1
|
Zhang Y, Ma R, Suolangduoerji, Ma S, Nuertai A, He K, Liu H, Zhu Y. Annual cycle variations in the gut microbiota of migratory black-necked cranes. Front Microbiol 2025; 16:1533282. [PMID: 39990144 PMCID: PMC11844351 DOI: 10.3389/fmicb.2025.1533282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Migratory birds exhibit unique annual cycles that complicate their gut microbiota. However, the annual dynamics of gut microbiota in migratory birds remain unclear, hindering our understanding of their environmental adaptation. Methods Here, we collected fecal samples from black-necked cranes (Grus nigricollis) across four seasons at their breeding grounds and used wintering ground data from databases to characterize their gut microbial compositions throughout the year. Results and discussion The results showed that the gut microbiota was clustered by season (Bray-Curtis: R 2 = 0.348, p < 0.001; UniFrac: R 2 = 0.352, p < 0.001). And the summer samples exhibited higher alpha (Simpson and Shannon), beta diversity (Bray-Curtis and UniFrac) and more diverse functions in gut microbiota compared to other seasons. Furthermore, in summer, the gut microbiota exhibited several balanced relative abundances at the family level, whereas Lactobacillaceae family dominated during the other seasons. Thirty-six ASVs were identified by random forest analysis to distinguish samples from distinct seasons. Despite having greater diversity, the summer gut microbiota had a simpler network structure than the other seasons (fewer edges and nodes). The dispersal limitation during random processes also significantly influenced gut microbial community assembly. Overall, the gut microbiota of the black-necked crane undergoes dynamic adjustments to adapt to seasonal environmental changes, which may be associated with the variations in diet across seasons. These results enhance our understanding of the gut microbiota of wild migratory birds and support further research on black-necked cranes.
Collapse
Affiliation(s)
- Yujia Zhang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ruifeng Ma
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Suolangduoerji
- Sichuan Ruoergai Wetland National Nature Reserve Administration, Ruoergai, Ruoergai, Aba Tibetan and Qiang Autonomous Prefecture, China
| | - Shujuan Ma
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Luxian NO.1 High School, Luzhou, Luzhou, Sichuan, China
| | - Akebota Nuertai
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Hongyi Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Ying Zhu
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Berkhout MD, Ioannou A, de Ram C, Boeren S, Plugge CM, Belzer C. Mucin-driven ecological interactions in an in vitro synthetic community of human gut microbes. Glycobiology 2024; 34:cwae085. [PMID: 39385462 PMCID: PMC11632381 DOI: 10.1093/glycob/cwae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Specific human gut microbes inhabit the outer mucus layer of the gastrointestinal tract. Certain residents of this niche can degrade the large and complex mucin glycoproteins that constitute this layer and utilise the degradation products for their metabolism. In turn, this microbial mucin degradation drives specific microbiological ecological interactions in the human gut mucus layer. However, the exact nature of these interactions remains unknown. In this study, we designed and studied an in vitro mucin-degrading synthetic community that included mucin O-glycan degraders and cross-feeding microorganisms by monitoring community composition and dynamics through a combination of 16S rRNA gene amplicon sequencing and qPCR, mucin glycan degradation with PGC-LC-MS/MS, production of mucin-degrading enzymes and other proteins through metaproteomics, and metabolite production with HPLC. We demonstrated that specialist and generalist mucin O-glycan degraders stably co-exist and found evidence for cross-feeding relationships. Cross-feeding on the products of mucin degradation by other gut microbes resulted in butyrate production, hydrogenotrophic acetogenesis, sulfate reduction and methanogenesis. Metaproteomics analysis revealed that mucin glycan degraders Akkermansia muciniphila, Bacteroides spp. and Ruminococcus torques together contributed 92% of the total mucin O-glycan degrading enzyme pool of this community. Furthermore, comparative proteomics showed that in response to cultivation in a community compared to monoculture, mucin glycan degraders increased carbohydrate-active enzymes whereas we also found indications for niche differentiation. These results confirm the complexity of mucin-driven microbiological ecological interactions and the intricate role of carbohydrate-active enzymes in the human gut mucus layer.
Collapse
Affiliation(s)
- Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Carol de Ram
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
4
|
Ghezzi H, Fan YM, Ng KM, Burckhardt JC, Pepin DM, Lin X, Ziels RM, Tropini C. PUPpy: a primer design pipeline for substrain-level microbial detection and absolute quantification. mSphere 2024; 9:e0036024. [PMID: 38980072 PMCID: PMC11288016 DOI: 10.1128/msphere.00360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Characterizing microbial communities at high resolution and with absolute quantification is crucial to unravel the complexity and diversity of microbial ecosystems. This can be achieved with PCR assays, which enable highly selective detection and absolute quantification of microbial DNA. However, a major challenge that has hindered PCR applications in microbiome research is the design of highly specific primer sets that exclusively amplify intended targets. Here, we introduce Phylogenetically Unique Primers in python (PUPpy), a fully automated pipeline to design microbe- and group-specific primers within a given microbial community. PUPpy can be executed from a user-friendly graphical user interface, or two simple terminal commands, and it only requires coding sequence files of the community members as input. PUPpy-designed primers enable the detection of individual microbes and quantification of absolute microbial abundance in defined communities below the strain level. We experimentally evaluated the performance of PUPpy-designed primers using two bacterial communities as benchmarks. Each community comprises 10 members, exhibiting a range of genetic similarities that spanned from different phyla to substrains. PUPpy-designed primers also enable the detection of groups of bacteria in an undefined community, such as the detection of a gut bacterial family in a complex stool microbiota sample. Taxon-specific primers designed with PUPpy showed 100% specificity to their intended targets, without unintended amplification, in each community tested. Lastly, we show the absolute quantification of microbial abundance using PUPpy-designed primers in droplet digital PCR, benchmarked against 16S rRNA and shotgun sequencing. Our data shows that PUPpy-designed microbe-specific primers can be used to quantify substrain-level absolute counts, providing more resolved and accurate quantification in defined communities than short-read 16S rRNA and shotgun sequencing. IMPORTANCE Profiling microbial communities at high resolution and with absolute quantification is essential to uncover hidden ecological interactions within microbial ecosystems. Nevertheless, achieving resolved and quantitative investigations has been elusive due to methodological limitations in distinguishing and quantifying highly related microbes. Here, we describe Phylogenetically Unique Primers in python (PUPpy), an automated computational pipeline to design taxon-specific primers within defined microbial communities. Taxon-specific primers can be used to selectively detect and quantify individual microbes and larger taxa within a microbial community. PUPpy achieves substrain-level specificity without the need for computationally intensive databases and prioritizes user-friendliness by enabling both terminal and graphical user interface applications. Altogether, PUPpy enables fast, inexpensive, and highly accurate perspectives into microbial ecosystems, supporting the characterization of bacterial communities in both in vitro and complex microbiota settings.
Collapse
Affiliation(s)
- Hans Ghezzi
- Department of Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yiyun M. Fan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katharine M. Ng
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juan C. Burckhardt
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deanna M. Pepin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xuan Lin
- Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan M. Ziels
- Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada
| |
Collapse
|
5
|
Selmi H, Walker A, Debarbieux L, Schmitt-Kopplin P. Improving the intestinal lipidome coverage in a gnotobiotic mouse model using UHPLC-MS-based approach through optimization of mobile phase modifiers and column selection. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124188. [PMID: 38901159 DOI: 10.1016/j.jchromb.2024.124188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Lipidomics is focusing on the screening of lipid species in complex mixtures using mass spectrometry-based approaches. In this work, we aim to enhance the intestinal lipidome coverage within the Oligo-Mouse-Microbiota (OMM12) colonized mouse model by testing eight mobile phase conditions on five reversed-phase columns. Our selected mobile phase modifiers included two ammonium salts, two concentrations, and the addition of respective acids at 0.1 %. We compared two columns with hybrid surface technology, two with ethylene bridged hybrid technology and one with core-shell particles. Best performance was attained for standards and intestinal lipidome, using either ammonium formate or acetate in ESI(+) or ammonium acetate in ESI(-) for all column technologies. Notably, a concentration of 5 mM ammonium salt showed optimal results for both modes, while the addition of acids had a negligible effect on lipid ionization efficiency. The HST BEH C18 column improved peak width and tailing factor parameters compared to other technologies. We achieved the highest lipid count in colon and ileum content, including ceramides, phosphatidylethanolamines and phosphatidylcholines, when using 5 mM ammonium acetate in ESI(-). Conversely, in ESI(+) 5 mM ammonium formate demonstrated superior coverage for diacylglycerols and triacylglycerols.
Collapse
Affiliation(s)
- Habiba Selmi
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Sahle Z, Engidaye G, Shenkute Gebreyes D, Adenew B, Abebe TA. Fecal microbiota transplantation and next-generation therapies: A review on targeting dysbiosis in metabolic disorders and beyond. SAGE Open Med 2024; 12:20503121241257486. [PMID: 38826830 PMCID: PMC11143861 DOI: 10.1177/20503121241257486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
The human microbiome, particularly the gut microbiome, has emerged as a central determinant of health and disease. Dysbiosis, an imbalance in the microbial composition of the gut, is associated with a variety of metabolic and other diseases, highlighting the potential for microbiota-targeted treatments. Fecal microbiota transplantation has received considerable attention as a promising therapy to modulate the gut microbiome and restore microbial homeostasis. However, challenges remain, including standardization, safety, and long-term efficacy. This review summarizes current knowledge on fecal microbiota transplantation and describes the next generation therapies targeting microbiome. This review looked at the mechanistic understanding of fecal microbiota transplantation and alternative strategies, elucidating their potential role in improving dysbiosis-associated metabolic disorders, such as obesity, and type 2 diabetes and others. Additionally, this review discussed the growing application of therapies targeting the gut microbiome. Insights from clinical trials, preclinical studies, and emerging technologies provide a comprehensive overview of the evolving landscape of microbiome-based interventions. Through a critical assessment of current advances and prospects, this review aims to highlight the therapeutic potential of targeting gut microbiome and pave the way for innovative approaches in precision medicine and personalized treatments.
Collapse
Affiliation(s)
- Zenawork Sahle
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Getabalew Engidaye
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Demissew Shenkute Gebreyes
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Behailu Adenew
- Department of Medical Laboratory Science, Debre Berhan Compressive Specialized Hospital, Debre Berhan, Ethiopia
| | - Tsegahun Asfaw Abebe
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
7
|
Raghu AK, Palanikumar I, Raman K. Designing function-specific minimal microbiomes from large microbial communities. NPJ Syst Biol Appl 2024; 10:46. [PMID: 38702322 PMCID: PMC11068740 DOI: 10.1038/s41540-024-00373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Microorganisms exist in large communities of diverse species, exhibiting various functionalities. The mammalian gut microbiome, for instance, has the functionality of digesting dietary fibre and producing different short-chain fatty acids. Not all microbes present in a community contribute to a given functionality; it is possible to find a minimal microbiome, which is a subset of the large microbiome, that is capable of performing the functionality while maintaining other community properties such as growth rate and metabolite production. Such a minimal microbiome will also contain keystone species for SCFA production in that community. In this work, we present a systematic constraint-based approach to identify a minimal microbiome from a large community for a user-proposed function. We employ a top-down approach with sequential deletion followed by solving a mixed-integer linear programming problem with the objective of minimising the L1-norm of the membership vector. Notably, we consider quantitative measures of community growth rate and metabolite production rates. We demonstrate the utility of our algorithm by identifying the minimal microbiomes corresponding to three model communities of the gut, and discuss their validity based on the presence of the keystone species in the community. Our approach is generic, flexible and finds application in studying a variety of microbial communities. The algorithm is available from https://github.com/RamanLab/minMicrobiome .
Collapse
Affiliation(s)
- Aswathy K Raghu
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, 600 036, India
- Department of Chemical and Biological Engineering, Northwestern University, IL, 60208, USA
| | - Indumathi Palanikumar
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600 036, India
| | - Karthik Raman
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, 600 036, India.
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600 036, India.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, IIT Madras, Chennai, 600 036, India.
| |
Collapse
|
8
|
He J, Li X, Yan M, Chen X, Sun C, Tan J, Song Y, Xu H, Wu L, Yang Z. Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum Metabolomics. J Diabetes Res 2024; 2024:1222395. [PMID: 38725443 PMCID: PMC11081752 DOI: 10.1155/2024/1222395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 05/12/2024] Open
Abstract
This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.
Collapse
Affiliation(s)
- Jiayuan He
- Health Testing Center, Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212002, China
| | - Xiang Li
- Medical Laboratory Department, Huai'an Second People's Hospital, Huai'an 223022, China
| | - Man Yan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xinsheng Chen
- Hospital Infection-Disease Control Department, Zhenjiang First People's Hospital, Zhenjiang 212002, China
| | - Chang Sun
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiajun Tan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yinsheng Song
- Health Testing Center, Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212002, China
| | - Hong Xu
- Health Testing Center, Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212002, China
| | - Liang Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhengnan Yang
- Department of Clinical Laboratory, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng 210008, China
| |
Collapse
|
9
|
De Giani A, Perillo F, Baeri A, Finazzi M, Facciotti F, Di Gennaro P. Positive modulation of a new reconstructed human gut microbiota by Maitake extract helpfully boosts the intestinal environment in vitro. PLoS One 2024; 19:e0301822. [PMID: 38603764 PMCID: PMC11008829 DOI: 10.1371/journal.pone.0301822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human gut is a complex environment where the microbiota and its metabolites play a crucial role in the maintenance of a healthy state. The aim of the present work is the reconstruction of a new in vitro minimal human gut microbiota resembling the microbe-microbe networking comprising the principal phyla (Bacillota, Bacteroidota, Pseudomonadota, and Actinomycetota), to comprehend the intestinal ecosystem complexity. In the reductionist model, we mimicked the administration of Maitake extract as prebiotic and a probiotic formulation (three strains belonging to Lactobacillus and Bifidobacterium genera), evaluating the modulation of strain levels, the release of beneficial metabolites, and their health-promoting effects on human cell lines of the intestinal environment. The administration of Maitake and the selected probiotic strains generated a positive modulation of the in vitro bacterial community by qPCR analyses, evidencing the prominence of beneficial strains (Lactiplantibacillus plantarum and Bifidobacterium animalis subsp. lactis) after 48 hours. The bacterial community growths were associated with the production of metabolites over time through GC-MSD analyses such as lactate, butyrate, and propionate. Their effects on the host were evaluated on cell lines of the intestinal epithelium and the immune system, evidencing positive antioxidant (upregulation of SOD1 and NQO1 genes in HT-29 cell line) and anti-inflammatory effects (production of IL-10 from all the PBMCs). Therefore, the results highlighted a positive modulation induced by the synergic activities of probiotics and Maitake, inducing a tolerogenic microenvironment.
Collapse
Affiliation(s)
- Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Finazzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Facciotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
10
|
Liu Q, Yang Y, Pan M, Yang F, Yu Y, Qian Z. Role of the gut microbiota in tumorigenesis and treatment. Theranostics 2024; 14:2304-2328. [PMID: 38646653 PMCID: PMC11024857 DOI: 10.7150/thno.91700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/01/2024] [Indexed: 04/23/2024] Open
Abstract
The gut microbiota is a crucial component of the intricate microecosystem within the human body that engages in interactions with the host and influences various physiological processes and pathological conditions. In recent years, the association between dysbiosis of the gut microbiota and tumorigenesis has garnered increasing attention, as it is recognized as a hallmark of cancer within the scientific community. However, only a few microorganisms have been identified as potential drivers of tumorigenesis, and enhancing the molecular understanding of this process has substantial scientific importance and clinical relevance for cancer treatment. In this review, we delineate the impact of the gut microbiota on tumorigenesis and treatment in multiple types of cancer while also analyzing the associated molecular mechanisms. Moreover, we discuss the utility of gut microbiota data in cancer diagnosis and patient stratification. We further outline current research on harnessing microorganisms for cancer treatment while also analyzing the prospects and challenges associated with this approach.
Collapse
Affiliation(s)
- Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Hajjo H, Bhardwaj N, Gefen T, Geva-Zatorsky N. Combinatorial fluorescent labeling of live anaerobic bacteria via the incorporation of azide-modified sugars into newly synthesized macromolecules. Nat Protoc 2023; 18:3767-3786. [PMID: 37821626 DOI: 10.1038/s41596-023-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/25/2023] [Indexed: 10/13/2023]
Abstract
The human gut microbiome modulates physiological functions and pathologies; however, a mechanistic understanding of microbe-host and microbe-microbe interactions remains elusive owing to a lack of suitable approaches to monitor obligate anaerobic bacterial populations. Common genetically encoded fluorescent protein reporters, derived from the green fluorescent protein, require an oxidation step for fluorescent light emission and therefore are not suitable for use in anaerobic microbes residing in the intestine. Fluorescence in situ hybridization is a useful alternative to visualize bacterial communities in their natural niche; however, it requires tissue fixation. We therefore developed an approach for the real-time detection and monitoring of live communities of anaerobic gut commensals in their natural environment. We leverage the bacterial cells' reliance on sugars for macromolecule synthesis in combinatorial click chemistry labeling, where the addition of azide-modified sugars to the culturing media enables the fluorescence labeling of newly synthesized molecules via the addition of combinations of exogenous fluorophores conjugated to cyclooctynes. This process is suitable for labeling communities of live anaerobic gut bacteria with combinations of fluorophores that do not require oxygen to mature and fluoresce, and that can be detected over time in their natural environments. The labeling procedure requires 4-9 d, depending on the varying growth rates of different bacterial strains, and an additional 1-2 d for the detection and monitoring steps. The protocol can be completed by users with basic expertise in bacterial culturing.
Collapse
Affiliation(s)
- Haitham Hajjo
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Neerupma Bhardwaj
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center, Haifa, Israel.
- CIFAR, MaRS Centre, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Bornholdt J, Müller CV, Nielsen MJ, Strickertsson J, Rago D, Chen Y, Maciag G, Skov J, Wellejus A, Schweiger PJ, Hansen SL, Broholm C, Gögenur I, Maimets M, Sloth S, Hendel J, Baker A, Sandelin A, Jensen KB. Detecting host responses to microbial stimulation using primary epithelial organoids. Gut Microbes 2023; 15:2281012. [PMID: 37992398 PMCID: PMC10730191 DOI: 10.1080/19490976.2023.2281012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023] Open
Abstract
The intestinal epithelium is constantly exposed to microbes residing in the lumen. Traditionally, the response to microbial interactions has been studied in cell lines derived from cancerous tissues, e.g. Caco-2. It is, however, unclear how the responses in these cancer cell lines reflect the responses of a normal epithelium and whether there might be microbial strain-specific effects. To address these questions, we derived organoids from the small intestine from a cohort of healthy individuals. Culturing intestinal epithelium on a flat laminin matrix induced their differentiation, facilitating analysis of microbial responses via the apical membrane normally exposed to the luminal content. Here, it was evident that the healthy epithelium across multiple individuals (n = 9) demonstrates robust acute both common and strain-specific responses to a range of probiotic bacterial strains (BB-12Ⓡ, LGGⓇ, DSM33361, and Bif195). Importantly, parallel experiments using the Caco-2 cell line provide no acute response. Collectively, we demonstrate that primary epithelial cells maintained as organoids represent a valuable resource for assessing interactions between the epithelium and luminal microbes across individuals, and that these models are likely to contribute to a better understanding of host microbe interactions.
Collapse
Affiliation(s)
- Jette Bornholdt
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Human Health Research, Chr. Hansen AS, Hørsholm, Denmark
| | - Christina V. Müller
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Maria Juul Nielsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Daria Rago
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yun Chen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Human Health Research, Chr. Hansen AS, Hørsholm, Denmark
| | - Grzegorz Maciag
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Skov
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Anja Wellejus
- Human Health Research, Chr. Hansen AS, Hørsholm, Denmark
| | - Pawel J. Schweiger
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Stine L. Hansen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | | | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martti Maimets
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Stine Sloth
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Hendel
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Adam Baker
- Human Health Research, Chr. Hansen AS, Hørsholm, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim B. Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
14
|
Jensen BAH, Heyndrickx M, Jonkers D, Mackie A, Millet S, Naghibi M, Pærregaard SI, Pot B, Saulnier D, Sina C, Sterkman LGW, Van den Abbeele P, Venlet NV, Zoetendal EG, Ouwehand AC. Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration. Cell Rep Med 2023; 4:101190. [PMID: 37683651 PMCID: PMC10518632 DOI: 10.1016/j.xcrm.2023.101190] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
Research on gut microbiota has generally focused on fecal samples, representing luminal content of the large intestine. However, nutrient uptake is restricted to the small intestine. Abundant immune cell populations at this anatomical site combined with diminished mucus secretion and looser junctions (partly to allow for more efficient fluid and nutrient absorption) also results in intimate host-microbe interactions despite more rapid transit. It is thus crucial to dissect key differences in both ecology and physiology between small and large intestine to better leverage the immense potential of human gut microbiota imprinting, including probiotic engraftment at biological sensible niches. Here, we provide a detailed review unfolding how the physiological and anatomical differences between the small and large intestine affect gut microbiota composition, function, and plasticity. This information is key to understanding how gut microbiota manipulation, including probiotic administration, may strain-dependently transform host-microbe interactions at defined locations.
Collapse
Affiliation(s)
| | - Marc Heyndrickx
- Flanders Research Institute of Agriculture, Fisheries and Food, Belgium & Ghent University, Department Pathobiology, Pharmacology and Zoological Medicine, B-9090 Melle, 9820 Merelbeke, Belgium
| | - Daisy Jonkers
- Division Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Sam Millet
- Flanders Research Institute of Agriculture, Fisheries and Food, 9090 Melle, Belgium
| | | | - Simone Isling Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Bruno Pot
- Yakult Europe BV, 1332 Almere, the Netherlands
| | | | - Christian Sina
- Institute of Nutritional Medicine, University Medical Center of Schleswig-Holstein & University of Lübeck, 23538 Lübeck, Germany
| | | | | | - Naomi Vita Venlet
- International Life Science Institute, European Branch, Brussels, Belgium.
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | | |
Collapse
|
15
|
Oliveira RA, Pamer EG. Assembling symbiotic bacterial species into live therapeutic consortia that reconstitute microbiome functions. Cell Host Microbe 2023; 31:472-484. [PMID: 37054670 DOI: 10.1016/j.chom.2023.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Increasing experimental evidence suggests that administering live commensal bacterial species can optimize microbiome composition and lead to reduced disease severity and enhanced health. Our understanding of the intestinal microbiome and its functions has increased over the past two decades largely due to deep sequence analyses of fecal nucleic acids, metabolomic and proteomic assays to measure nutrient use and metabolite production, and extensive studies on the metabolism and ecological interactions of a wide range of commensal bacterial species inhabiting the intestine. Herein, we review new and important findings that have emerged from this work and provide thoughts and considerations on approaches to re-establish and optimize microbiome functions by assembling and administering commensal bacterial consortia.
Collapse
Affiliation(s)
- Rita A Oliveira
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, Chicago, IL, USA.
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA; Department of Medicine, Section of Infectious Diseases & Global Health, University of Chicago Medicine, Chicago, IL, USA; Department of Microbiology, University of Chicago Medicine, Chicago, IL, USA; Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
16
|
Lee KW, Shin JS, Lee CM, Han HY, O Y, Kim HW, Cho TJ. Gut-on-a-Chip for the Analysis of Bacteria-Bacteria Interactions in Gut Microbial Community: What Would Be Needed for Bacterial Co-Culture Study to Explore the Diet-Microbiota Relationship? Nutrients 2023; 15:nu15051131. [PMID: 36904133 PMCID: PMC10005057 DOI: 10.3390/nu15051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Bacterial co-culture studies using synthetic gut microbiomes have reported novel research designs to understand the underlying role of bacterial interaction in the metabolism of dietary resources and community assembly of complex microflora. Since lab-on-a-chip mimicking the gut (hereafter "gut-on-a-chip") is one of the most advanced platforms for the simulative research regarding the correlation between host health and microbiota, the co-culture of the synthetic bacterial community in gut-on-a-chip is expected to reveal the diet-microbiota relationship. This critical review analyzed recent research on bacterial co-culture with perspectives on the ecological niche of commensals, probiotics, and pathogens to categorize the experimental approaches for diet-mediated management of gut health as the compositional and/or metabolic modulation of the microbiota and the control of pathogens. Meanwhile, the aim of previous research on bacterial culture in gut-on-a-chip has been mainly limited to the maintenance of the viability of host cells. Thus, the integration of study designs established for the co-culture of synthetic gut consortia with various nutritional resources into gut-on-a-chip is expected to reveal bacterial interspecies interactions related to specific dietary patterns. This critical review suggests novel research topics for co-culturing bacterial communities in gut-on-a-chip to realize an ideal experimental platform mimicking a complex intestinal environment.
Collapse
Affiliation(s)
- Ki Won Lee
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Jin Song Shin
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Chan Min Lee
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Hea Yeon Han
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Yun O
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
| | - Hye Won Kim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Department of Food Regulatory Science, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Republic of Korea
- Correspondence: ; Tel.: +82-44-860-1433
| |
Collapse
|
17
|
Nale JY, Thanki AM, Rashid SJ, Shan J, Vinner GK, Dowah ASA, Cheng JKJ, Sicheritz-Pontén T, Clokie MRJ. Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages. Viruses 2022; 14:v14122772. [PMID: 36560776 PMCID: PMC9784644 DOI: 10.3390/v14122772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
Collapse
Affiliation(s)
- Janet Y. Nale
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, Scotland’s Rural College, Inverness IV2 5NA, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Anisha M. Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Srwa J. Rashid
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gurinder K. Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Ahmed S. A. Dowah
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- School of Pharmacy, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Correspondence:
| |
Collapse
|
18
|
Yang TN, Li XN, Wang YX, Ma XY, Li JL. Disrupted microbiota-barrier-immune interaction in phthalates-mediated barrier defect in the duodenum. CHEMOSPHERE 2022; 308:136275. [PMID: 36058374 DOI: 10.1016/j.chemosphere.2022.136275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
As one of the most used phthalates, Di (2-ethylhexyl) phthalate (DEHP) is a widespread environmental contaminant. Extremely persistent plastic can enter the food chain of animals through the aquatic environment, affect metabolic pathways and cause damage to the digestive system. But the molecular mechanism of its toxic effects on the duodenum in birds has not been elucidated. To investigate the toxicity of phthalates in the duodenum, quails were gavaged with 250, 500, and 750 mg/kg doses of DEHP for 45 days, and water and oil control groups were retained. This study revealed that subchronic exposure to DEHP could lead to duodenal barrier defect in quail. The damage to duodenum was reflected in a reduction in V/C and tight junction proteins. Moreover, DEHP also led to a breakdown of antimicrobial defenses through the flora derangement, which acted as a biological barrier. The massive presence of Lipopolysaccharide (LPS) led to the activation of TLR4 receptors. In addition, DEHP activated oxidative stress, which synergized the inflammatory response induced by the TLR4-NFκB pathway, and further promoted duodenum damage. This study provides a base for the further effect of phthalates on the microbiota-barrier-immune interaction.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
19
|
Kessler C, Hou J, Neo O, Buckner MMC. In situ, in vivo, and in vitro approaches for studying AMR plasmid conjugation in the gut microbiome. FEMS Microbiol Rev 2022; 47:6807411. [PMID: 36341518 PMCID: PMC9841969 DOI: 10.1093/femsre/fuac044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global threat, with evolution and spread of resistance to frontline antibiotics outpacing the development of novel treatments. The spread of AMR is perpetuated by transfer of antimicrobial resistance genes (ARGs) between bacteria, notably those encoded by conjugative plasmids. The human gut microbiome is a known 'melting pot' for plasmid conjugation, with ARG transfer in this environment widely documented. There is a need to better understand the factors affecting the incidence of these transfer events, and to investigate methods of potentially counteracting the spread of ARGs. This review describes the use and potential of three approaches to studying conjugation in the human gut: observation of in situ events in hospitalized patients, modelling of the microbiome in vivo predominantly in rodent models, and the use of in vitro models of various complexities. Each has brought unique insights to our understanding of conjugation in the gut. The use and development of these systems, and combinations thereof, will be pivotal in better understanding the significance, prevalence, and manipulability of horizontal gene transfer in the gut microbiome.
Collapse
Affiliation(s)
- Celia Kessler
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Jingping Hou
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Onalenna Neo
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Michelle M C Buckner
- Corresponding author: Biosciences Building, University Road West, University of Birmingham, Birmingham B15 2TT, United Kingdom. Tel: +44 (0)121 415 8758; E-mail:
| |
Collapse
|
20
|
Khan R, Shah MD, Shah L, Lee PC, Khan I. Bacterial polysaccharides-A big source for prebiotics and therapeutics. Front Nutr 2022; 9:1031935. [PMID: 36407542 PMCID: PMC9671505 DOI: 10.3389/fnut.2022.1031935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 07/29/2023] Open
Abstract
Bacterial polysaccharides are unique due to their higher purity, hydrophilic nature, and a finer three-dimensional fibrous structure. Primarily, these polymers provide protection, support, and energy to the microorganism, however, more recently several auxiliary properties of these biopolymers have been unmasked. Microbial polysaccharides have shown therapeutic abilities against various illnesses, augmented the healing abilities of the herbal and Western medicines, improved overall health of the host, and have exerted positive impact on the growth of gut dwelling beneficial bacteria. Specifically, the review is discussing the mechanism through which bacterial polysaccharides exert anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In addition, they are holding promising application in the 3D printing. The review is also discussing a perspective about the metagenome-based screening of polysaccharides, their integration with other cutting-edge tools, and synthetic microbiome base intervention of polysaccharides as a strategy for prebiotic intervention. This review has collected interesting information about the bacterial polysaccharides from Google Scholar, PubMed, Scopus, and Web of Science databases. Up to our knowledge, this is the first of its kind review article that is summarizing therapeutic, prebiotics, and commercial application of bacterial polysaccharides.
Collapse
Affiliation(s)
- Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Luqman Shah
- Department of Biochemistry, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
21
|
Proctor A, Parvinroo S, Richie T, Jia X, Lee STM, Karp PD, Paley S, Kostic AD, Pierre JF, Wannemuehler MJ, Phillips GJ. Resources to Facilitate Use of the Altered Schaedler Flora (ASF) Mouse Model to Study Microbiome Function. mSystems 2022; 7:e0029322. [PMID: 35968975 PMCID: PMC9600240 DOI: 10.1128/msystems.00293-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.
Collapse
Affiliation(s)
- Alexandra Proctor
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Shadi Parvinroo
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Tanner Richie
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Xinglin Jia
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan Kansas, USA
| | - Peter D. Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Aleksandar D. Kostic
- Department of Microbiology and Immunology, Joslin Diabetes Center, Harvard University, Cambridge Massachusetts, USA
| | - Joseph F. Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison Wisconsin, USA
| | | | - Gregory J. Phillips
- Department of Veterinary Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
22
|
Ventura M, van Sinderen D, Turroni F. New research frontiers pertaining to the infant gut microbiota. MICROBIOME RESEARCH REPORTS 2022; 1:24. [PMID: 38046907 PMCID: PMC10688817 DOI: 10.20517/mrr.2022.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2023]
Abstract
The human gut microbiota is believed to be responsible for multiple health-impacting host effects. The influence of gut microorganisms on the human host begins immediately after birth, having long-lasting health effects, while the gut microbiota itself continues to develop throughout the host's entire life. The purported health-associated effects of the gut microbiota have fueled extensive and ongoing research efforts. Nonetheless, the precise mode of action of functionalities exerted by microbial colonizers of the infant intestine is still largely unknown. The current perspective intends to illustrate major future investigative directions concerning the human gut microbiota with a specific focus on infant-associated gut microbes.
Collapse
Affiliation(s)
- Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork T12 YT20, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| |
Collapse
|
23
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
24
|
Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. THE ISME JOURNAL 2022; 16:2144-2159. [PMID: 35717467 PMCID: PMC9381525 DOI: 10.1038/s41396-022-01255-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
Abstract
AbstractMicrobe–microbe interactions in the human gut are influenced by host-derived glycans and diet. The high complexity of the gut microbiome poses a major challenge for unraveling the metabolic interactions and trophic roles of key microbes. Synthetic minimal microbiomes provide a pragmatic approach to investigate their ecology including metabolic interactions. Here, we rationally designed a synthetic microbiome termed Mucin and Diet based Minimal Microbiome (MDb-MM) by taking into account known physiological features of 16 key bacteria. We combined 16S rRNA gene-based composition analysis, metabolite measurements and metatranscriptomics to investigate community dynamics, stability, inter-species metabolic interactions and their trophic roles. The 16 species co-existed in the in vitro gut ecosystems containing a mixture of complex substrates representing dietary fibers and mucin. The triplicate MDb-MM’s followed the Taylor’s power law and exhibited strikingly similar ecological and metabolic patterns. The MDb-MM exhibited resistance and resilience to temporal perturbations as evidenced by the abundance and metabolic end products. Microbe-specific temporal dynamics in transcriptional niche overlap and trophic interaction network explained the observed co-existence in a competitive minimal microbiome. Overall, the present study provides crucial insights into the co-existence, metabolic niches and trophic roles of key intestinal microbes in a highly dynamic and competitive in vitro ecosystem.
Collapse
|
25
|
Bacteriophage-Mediated Perturbation of Defined Bacterial Communities in an In Vitro Model of the Human Gut. Microbiol Spectr 2022; 10:e0113522. [PMID: 35638779 PMCID: PMC9241613 DOI: 10.1128/spectrum.01135-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The study of bacteriophage communities reproducing in the gastrointestinal tract is limited by the quality of model systems supporting experimental manipulation in vitro. Traditionally, studies aiming to experimentally address phage-bacteria dynamics have utilized gnotobiotic mice inoculated with defined bacterial communities. While mouse models simulate complex interactions between microbes and their host, they also forestall the study of phage-bacteria dynamics in isolation of host factors. Here, we established a method for manipulating phage-bacteria dynamics using an in vitro chemostat bioreactor model of the distal human gut. We create defined communities representing a subset of bacteria in the feces of two human individuals, cultivated these communities in chemostat bioreactors, developed methods to purify the autochthonous viromes associated with each cultured community, and trialed a system for transmitting live or heat-killed viruses between chemostat bioreactors to decipher outcomes of virus-mediated perturbation. We found that allochthonous viromes were detectable via metagenomic sequencing against the autochthonous virome background and that shifts in bacterial community diversity and composition were detectable in relation to time posttreatment. These microbiome composition changes spanned multiple phyla, including Bacteroidetes, Firmicutes, and Actinobacteria. We also found that compositional changes occurred when using live viruses regardless of whether intrasubject or intersubject viruses were used as the perturbation agents. Our results supported the use of chemostat bioreactors as a platform for studying complex bacteria-phage dynamics in vitro. IMPORTANCE Bacteriophages are relatively ubiquitous in the environment and are highly abundant in the human microbiome. Phages can be commonly transmitted between close contacts, but the impact that such transmissions may have on their bacteria counterparts in our microbiomes is unknown. We developed a chemostat cultivation system to simulate individual-specific features of human distal gut microbiota that can be used to transmit phages between ecosystems and measure their impacts on the microbiota. We used this system to transfer phage communities between chemostats that represented different human subjects. We found that there were significant effects on overall microbiota diversity and changes in the relative abundances of Bacteroidetes, Firmicutes, and Actinobacteria, when intersubject perturbations were performed, compared to intrasubject perturbations. These changes were observed when perturbations were performed using live phages, but not when heat-killed phages were used, and they support the use of chemostat systems for studying complex human bacteria-phage dynamics.
Collapse
|
26
|
Yang Z, Amal FE, Yang L, Liu Y, Zhu L, Zhu Z, Jiang L. Functional Characterization of Clostridium tyrobutyricum L319: A Promising Next-Generation Probiotic for Short-Chain Fatty Acid Production. Front Microbiol 2022; 13:926710. [PMID: 35783414 PMCID: PMC9247582 DOI: 10.3389/fmicb.2022.926710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/25/2022] [Indexed: 01/11/2023] Open
Abstract
Probiotics contribute a lot to human health and the occurrence of diseases. Correspondingly, probiotics’ safety evaluation and probiotic properties have received increasing attention in the food industry and disease treatment. Clostridium tyrobutyricum L319 is a short-chain fatty acid (SCFA)-producing strain isolated from Grana Padano cheese with a blowing defect. Our previous study has shown its safety at the genomic level. This study focused more on the safety evaluation and probiotic properties in vitro. According to the results, this strain has no potential virulence factors or the possibility of antibiotic resistance genes propagation. It also fulfilled several criteria to be used as a probiotic, including significant hydrophobicity under an acidic condition (pH 5.0) and resistance to simulate gastric juice and intestinal juice. Additionally, this strain was found to be tolerant to the harsh conditions of the external environment, including resistance to low (20°C) and high (50°C) temperatures, high salts (3% NaCl), and low pH (pH 5.0). Finally, we found that this strain could ferment prebiotics, such as chito-oligosaccharides, to produce SCFAs. It exhibited excellent growth performance whether using chito-oligosaccharide as a sole carbon source or combining glucose as the mixed carbon source. Furthermore, chito-oligosaccharide and glucose (1:1) mixed carbon sources were the optimal strategy for the production of SCFAs. Our findings demonstrated that this strain might be considered a promising candidate for future use as a probiotic to promote health benefits.
Collapse
Affiliation(s)
- Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fatima Ezzahra Amal
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Lei Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yuxin Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- *Correspondence: Zhengming Zhu,
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- Ling Jiang,
| |
Collapse
|
27
|
Pérez Escriva P, Fuhrer T, Sauer U. Distinct N and C Cross-Feeding Networks in a Synthetic Mouse Gut Consortium. mSystems 2022; 7:e0148421. [PMID: 35357218 PMCID: PMC9040589 DOI: 10.1128/msystems.01484-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
The complex interactions between the gut microbiome and host or pathogen colonization resistance cannot be understood solely from community composition. Missing are causal relationships, such as metabolic interactions among species, to better understand what shapes the microbiome. Here, we focused on metabolic niches generated and occupied by the Oligo-Mouse-Microbiota (OMM) consortium, a synthetic community composed of 12 members that is increasingly used as a model for the mouse gut microbiome. Combining monocultures and spent medium experiments with untargeted metabolomics revealed broad metabolic diversity in the consortium, constituting a dense cross-feeding network with more than 100 pairwise interactions. Quantitative analysis of the cross-feeding network revealed distinct C and N food webs, highlighting the two Bacteroidetes members Bacteroides caecimuris and Muribaculum intestinale as primary suppliers of carbon and a more diverse group as nitrogen providers. Cross-fed metabolites were mainly carboxylic acids, amino acids, and the so far not reported nucleobases. In particular, the dicarboxylic acids malate and fumarate provided a strong physiological benefit to consumers, presumably used in anaerobic respiration. Isotopic tracer experiments validated the fate of a subset of cross-fed metabolites, such as the conversion of the most abundant cross-fed compound succinate to butyrate. Thus, we show that this consortium is tailored to produce the anti-inflammatory metabolite butyrate. Overall, we provide evidence for metabolic niches generated and occupied by OMM members that lays a metabolic foundation to facilitate an understanding of the more complex in vivo behavior of this consortium in the mouse gut. IMPORTANCE This article maps out the cross-feeding network among 10 members of a synthetic consortium that is increasingly used as the model mouse gut microbiota. Combining metabolomics with in vitro cultivations, two dense networks of carbon and nitrogen exchange are described. The vast majority of the ∼100 interactions are synergistic in nature, in several cases providing distinct physiological benefits to the recipient species. These networks lay the groundwork toward understanding gut community dynamics and host-gut microbe interactions.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
- Systems Biology Graduate School, Zurich, Switzerland
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Grzymajlo K. The Game for Three: Salmonella–Host–Microbiota Interaction Models. Front Microbiol 2022; 13:854112. [PMID: 35516427 PMCID: PMC9062650 DOI: 10.3389/fmicb.2022.854112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by enteric pathogens occurs in a context strongly determined by host-specific gut microbiota, which can significantly affect the outcome of infection. The complex gameplay between the trillions of microbes that inhabit the GI tract, the host, and the infecting pathogen defines a specific triangle of interaction; therefore, a complete model of infection should consider all of these elements. Many different infection models have been developed to explain the complexity of these interactions. This review sheds light on current knowledge, along with the strengths and limitations of in vitro and in vivo models utilized in the study of Salmonella–host–microbiome interactions. These models range from the simplest experiment simulating environmental conditions using dedicated growth media through in vitro interaction with cell lines and 3-D organoid structure, and sophisticated “gut on a chip” systems, ending in various animal models. Finally, the challenges facing this field of research and the important future directions are outlined.
Collapse
|
29
|
Characterization of an engineered mucus microenvironment for in vitro modeling of host-microbe interactions. Sci Rep 2022; 12:5515. [PMID: 35365684 PMCID: PMC8975841 DOI: 10.1038/s41598-022-09198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The human mucus layer plays a vital role in maintaining health by providing a physical barrier to pathogens. This biological hydrogel also provides the microenvironment for commensal bacteria. Common models used to study host–microbe interactions include gnotobiotic animals or mammalian–microbial co-culture platforms. Many of the current in vitro models lack a sufficient mucus layer to host these interactions. In this study, we engineered a mucus-like hydrogel Consisting of a mixed alginate-mucin (ALG-MUC) hydrogel network by using low concentration calcium chloride (CaCl2) as crosslinker. We demonstrated that the incorporation of ALG-MUC hydrogels into an aqueous two-phase system (ATPS) co-culture platform can support the growth of a mammalian monolayer and pathogenic bacteria. The ALG-MUC hydrogels displayed selective diffusivity against macromolecules and stability with ATPS microbial patterning. Additionally, we showed that the presence of mucin within hydrogels contributed to an increase in antimicrobial resistance in ATPS patterned microbial colonies. By using common laboratory chemicals to generate a mammalian–microbial co-culture system containing a representative mucus microenvironment, this model can be readily adopted by typical life science laboratories to study host–microbe interaction and drug discovery.
Collapse
|
30
|
Mohammad FK, Palukuri MV, Shivakumar S, Rengaswamy R, Sahoo S. A Computational Framework for Studying Gut-Brain Axis in Autism Spectrum Disorder. Front Physiol 2022; 13:760753. [PMID: 35330929 PMCID: PMC8940246 DOI: 10.3389/fphys.2022.760753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022] Open
Abstract
Introduction The integrity of the intestinal epithelium is crucial for human health and is harmed in autism spectrum disorder (ASD). An aberrant gut microbial composition resulting in gut-derived metabolic toxins was found to damage the intestinal epithelium, jeopardizing tissue integrity. These toxins further reach the brain via the gut-brain axis, disrupting the normal function of the brain. A mechanistic understanding of metabolic disturbances in the brain and gut is essential to design effective therapeutics and early intervention to block disease progression. Herein, we present a novel computational framework integrating constraint based tissue specific metabolic (CBM) model and whole-body physiological pharmacokinetics (PBPK) modeling for ASD. Furthermore, the role of gut microbiota, diet, and oxidative stress is analyzed in ASD. Methods A representative gut model capturing host-bacteria and bacteria-bacteria interaction was developed using CBM techniques and patient data. Simultaneously, a PBPK model of toxin metabolism was assembled, incorporating multi-scale metabolic information. Furthermore, dynamic flux balance analysis was performed to integrate CBM and PBPK. The effectiveness of a probiotic and dietary intervention to improve autism symptoms was tested on the integrated model. Results The model accurately highlighted critical metabolic pathways of the gut and brain that are associated with ASD. These include central carbon, nucleotide, and vitamin metabolism in the host gut, and mitochondrial energy and amino acid metabolisms in the brain. The proposed dietary intervention revealed that a high-fiber diet is more effective than a western diet in reducing toxins produced inside the gut. The addition of probiotic bacteria Lactobacillus acidophilus, Bifidobacterium longum longum, Akkermansia muciniphila, and Prevotella ruminicola to the diet restores gut microbiota balance, thereby lowering oxidative stress in the gut and brain. Conclusion The proposed computational framework is novel in its applicability, as demonstrated by the determination of the whole-body distribution of ROS toxins and metabolic association in ASD. In addition, it emphasized the potential for developing novel therapeutic strategies to alleviate autism symptoms. Notably, the presented integrated model validates the importance of combining PBPK modeling with COBRA -specific tissue details for understanding disease pathogenesis.
Collapse
Affiliation(s)
- Faiz Khan Mohammad
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Meghana Venkata Palukuri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Shruti Shivakumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Raghunathan Rengaswamy
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Swagatika Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
31
|
Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 2022; 96:711-741. [PMID: 35103818 PMCID: PMC8850248 DOI: 10.1007/s00204-022-03234-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.
Collapse
Affiliation(s)
- Katharina S Nitsche
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul L Carmichael
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
32
|
Liu J, Huang X, Huang L, Huang J, Liang D, Liao L, Deng Y, Zhang L, Zhang B, Tang W. Organoid: Next-Generation Modeling of Cancer Research and Drug Development. Front Oncol 2022; 11:826613. [PMID: 35155215 PMCID: PMC8831330 DOI: 10.3389/fonc.2021.826613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal carcinoma is a highly prevalent and heterogeneous gastrointestinal malignancy. The emergence of organoid technology has provided a new direction for colorectal cancer research. As a novel-type model, organoid has significant advantages compared with conventional tumor research models, characterized with the high success rate of construction and the high matching with the original tumor. These characteristics provide new possibilities to study the mechanism of colorectal carcinogenesis and improve the treatment effects. The present literature would mainly summarize the characteristics of tumor organoids and the up-to-date technique development of patient-derived organoids (PDOs) and application in colorectal cancer.
Collapse
Affiliation(s)
- Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lihaoyun Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinlian Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dingyu Liang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lixian Liao
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yuqing Deng
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lihua Zhang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
33
|
Fecal Microbiota Transplants for Inflammatory Bowel Disease Treatment: Synthetic- and Engineered Communities-Based Microbiota Transplants Are the Future. Gastroenterol Res Pract 2022; 2022:9999925. [PMID: 35140783 PMCID: PMC8820897 DOI: 10.1155/2022/9999925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
The human intestine harbors a huge number of diverse microorganisms where a variety of complex interactions take place between the microbes as well as the host and gut microbiota. Significant long-term variations in the gut microbiota (dysbiosis) have been associated with a variety of health conditions including inflammatory bowel disease (IBD). Conventional fecal microbiota transplantations (FMTs) have been utilized to treat IBD and have been proved promising. However, various limitations such as transient results, pathogen transfer, storage, and reproducibility render conventional FMT less safe and less sustainable. Defined synthetic microbial communities (SynCom) have been used to dissect the host-microbiota-associated functions using gnotobiotic animals or in vitro cell models. This review focuses on the potential use of SynCom in IBD and its advantages and relative safety over conventional FMT. Additionally, this review reinforces how various technological advances could be combined with SynCom to have a better understanding of the complex microbial interactions in various gut inflammatory diseases including IBD. Some technological advances including the availability of a gut-on-a-chip system, intestinal organoids, ex vivo intestinal cultures, AI-based refining of the microbiome structural and functional data, and multiomic approaches may help in making more practical in vitro models of the human host. Additionally, an increase in the cultured diversity from gut microbiota and the availability of their genomic information would further make the design and utilization of SynCom more feasible. Taken together, the combined use of the available knowledge of the gut microbiota in health and disease and recent technological advances and the development of defined SynCom seem to be a promising, safe, and sustainable alternative to conventional FMT in treating IBD.
Collapse
|
34
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
35
|
Berkhout M, Zoetendal E, Plugge C, Belzer C. Use of synthetic communities to study microbial ecology of the gut. MICROBIOME RESEARCH REPORTS 2022; 1:4. [PMID: 38089065 PMCID: PMC10714298 DOI: 10.20517/mrr.2021.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2024]
Abstract
The application of in vitro synthetic microbial communities is an excellent approach to model the ecological interactions between microbes in the human gastrointestinal tract. Although DNA-based studies have provided a wealth of information, they do not consider the ecological properties of the human gut microbiota. Ecological interactions between gut microbes of interest can be studied by applying synthetic communities. This review describes the considerations that should be taken into account when constructing a synthetic community by discussing example research questions that can be answered by using a synthetic microbial community, the choice of microbial species, the growth conditions, possible reactor setups, and the parameters to analyze.
Collapse
Affiliation(s)
| | | | | | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, Gelderland, The Netherland
| |
Collapse
|
36
|
Clavel T, Horz H, Segata N, Vehreschild M. Next steps after 15 stimulating years of human gut microbiome research. Microb Biotechnol 2022; 15:164-175. [PMID: 34818454 PMCID: PMC8719818 DOI: 10.1111/1751-7915.13970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/26/2022] Open
Abstract
Gut microbiome research has bloomed over the past 15 years. We have learnt a lot about the complex microbial communities that colonize our intestine. Promising avenues of research and microbiome-based applications are being implemented, with the goal of sustaining host health and applying personalized disease management strategies. Despite this exciting outlook, many fundamental questions about enteric microbial ecosystems remain to be answered. Organizational measures will also need to be taken to optimize the outcome of discoveries happening at an extremely rapid pace. This article highlights our own view of the field and perspectives for the next 15 years.
Collapse
Affiliation(s)
- Thomas Clavel
- Functional Microbiome Research GroupInstitute of Medical MicrobiologyRWTH University HospitalAachenGermany
| | - Hans‐Peter Horz
- Phage Biology Research GroupInstitute of Medical MicrobiologyRWTH University HospitalAachenGermany
| | | | - Maria Vehreschild
- Department of Internal Medicine, Infectious DiseasesUniversity Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
37
|
Wolter M, Grant ET, Boudaud M, Steimle A, Pereira GV, Martens EC, Desai MS. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol 2021; 18:885-902. [PMID: 34580480 DOI: 10.1038/s41575-021-00512-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases, including inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, have distinct clinical presentations but share underlying patterns of gut microbiome perturbation and intestinal barrier dysfunction. Their potentially common microbial drivers advocate for treatment strategies aimed at restoring appropriate microbiome function, but individual variation in host factors makes a uniform approach unlikely. In this Perspective, we consolidate knowledge on diet-microbiome interactions in local inflammation, gut microbiota imbalance and host immune dysregulation. By understanding and incorporating the effects of individual dietary components on microbial metabolic output and host physiology, we examine the potential for diet-based therapies for autoimmune disease prevention and treatment. We also discuss tools targeting the gut microbiome, such as faecal microbiota transplantation, probiotics and orthogonal niche engineering, which could be optimized using custom dietary interventions. These approaches highlight paths towards leveraging diet for precise engineering of the gut microbiome at a time of increasing autoimmune disease.
Collapse
Affiliation(s)
- Mathis Wolter
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Eric C Martens
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg. .,Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
38
|
Bossink EGBM, Zakharova M, de Bruijn DS, Odijk M, Segerink LI. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. LAB ON A CHIP 2021; 21:2040-2049. [PMID: 33861228 DOI: 10.1016/j.ooc.2021.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) measurements can be applied in organ-on-chips (OoCs) to estimate the barrier properties of a tissue or cell layer in a continuous, non-invasive, and label-free manner. Assessing the barrier integrity in in vitro models is valuable for studying and developing barrier targeting drugs. Several systems for measuring the TEER have been shown, but each of them having their own drawbacks. This article presents a cleanroom-free fabrication method for the integration of platinum electrodes in a polydimethylsiloxane OoC, allowing the real-time assessment of the barrier function by employing impedance spectroscopy. The proposed method and electrode arrangement allow visual inspection of the cells cultured in the device at the site of the electrodes, and multiplexing of both the electrodes in one OoC and the number of OoCs in one device. The effectiveness of our system is demonstrated by lining the OoC with intestinal epithelial cells, creating a gut-on-chip, where we monitored the formation, as well as the disruption and recovery of the cell barrier during a 21 day culture period. The application is further expanded by creating a blood-brain-barrier, to show that the proposed fabrication method can be applied to monitor the barrier formation in the OoC for different types of biological barriers.
Collapse
Affiliation(s)
- Elsbeth G B M Bossink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mariia Zakharova
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Douwe S de Bruijn
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Loes I Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
39
|
Ankrah NYD, Barker BE, Song J, Wu C, McMullen JG, Douglas AE. Predicted Metabolic Function of the Gut Microbiota of Drosophila melanogaster. mSystems 2021. [PMID: 33947801 DOI: 10.1101/2021.01.20.427455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and their impact on host physiology. This research can be confounded by poorly understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multiway interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition, and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that, in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle, including 2-oxoglutarate and succinate, are produced at high flux and cross-fed between bacterial taxa, suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.IMPORTANCE Drosophila is an important model for microbiome research partly because of the low complexity of its mostly culturable gut microbiota. Our current understanding of how Drosophila interacts with its gut microbes and how these interactions influence host traits derives almost entirely from empirical studies that focus on individual microbial taxa or classes of metabolites. These studies have failed to capture fully the complexity of metabolic interactions that occur between host and microbe. To overcome this limitation, we reconstructed and analyzed 31 metabolic models for every combination of the five principal bacterial taxa in the gut microbiome of Drosophila This revealed that metabolic interactions between Drosophila gut bacterial taxa are highly dynamic and influenced by cooccurring bacteria and nutrient availability. Our results generate testable hypotheses about among-microbe ecological interactions in the Drosophila gut and the diversity of metabolites available to influence host traits.
Collapse
Affiliation(s)
- Nana Y D Ankrah
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Brandon E Barker
- Center for Advanced Computing, Cornell University, Ithaca, New York, USA
| | - Joan Song
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Cindy Wu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - John G McMullen
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
40
|
Ankrah NYD, Barker BE, Song J, Wu C, McMullen JG, Douglas AE. Predicted Metabolic Function of the Gut Microbiota of Drosophila melanogaster. mSystems 2021; 6:e01369-20. [PMID: 33947801 PMCID: PMC8269265 DOI: 10.1128/msystems.01369-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022] Open
Abstract
An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and their impact on host physiology. This research can be confounded by poorly understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multiway interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition, and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that, in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle, including 2-oxoglutarate and succinate, are produced at high flux and cross-fed between bacterial taxa, suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.IMPORTANCE Drosophila is an important model for microbiome research partly because of the low complexity of its mostly culturable gut microbiota. Our current understanding of how Drosophila interacts with its gut microbes and how these interactions influence host traits derives almost entirely from empirical studies that focus on individual microbial taxa or classes of metabolites. These studies have failed to capture fully the complexity of metabolic interactions that occur between host and microbe. To overcome this limitation, we reconstructed and analyzed 31 metabolic models for every combination of the five principal bacterial taxa in the gut microbiome of Drosophila This revealed that metabolic interactions between Drosophila gut bacterial taxa are highly dynamic and influenced by cooccurring bacteria and nutrient availability. Our results generate testable hypotheses about among-microbe ecological interactions in the Drosophila gut and the diversity of metabolites available to influence host traits.
Collapse
Affiliation(s)
- Nana Y D Ankrah
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Brandon E Barker
- Center for Advanced Computing, Cornell University, Ithaca, New York, USA
| | - Joan Song
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | - Cindy Wu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - John G McMullen
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
41
|
Wang J, Carper DL, Burdick LH, Shrestha HK, Appidi MR, Abraham PE, Timm CM, Hettich RL, Pelletier DA, Doktycz MJ. Formation, characterization and modeling of emergent synthetic microbial communities. Comput Struct Biotechnol J 2021; 19:1917-1927. [PMID: 33995895 PMCID: PMC8079826 DOI: 10.1016/j.csbj.2021.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial communities colonize plant tissues and contribute to host function. How these communities form and how individual members contribute to shaping the microbial community are not well understood. Synthetic microbial communities, where defined individual isolates are combined, can serve as valuable model systems for uncovering the organizational principles of communities. Using genome-defined organisms, systematic analysis by computationally-based network reconstruction can lead to mechanistic insights and the metabolic interactions between species. In this study, 10 bacterial strains isolated from the Populus deltoides rhizosphere were combined and passaged in two different media environments to form stable microbial communities. The membership and relative abundances of the strains stabilized after around 5 growth cycles and resulted in just a few dominant strains that depended on the medium. To unravel the underlying metabolic interactions, flux balance analysis was used to model microbial growth and identify potential metabolic exchanges involved in shaping the microbial communities. These analyses were complemented by growth curves of the individual isolates, pairwise interaction screens, and metaproteomics of the community. A fast growth rate is identified as one factor that can provide an advantage for maintaining presence in the community. Final community selection can also depend on selective antagonistic relationships and metabolic exchanges. Revealing the mechanisms of interaction among plant-associated microorganisms provides insights into strategies for engineering microbial communities that can potentially increase plant growth and disease resistance. Further, deciphering the membership and metabolic potentials of a bacterial community will enable the design of synthetic communities with desired biological functions.
Collapse
Affiliation(s)
- Jia Wang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Leah H. Burdick
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Him K. Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Manasa R. Appidi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Collin M. Timm
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Corresponding authors.
| | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Corresponding authors.
| |
Collapse
|
42
|
Bayer G, Ganobis CM, Allen-Vercoe E, Philpott DJ. Defined gut microbial communities: promising tools to understand and combat disease. Microbes Infect 2021; 23:104816. [PMID: 33785422 DOI: 10.1016/j.micinf.2021.104816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Defined gut microbial communities are emerging tools that allow detailed studies of microbial ecosystems and their interactions with the host. In this article, we review strategies underlying the design of defined consortia and summarize the efforts to introduce simplified communities into in vitro and in vivo models. We conclude by highlighting the potential of defined microbial ecosystems as effective modulation strategies for health benefits.
Collapse
Affiliation(s)
- Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
43
|
Establishing causality in Salmonella-microbiota-host interaction: The use of gnotobiotic mouse models and synthetic microbial communities. Int J Med Microbiol 2021; 311:151484. [PMID: 33756190 DOI: 10.1016/j.ijmm.2021.151484] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Colonization resistance (CR), the ability to block infections by potentially harmful microbes, is a fundamental function of host-associated microbial communities and highly conserved between animals and humans. Environmental factors such as antibiotics and diet can disturb microbial community composition and thereby predispose to opportunistic infections. The most prominent is Clostridioides difficile, the causative agent of diarrhea and pseudomembranous colitis. In addition, the risk to succumb to infections with genuine human enteric pathogens like nontyphoidal Salmonella (NTS) is also increased by a low-diverse, diet or antibiotic-disrupted microbiota. Despite extensive microbial community profiling efforts, only a limited set of microorganisms have been causally linked with protection against enteric pathogens. Furthermore, it remains a challenge to predict colonization resistance from complex microbiome signatures due to context-dependent action of microorganisms. In the past decade, the study of NTS infection has led to the description of several fundamental principles of microbiota-host-pathogen interaction. In this review, I will give an overview on the current state of knowledge in this field and outline experimental approaches to gain functional insight to the role of specific microbes, functions and metabolites in Salmonella-microbiota-host interaction. In particular, I will highlight the value of mouse infection models, which, in combination with culture collections, synthetic communities and gnotobiotic models have become essential tools to screen for protective members of the microbiota and establishing causal relationship and mechanisms in infection research.
Collapse
|
44
|
Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut 2021; 70:595-605. [PMID: 33051190 DOI: 10.1136/gutjnl-2020-321747] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The human gut microbiome is a complex ecosystem, densely colonised by thousands of microbial species. It varies among individuals and depends on host genotype and environmental factors, such as diet and antibiotics. In this review, we focus on stability and resilience as essential ecological characteristics of the gut microbiome and its relevance for human health. Microbial diversity, metabolic flexibility, functional redundancy, microbe-microbe and host-microbe interactions seem to be critical for maintaining resilience. The equilibrium of the gut ecosystem can be disrupted by perturbations, such as antibiotic therapy, causing significant decreases in functional richness and microbial diversity as well as impacting metabolic health. As a consequence, unbalanced states or even unhealthy stable states can develop, potentially leading to or supporting diseases. Accordingly, strategies have been developed to manipulate the gut microbiome in order to prevent or revert unhealthy states caused by perturbations, including faecal microbiota transplantation, supplementation with probiotics or non-digestible carbohydrates, and more extensive dietary modifications. Nevertheless, an increasing number of studies has evidenced interindividual variability in extent and direction of response to diet and perturbations, which has been attributed to the unique characteristics of each individual's microbiome. From a clinical, translational perspective, the ability to improve resilience of the gut microbial ecosystem prior to perturbations, or to restore its equilibrium afterwards, would offer significant benefits. To be effective, this therapeutic approach will likely need a personalised or subgroup-based understanding of individual genetics, diet, gut microbiome and other environmental factors that might be involved.
Collapse
Affiliation(s)
- Marina Fassarella
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - John Penders
- Department of Medical Microbiology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
45
|
A peek in the micro-sized world: a review of design principles, engineering tools, and applications of engineered microbial community. Biochem Soc Trans 2021; 48:399-409. [PMID: 32159213 DOI: 10.1042/bst20190172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022]
Abstract
Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to 'knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.
Collapse
|
46
|
Kleerebezem R, Stouten G, Koehorst J, Langenhoff A, Schaap P, Smidt H. Experimental infrastructure requirements for quantitative research on microbial communities. Curr Opin Biotechnol 2021; 67:158-165. [PMID: 33596519 DOI: 10.1016/j.copbio.2021.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/27/2023]
Abstract
Natural microbial communities are composed of a large diversity of interacting microorganisms, each with a specific role in the functional properties of the ecosystem. The objectives in microbial ecology research are related to identifying, understanding and exploring the role of these different microorganisms. Because of the rapidly increasing power of DNA sequencing and the rapid increase of genomic data, main attention of microbial ecology research shifted from cultivation-oriented studies towards metagenomic studies. Despite these efforts, the direct link between the molecular properties and the measurable changes in the functional performance of the ecosystem is often poorly documented. A quantitative understanding of functional properties in relation to the molecular changes requires effective integration, standardization, and parallelization of experiments. High-resolution functional characterization is a prerequisite for interpretation of changes in metagenomic properties, and will improve our understanding of microbial communities and facilitate their exploration for health and circular economy related objectives.
Collapse
Affiliation(s)
- Robbert Kleerebezem
- Delft University of Technology, Department of Biotechnology, Delft, The Netherlands.
| | - Gerben Stouten
- Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Jasper Koehorst
- Wageningen University and Research, Laboratory of Systems and Synthetic Biology, Wageningen, The Netherlands
| | - Alette Langenhoff
- Wageningen University and Research, Department of Environmental Technology, Wageningen, The Netherlands
| | - Peter Schaap
- Wageningen University and Research, Laboratory of Systems and Synthetic Biology, Wageningen, The Netherlands
| | - Hauke Smidt
- Wageningen University and Research, Laboratory of Microbiology, Wageningen, The Netherlands
| |
Collapse
|
47
|
Ventura M, Milani C, Turroni F, van Sinderen D. Envisioning emerging frontiers on human gut microbiota and its applications. Microb Biotechnol 2021; 14:12-17. [PMID: 32969587 PMCID: PMC7888449 DOI: 10.1111/1751-7915.13671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
The human gut microbiota is involved in multiple health-influencing host interactions during the host's entire life span. Microbes colonize the infant gut instantaneously after birth and subsequently the founding and interactive progress of this early gut microbiota is considered to be driven and modulated by different host- and microbe-associated forces. A rising number of studies propose that the composition of the human gut microbiota in the early stages of life impact on the human health conditions at later stages of life. This notion has powered research aimed at detailed investigations of the infant gut microbiota composition. Nevertheless, the molecular mechanisms supporting the gut microbiome functionality and the interaction of the early gut microbes with the human host remain largely unknown.
Collapse
Affiliation(s)
- Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of MicrobiologyBioscience InstituteNational University of IrelandCorkIreland
| |
Collapse
|
48
|
Kolmeder CA, de Vos WM. Roadmap to functional characterization of the human intestinal microbiota in its interaction with the host. J Pharm Biomed Anal 2020; 194:113751. [PMID: 33328144 DOI: 10.1016/j.jpba.2020.113751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
It is known for more than 100 years that the intestinal microbes are important for the host's health and the last decade this is being intensely studied with a focus on the mechanistic aspects. Among the fundamental functions of the intestinal microbiome are the priming of the immune system, the production of essential vitamins and the energy harvest from foods. By now, several dozens of diseases, both intestinal and non-intestinal related, have been associated with the intestinal microbiome. Initially, this was based on the description of the composition between groups of different health status or treatment arms based on phylogenetic approaches based on the 16S rRNA gene sequences. This way of analysis has mostly moved to the analysis of all the genes or transcripts of the microbiome i.e. metagenomics and meta-transcriptomics. Differences are regularly found but these have to be taken with caution as we still do not know what the majority of genes of the intestinal microbiome are capable of doing. To circumvent this caveat researchers are studying the proteins and the metabolites of the microbiome and the host via metaproteomics and metabolomics approaches. However, also here the complexity is high and only a fraction of signals obtained with high throughput instruments can be identified and assigned to a known protein or molecule. Therefore, modern microbiome research needs advancement of existing and development of new analytical techniques. The usage of model systems like intestinal organoids where samples can be taken and processed rapidly as well as microfluidics systems may help. This review aims to elucidate what we know about the functionality of the human intestinal microbiome, what technologies are advancing this knowledge, and what innovations are still required to further evolve this actively developing field.
Collapse
Affiliation(s)
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Finland; Laboratory of Microbiology, Wageningen University, the Netherlands
| |
Collapse
|
49
|
Su X, Yin X, Liu Y, Yan X, Zhang S, Wang X, Lin Z, Zhou X, Gao J, Wang Z, Zhang Q. Gut Dysbiosis Contributes to the Imbalance of Treg and Th17 Cells in Graves' Disease Patients by Propionic Acid. J Clin Endocrinol Metab 2020; 105:5891790. [PMID: 32785703 DOI: 10.1210/clinem/dgaa511] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Graves' disease (GD) is a typical organ-specific autoimmune disease. Intestinal flora plays a pivotal role in immune homeostasis and autoimmune disease development. However, the association and mechanism between intestinal flora and GD remain elusive. OBJECTIVE To investigate the association and mechanism between intestinal flora and GD. METHODS We recruited 58 initially untreated GD patients and 63 healthy individuals in the study. The composition and metabolic characteristics of the intestinal flora in GD patients and the causal relationship between intestinal flora and GD pathogenesis were assessed using 16S rRNA gene sequencing, targeted/untargeted metabolomics, and fecal microbiota transplantation. RESULTS The composition, metabolism, and inter-relationships of the intestinal flora were also changed, particularly the significantly reduced short-chain fatty acid (SCFA)-producing bacteria and SCFAs. The YCH46 strain of Bacteroides fragilis could produce propionic acid and increase Treg cell numbers while decreasing Th17 cell numbers. Transplanting the intestinal flora of GD patients significantly increased GD incidence in the GD mouse model. Additionally, there were 3 intestinal bacteria genera (Bacteroides, Alistipes, Prevotella) could distinguish GD patients from healthy individuals with 85% accuracy. CONCLUSIONS Gut dysbiosis contributes to a Treg/Th17 imbalance through the pathway regulated by propionic acid and promotes the occurrence of GD, together with other pathogenic factors. Bacteroides, Alistipes, and Prevotella have great potential to serve as adjunct markers for GD diagnosis. This study provided valuable clues for improving immune dysfunction of GD patients using B. fragilis and illuminated the prospects of microecological therapy for GD as an adjunct treatment.
Collapse
Affiliation(s)
- Xinhuan Su
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, Shandong, China
- Division of Geriatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xianlun Yin
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, Shandong, China
| | - Yue Liu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, Shandong, China
- Division of Geriatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuefang Yan
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, Shandong, China
| | - Shucui Zhang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, Shandong, China
| | - Xiaowei Wang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, Shandong, China
| | - Zongwei Lin
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, Shandong, China
| | - Xiaoming Zhou
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Jing Gao
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, Shandong, China
| | - Zhe Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Division of Geriatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
- State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Jinan, Shandong, China
| |
Collapse
|
50
|
Lee AJ, Einarsson GG, Gilpin DF, Tunney MM. Multi-Omics Approaches: The Key to Improving Respiratory Health in People With Cystic Fibrosis? Front Pharmacol 2020; 11:569821. [PMID: 33013411 PMCID: PMC7509435 DOI: 10.3389/fphar.2020.569821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The advent of high-throughput multi-omics technologies has underpinned the expansion in lung microbiome research, increasing our understanding of the nature, complexity and significance of the polymicrobial communities harbored by people with CF (PWCF). Having established that structurally complex microbial communities exist within the airways, the focus of recent research has now widened to investigating the function and dynamics of the resident microbiota during disease as well as in health. With further refinement, multi-omics approaches present the opportunity to untangle the complex interplay between microbe-microbe and microbe-host interactions in the lung and the relationship with respiratory disease progression, offering invaluable opportunities to discover new therapeutic approaches for our management of airway infection in CF.
Collapse
Affiliation(s)
- Andrew J. Lee
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Gisli G. Einarsson
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Deirdre F. Gilpin
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Michael M. Tunney
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|