcap significantly diminished the response of Ure2 dephosphorylation to the TorC1 inhibitor, rapamycin. Furthermore, in contrast to Gln3, rapamycin-elicited Ure2 dephosphorylation occurred independently of Sit4 and Pph21/22 (PP2A) as well as Siw14, Ptc1, and Ppz1. Together, our data suggest that distinct regions of Ure2 are associated with the receipt and/or implementation of signals calling for cessation of GATA factor sequestration in the cytoplasm. This in turn is more consistent with the existence of distinct pathways for TorC1- and nitrogen limitation-dependent control than it is with these stimuli representing sequential steps in a single regulatory pathway.
Collapse
Affiliation(s)
- Andre Feller
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
42
|
Abstract
In the yeast Saccharomyces cerevisiae, small GTPase Rho1 controls polarized actin distribution and cell wall expansion in response to many different environmental and intracellular stimuli. Its activity is essential for cell survival and adaptation under various stress conditions. A recent study identified the TOR complex 1 (TORC1), a central regulator in cell growth and metabolism, as a direct target of the small GTPase. This novel crosstalk extends the signaling network of Rho1 into many TORC1-dependent processes and sheds light on how yeast cells coordinate polarized spatial expansion with mass increase.
Collapse
Affiliation(s)
- Gonghong Yan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
43
|
Johnson AE, McCollum D, Gould KL. Polar opposites: Fine-tuning cytokinesis through SIN asymmetry. Cytoskeleton (Hoboken) 2012; 69:686-99. [PMID: 22786806 PMCID: PMC3478943 DOI: 10.1002/cm.21044] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/04/2012] [Indexed: 01/10/2023]
Abstract
Mitotic exit and cell division must be spatially and temporally integrated to facilitate equal division of genetic material between daughter cells. In the fission yeast, Schizosaccharomyces pombe, a spindle pole body (SPB) localized signaling cascade termed the septation initiation network (SIN) couples mitotic exit with cytokinesis. The SIN is controlled at many levels to ensure that cytokinesis is executed once per cell cycle and only after cells segregate their DNA. An interesting facet of the SIN is that its activity is asymmetric on the two SPBs during anaphase; however, how and why the SIN is asymmetric has remained elusive. Many key factors controlling SIN asymmetry have now been identified, shedding light on the significance of SIN asymmetry in regulating cytokinesis. In this review, we highlight recent advances in our understanding of SIN regulation, with an emphasis on how SIN asymmetry is achieved and how this aspect of SIN regulation fine-tunes cytokinesis.
Collapse
Affiliation(s)
- Alyssa E Johnson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
44
|
Sun Y, Miao Y, Yamane Y, Zhang C, Shokat KM, Takematsu H, Kozutsumi Y, Drubin DG. Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Mol Biol Cell 2012; 23:2388-98. [PMID: 22535525 PMCID: PMC3374756 DOI: 10.1091/mbc.e12-03-0209] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study reveals the basis for how temporal phosphoregulation of Orm protein controls sphingolipid production in response to stress. Orm protein phosphorylation is highly responsive to sphingoid bases, and Ypk1 protein kinase transmits heat stress signals to the sphingolipid biosynthesis pathway via Orm phosphorylation. Sphingoid intermediates accumulate in response to a variety of stresses, including heat, and trigger cellular responses. However, the mechanism by which stress affects sphingolipid biosynthesis has yet to be identified. Recent studies in yeast suggest that sphingolipid biosynthesis is regulated through phosphorylation of the Orm proteins, which in humans are potential risk factors for childhood asthma. Here we demonstrate that Orm phosphorylation status is highly responsive to sphingoid bases. We also demonstrate, by monitoring temporal changes in Orm phosphorylation and sphingoid base production in cells inhibited for yeast protein kinase 1 (Ypk1) activity, that Ypk1 transmits heat stress signals to the sphingolipid biosynthesis pathway via Orm phosphorylation. Our data indicate that heat-induced sphingolipid biosynthesis in turn triggers Orm protein dephosphorylation, making the induction transient. We identified Cdc55–protein phosphatase 2A (PP2A) as a key phosphatase that counteracts Ypk1 activity in Orm-mediated sphingolipid biosynthesis regulation. In total, our study reveals a mechanism through which the conserved Pkh-Ypk kinase cascade and Cdc55-PP2A facilitate rapid, transient sphingolipid production in response to heat stress through Orm protein phosphoregulation. We propose that this mechanism serves as the basis for how Orm phosphoregulation controls sphingolipid biosynthesis in response to stress in a kinetically coupled manner.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Oler AJ, Cairns BR. PP4 dephosphorylates Maf1 to couple multiple stress conditions to RNA polymerase III repression. EMBO J 2012; 31:1440-52. [PMID: 22333918 PMCID: PMC3321174 DOI: 10.1038/emboj.2011.501] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/16/2011] [Indexed: 12/22/2022] Open
Abstract
Maf1 is the 'master' repressor of RNA polymerase III (Pol III) transcription in yeast, and is conserved in eukaryotes. Maf1 is a phospho-integrator, with unfavourable growth conditions leading to rapid Maf1 dephosphorylation, nuclear accumulation, binding to RNA Pol III at Pol III genes and transcriptional repression. Here, we establish the protein phosphatase 4 (PP4) complex as the main Maf1 phosphatase, and define the involved catalytic (Pph3), scaffold (Psy2) and regulatory subunits (Rrd1, Tip41), as well as uninvolved subunits (Psy4, Rrd2). Multiple approaches support a central role for PP4 in Maf1 dephosphorylation, Maf1 nuclear localization and the rapid repression of Pol III in the nucleus. PP4 action is likely direct, as a portion of PP4 co-precipitates with Maf1, and purified PP4 dephosphorylates Maf1 in vitro. Furthermore, Pph3 mediates (either largely or fully) rapid Maf1 dephosphorylation in response to diverse stresses, suggesting PP4 plays a key role in the integration of cell nutrition and stress conditions by Maf1 to enable Pol III regulation.
Collapse
Affiliation(s)
- Andrew J Oler
- HHMI, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
46
|
Chin CF, Bennett AM, Ma WK, Hall MC, Yeong FM. Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol Biol Cell 2011; 23:45-58. [PMID: 22072794 PMCID: PMC3248903 DOI: 10.1091/mbc.e11-05-0434] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sequestration of Cdc14 from the cytoplasm ensures Chs2 ER retention after MEN activation. The interdependence of chromosome segregation, MEN activation, decrease in mitotic CDK activity, and Cdc14 dispersal provides an effective mechanism for cells to order late mitotic events. Cytokinesis, which leads to the physical separation of two dividing cells, is normally restrained until after nuclear division. In Saccharomyces cerevisiae, chitin synthase 2 (Chs2), which lays down the primary septum at the mother–daughter neck, also ensures proper actomyosin ring constriction during cytokinesis. During the metaphase-to-anaphase transition, phosphorylation of Chs2 by the mitotic cyclin-dependent kinase (Cdk1) retains Chs2 at the endoplasmic reticulum (ER), thereby preventing its translocation to the neck. Upon Cdk1 inactivation at the end of mitosis, Chs2 is exported from the ER and targeted to the neck. The mechanism for triggering Chs2 ER export thus far is unknown. We show here that Chs2 ER export requires the direct reversal of the inhibitory Cdk1 phosphorylation sites by Cdc14 phosphatase, the ultimate effector of the mitotic exit network (MEN). We further show that only Cdc14 liberated by the MEN after completion of chromosome segregation, and not Cdc14 released in early anaphase by the Cdc fourteen early anaphase release pathway, triggers Chs2 ER exit. Presumably, the reduced Cdk1 activity in late mitosis further favors dephosphorylation of Chs2 by Cdc14. Thus, by requiring declining Cdk1 activity and Cdc14 nuclear release for Chs2 ER export, cells ensure that septum formation is contingent upon chromosome separation and exit from mitosis.
Collapse
Affiliation(s)
- Cheen Fei Chin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
47
|
Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nat Cell Biol 2011; 13:1450-6. [PMID: 22020438 PMCID: PMC3232454 DOI: 10.1038/ncb2365] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/22/2011] [Indexed: 02/07/2023]
Abstract
Kinases and phosphatases regulate mRNA synthesis through post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II 1. In yeast, the phosphatase Cdc14 is required for mitotic exit 2,3 and for segregation of repetitive regions 4. Cdc14 is also a subunit of the silencing complex RENT 5,6, but no roles in transcription repression have been described. Here we report that inactivation of Cdc14 causes silencing defects at the intergenic spacer sequences (IGS) of ribosomal genes during interphase and at Y’ repeats in sub-telomeric regions during mitosis. We show that Cdc14 role in silencing is independent from the RENT deacetylase subunit Sir2. Instead, Cdc14 acts directly on RNA Polymerase II by targeting CTD phosphorylation at S2 and S5. We also find that Cdc14 role as a CTD phosphatase is conserved in humans. Finally, telomere segregation defects in cdc14 mutants 4 correlate with the presence of sub-telomeric Y’ elements and can be rescued by transcriptional inhibition of RNA Pol II.
Collapse
|
48
|
Heger CD, Wrann CD, Collins RN. Phosphorylation provides a negative mode of regulation for the yeast Rab GTPase Sec4p. PLoS One 2011; 6:e24332. [PMID: 21931684 PMCID: PMC3171412 DOI: 10.1371/journal.pone.0024332] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/06/2011] [Indexed: 12/31/2022] Open
Abstract
The Rab family of Ras-related GTPases are part of a complex signaling circuitry in eukaryotic cells, yet we understand little about the mechanisms that underlie Rab protein participation in such signal transduction networks, or how these networks are integrated at the physiological level. Reversible protein phosphorylation is widely used by cells as a signaling mechanism. Several phospho-Rabs have been identified, however the functional consequences of the modification appear to be diverse and need to be evaluated on an individual basis. In this study we demonstrate a role for phosphorylation as a negative regulatory event for the action of the yeast Rab GTPase Sec4p in regulating polarized growth. Our data suggest that the phosphorylation of the Rab Sec4p prevents interactions with its effector, the exocyst component Sec15p, and that the inhibition may be relieved by a PP2A phosphatase complex containing the regulatory subunit Cdc55p.
Collapse
Affiliation(s)
- Christopher D. Heger
- Graduate Program in Pharmacology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christiane D. Wrann
- Leadership Program for Veterinary Students, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ruth N. Collins
- Department of Molecular Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Li SS, Xu K, Wilkins MR. Visualization and Analysis of the Complexome Network of Saccharomyces cerevisiae. J Proteome Res 2011; 10:4744-56. [DOI: 10.1021/pr200548c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Simone S. Li
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Kai Xu
- National ICT Australia Ltd, Australian Technology Park, Eveleigh, NSW, Australia and Interaction Design Centre, School of Engineering and Information Sciences, Middlesex University, London, United Kingdom
| | - Marc R. Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
50
|
Rossio V, Yoshida S. Spatial regulation of Cdc55-PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast. ACTA ACUST UNITED AC 2011; 193:445-54. [PMID: 21536748 PMCID: PMC3087000 DOI: 10.1083/jcb.201101134] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zds1/2 regulate mitotic progression by directing the nucleocytoplasmic distribution of Cdc55–PP2A. Budding yeast CDC55 encodes a regulatory B subunit of the PP2A (protein phosphatase 2A), which plays important roles in mitotic entry and mitotic exit. The spatial and temporal regulation of PP2A is poorly understood, although recent studies demonstrated that the conserved proteins Zds1 and Zds2 stoichiometrically bind to Cdc55–PP2A and regulate it in a complex manner. Zds1/Zds2 promote Cdc55–PP2A function for mitotic entry, whereas Zds1/Zds2 inhibit Cdc55–PP2A function during mitotic exit. In this paper, we propose that Zds1/Zds2 primarily control Cdc55 localization. Cortical and cytoplasmic localization of Cdc55 requires Zds1/Zds2, and Cdc55 accumulates in the nucleus in the absence of Zds1/Zds2. By genetically manipulating the nucleocytoplasmic distribution of Cdc55, we showed that Cdc55 promotes mitotic entry when in the cytoplasm. On the other hand, nuclear Cdc55 prevents mitotic exit. Our analysis defines the long-sought molecular function for the zillion different screens family proteins and reveals the importance of the regulation of PP2A localization for proper mitotic progression.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|