1
|
Cheng W, Yi L, Xu T, Xie Y, Zhu J, Guan X, Li Q, Huang Y, Zhao Y, Zhao S. The stems and leaves of Panax notoginseng reduce the abundance of antibiotic resistance genes by regulating intestinal microbiota in Duzang pigs. Anim Biotechnol 2025; 36:2471785. [PMID: 40094563 DOI: 10.1080/10495398.2025.2471785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
In order to study the distribution characteristics of intestinal microbiota and antibiotic resistance genes (ARGs) in Duzang pigs after adding stems and leaves of Panax notoginseng to the feed, the characteristics of intestinal microbiota were explored by metagenomic sequencing, and 14 ARGs and 2 integrase genes were detected by qPCR. The results showed that the addition of stems and leaves of P. notoginseng increased the relative abundance of Firmicutes, Lactobacillus and Pediococcus in the cecum of Duzang pigs. A total of 10 ARGs and 2 integrase genes were detected in the cecal contents of pigs. The addition of stems and leaves of P. notoginseng reduced the relative abundance of total ARGs, ermB, tetO and tetW in the cecum of Duzang pigs. The results of network analysis showed that multiple genera were potential hosts of ARGs. The addition of stems and leaves of P. notoginseng may reduce the relative abundance of ARGs by reducing the relative abundance of genera such as Corynebacterium and Flavonifractor, thereby reducing the risk of ARGs spread. This study provides a theoretical basis for the rational use of stems and leaves of P. notoginseng to control ARGs.
Collapse
Affiliation(s)
- Wenjie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Taojie Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuxiao Xie
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Junhong Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xuancheng Guan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yanguang Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Mardalisa, Wang R, Sabar MA, Matsuura N, Hara-Yamamura H, Honda R. Different fates between extracellular and intracellular antimicrobial resistome in full-scale activated sludge and membrane bioreactor processes. WATER RESEARCH 2025; 274:123155. [PMID: 39854777 DOI: 10.1016/j.watres.2025.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/25/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes. The proportion of eARGs to iARGs increased from influent to effluent in both processes, reaching almost half of the total ARG. Most eARGs in influent were associated with clinically important antimicrobials, whereas eARGs in sludge and effluent were dominated by aminoglycoside resistance genes of aadA and APH variants. Although the eARGs composition in influent wastewater mirrored that of iARGs, a substantial shift occurred in activated sludge and effluent, highlighting the presence of distinct dissemination and reduction mechanisms between eARGs and iARGs. Notably, the origin of eARGs in treated effluent was mainly iARGs in the effluent rather than the carryover of eARG from activated sludge, which were substantially reduced in MBR, compared to CAS. Consequently, these differences in selective mechanisms led to different fates between eARG and iARG during wastewater treatment.
Collapse
Affiliation(s)
- Mardalisa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan; Department of Marine Science, Faculty of Fishery and Marine Science, Riau University, Riau 28293, Indonesia
| | - Rongxuan Wang
- Asia-Japan Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Muhammad Adnan Sabar
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan.
| |
Collapse
|
3
|
Debroas D. Global analysis of the metaplasmidome: ecological drivers and spread of antibiotic resistance genes across ecosystems. MICROBIOME 2025; 13:77. [PMID: 40108678 PMCID: PMC11921664 DOI: 10.1186/s40168-025-02062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/09/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Plasmids act as vehicles for the rapid spread of antibiotic resistance genes (ARGs). However, few studies of the resistome at the community level distinguish between ARGs carried by mobile genetic elements and those carried by chromosomes, and these studies have been limited to a few ecosystems. This is the first study to focus on ARGs carried by the metaplasmidome on a global scale. RESULTS This study shows that only a small fraction of the plasmids reconstructed from 27 ecosystems representing 9 biomes are catalogued in public databases. The abundance of ARGs harboured by the metaplasmidome was significantly explained by bacterial richness. Few plasmids with or without ARGs were shared between ecosystems or biomes, suggesting that plasmid distribution on a global scale is mainly driven by ecology rather than geography. The network linking plasmids to their hosts shows that these mobile elements have thus been shared between bacteria across geographically distant environmental niches. However, certain plasmids carrying ARGs involved in human health were identified as being shared between multiple ecosystems and hosted by a wide variety of hosts. Some of these mobile elements, identified as keystone plasmids, were characterised by an enrichment in antibiotic resistance genes (ARGs) and CAS-CRISPR components which may explain their ecological success. The ARGs accounted for 9.2% of the recent horizontal transfers between bacteria and plasmids. CONCLUSIONS By comprehensively analysing the plasmidome content of ecosystems, some key habitats have emerged as particularly important for monitoring the spread of ARGs in relation to human health. Of particular note is the potential for air to act as a vector for long-distance transport of ARGs and accessory genes across ecosystems and continents. Video Abstract.
Collapse
Affiliation(s)
- Didier Debroas
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Tavares RDS, Tacão M, Henriques I. Integrons are key players in the spread of beta-lactamase-encoding genes. Int J Antimicrob Agents 2025; 65:107421. [PMID: 39710145 DOI: 10.1016/j.ijantimicag.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Integrons mediate the acquisition and expression of gene cassettes (GCs). The production of beta-lactamases (BLs) is the most relevant mechanism of beta-lactams resistance. To explore the role of integrons in BL genes dissemination, sequences and metadata were retrieved from the INTEGRALL database and a literature review performed. Integrons (mostly class 1) carrying ≥1 BL-encoding genes (n = 1981) were detected in 37 bacterial genera and encoded BLs from 18 families. A total of 159 BL-encoding gene cassettes (BLGCs) were identified, representing all Ambler classes, with blaOXA-, blaVIM- and blaIMP-carrying integrons the most prevalent. blaGES, blaBEL and most metallo-BLs were exclusively associated with integrons. BL genes from 13 families were identified as genes captured by ISCR1 in complex integrons (n = 234), namely blaNDM, blaCTX-M and blaTEM. Frequently co-detected GCs encoded resistance to all major classes of antibiotics, namely aminoglycosides, phenicols and trimethoprim. Most BLGCs encoded resistance to carbapenems (n = 90) and Pseudomonas aeruginosa was the most frequent host. Most bla-carrying integrons were from clinical contexts and wastewater was the richest environmental compartment. The frequent association of BLs and integrons indicates a significant role in dissemination of beta-lactams resistance. Considering that integrons are (i) low-cost structures often associated with other mobile elements, and (ii) often carry multiple GCs (interchangeable according to environmental stimuli), the association of BL genes with integrons should always be considered a risk factor for the spread of beta-lactam resistance when performing surveillance and epidemiological studies. Further studies monitoring prevalence and diversity of integrons, particularly across non-clinical environments, will draw a more comprehensive picture of integron-associated dissemination of beta-lactams resistance.
Collapse
Affiliation(s)
- Rafael D S Tavares
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal; Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Tacão
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabel Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
5
|
Liu L, Zhu G, Hu J, Chen H, Zhai Y. An unignorable human health risk posed by antibiotic resistome and microbiome in urban rivers: Insights from Beijing, China. ENVIRONMENTAL RESEARCH 2025; 268:120752. [PMID: 39755199 DOI: 10.1016/j.envres.2025.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers. In this study, shotgun metagenomic approach was used to characterize ARGs, mobile genetic elements (MGEs), and virulence factors (VFs) in water and sediment from Xinfeng River in Beijing and to identify microbes, potential antibiotic resistant bacteria, and human pathogens (HPs). MGE, microbial community, VF, and ARG co-occurrences were used to assess the environmental risks posed by ARGs. The results indicated that quinolone was the most abundant ARG type and that tufA and fusA were the two dominant ARG subtypes. Wetland effluent increased ARG abundance in the river, and the effect was detected even 50 m downstream. ARG abundances and distribution in the river had difference in different seasons. The dominant bacteria in the river were Proteobacteria, Bacteroidetes, and Actinobacteria, and 59 HPs were detected. In total, 69 MGEs and 19 VFs were found. Co-occurrence networks indicated that potential antibiotic resistant bacteria, MGEs, VFs, and ARGs in the river significantly correlated, indicating the potential risks posed by ARGs. The results improve our understanding of ARG distribution and environmental risks in urban river water. More attention should be paid to controlling environmental risks posed by ARGs in urban river and reclaimed water.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
6
|
Jiang H, Ran M, Wang X, Chen Q, Wang J, Ruan Z, Wang J, Tang B, Fang J. Prevalence and characterization of class I integrons in multidrug-resistant Escherichia coli isolates from humans and food-producing animals in Zhejiang Province, China. BMC Microbiol 2025; 25:76. [PMID: 39955516 PMCID: PMC11830211 DOI: 10.1186/s12866-025-03794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025] Open
Abstract
Class I integrons have garnered significant attention due to pivotal roles in the dissemination of antimicrobial resistance genes (ARGs), which impose risks to public health and food safety. Here, the prevalence and characteristics of class I integrons in Escherichia coli isolates derived from food-producing animals and human patients were assessed. Of 721 E. coli isolates collected from human patients (113), pigs (298), and poultry (310), 93 (12.90%) carried the class I integrase gene (intI1). Multilocus sequence typing identified 39 sequence types from 93 intI1-postive isolates, including three novel types. Sequence analysis revealed that 59 classical class I integrons encompassed six distinct gene cassettes arrangements [dfrA17-aadA5, dfrA12-aadA2, dfrA1-aadA1, dfrA7, aac(6')-Ib, and aadA1-aac(3)-VIa]. Six insertion sequences (IS1, IS6, IS21, IS91, IS110, and IS256) and one transposon (Tn3) were harbored in proximity to the integrons. A comparison with sequences retrieved from the National Center for Biotechnology Information database demonstrated that E. coli isolates with integron sequences were detected in various food-producing animals and human hosts in environmental niches across Asia, Europe, and North America. These findings indicate the potential risk of ARG transmission between food-producing animals and humans by bacteria populations and provide useful baseline data for monitoring of ARGs.
Collapse
Affiliation(s)
- Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Meijuan Ran
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Xinyuan Wang
- Hangzhou Institute for Food and Drug Control, Hangzhou, 310022, Zhejiang, China
| | - Qi Chen
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Jing Wang
- Zhejiang Gongzheng Testing Center Co., Ltd, Hangzhou, 310000, Zhejiang, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, 310016, Zhejiang, China
| | - Jingwen Wang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Biao Tang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China.
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
7
|
Zhou J, Wu H, Wang H, Wu Z, Shi L, Tian S, Hou LA. Metagenomics reveals the resistance patterns of electrochemically treated erythromycin fermentation residue. J Environ Sci (China) 2025; 148:567-578. [PMID: 39095189 DOI: 10.1016/j.jes.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 08/04/2024]
Abstract
Erythromycin fermentation residue (EFR) represents a typical hazardous waste produced by the microbial pharmaceutical industry. Although electrolysis is promising for EFR disposal, its microbial threats remain unclear. Herein, metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR. Results showed that 95.75% of erythromycin could be removed in 2 hr. Electrolysis temporarily influenced EFR microbiota, where the relative abundances of Proteobacteria and Actinobacteria increased, while those of Fusobacteria, Firmicutes, and Bacteroidetes decreased. A total of 505 antibiotic resistance gene (ARG) subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements (MGEs), mainly including plasmid (72) and transposase (52) were assembled in EFR. Significant linear regression models were identified among microbial richness, ARG subtypes, and MGE numbers (r2=0.50-0.81, p< 0.001). Physicochemical factors of EFR (Total nitrogen, total organic carbon, protein, and humus) regulated ARG and MGE assembly (%IncMSE value = 5.14-14.85). The core ARG, MGE, and microbe sets (93.08%-99.85%) successfully explained 89.71%-92.92% of total ARG and MGE abundances. Specifically, gene aph(3')-I, transposase tnpA, and Mycolicibacterium were the primary drivers of the resistance dissemination system. This study also proposes efficient resistance mitigation measures, and provides recommendations for future management of antibiotic fermentation residue.
Collapse
Affiliation(s)
- Jieya Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Hao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiyan Wang
- Inner Mongolia Autonomous Region Solid Waste and Soil Ecological Environment Technology Center, Hohhot 010020, China
| | - Zongru Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihu Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shulei Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; High Tech. Inst. Beijing, Beijing 100085, China.
| |
Collapse
|
8
|
Bustamante M, Mei S, Daras IM, van Doorn G, Falcao Salles J, de Vos MG. An eco-evolutionary perspective on antimicrobial resistance in the context of One Health. iScience 2025; 28:111534. [PMID: 39801834 PMCID: PMC11719859 DOI: 10.1016/j.isci.2024.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The One Health approach musters growing concerns about antimicrobial resistance due to the increased use of antibiotics in healthcare and agriculture, with all of its consequences for human, livestock, and environmental health. In this perspective, we explore the current knowledge on how interactions at different levels of biological organization, from genetic to ecological interactions, affect the evolution of antimicrobial resistance. We discuss their role in different contexts, from natural systems with weak selection, to human-influenced environments that impose a strong pressure toward antimicrobial resistance evolution. We emphasize the need for an eco-evolutionary approach within the One Health framework and highlight the importance of horizontal gene transfer and microbiome interactions for increased understanding of the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Siyu Mei
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - Ines M. Daras
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - G.S. van Doorn
- University of Groningen – GELIFES, Groningen, the Netherlands
| | | | | |
Collapse
|
9
|
Zhang J, Cheng L, Li H, Chen X, Zhang L, Shan T, Wang J, Chen D, Shen J, Zhou X, Gou L, Zhang L, Zhou X, Ren B. Challenges of quaternary ammonium antimicrobial agents: Mechanisms, resistance, persistence and impacts on the microecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178020. [PMID: 39689472 DOI: 10.1016/j.scitotenv.2024.178020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Quaternary ammonium compounds (QACs) served as broad spectrum antimicrobial agents are widely applied for surface disinfection, skin and mucous disinfection, and mouthwash. The daily applications of QACs have significantly increased, especially during the COVID-19 pandemic. However, the environmental residues of QACs have demonstrated harmful impacts on the environment, leading to an increase in environmental contamination, resistant microbes and disruption of microecology. The actions of QACs were related to their cationic character, which can impact the negatively charged cell membranes, but the details are still unclear. Moreover, bacteria with lower sensitivity and resistant pathogens have been detected in clinics and environments, while QACs were also reported to induce the formation of bacterial persisters. Even worse, the resistant bacteria even showed co-resistance and cross-resistance with traditional antibiotics, decreasing therapeutic effectiveness, and disrupting the microecology homeostasis. Unfortunately, the resistance and persistence mechanisms of QACs and the effects of QACs on microecology are still not clear, which even neglected during their daily usages. Therefore, we summarized and discussed current understandings on the antimicrobial actions, resistance, persistence and impacts on the microecology to highlight the challenges in the QACs applications and discuss the possible strategies for overcoming their drawbacks.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai 200011, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai 200011, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tiantian Shan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ding Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
10
|
Matlock W, Shaw LP, Stoesser N. Global genomic epidemiology of bla GES-5 carbapenemase-associated integrons. Microb Genom 2024; 10:001312. [PMID: 39630499 PMCID: PMC11616780 DOI: 10.1099/mgen.0.001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Antimicrobial resistance (AMR) gene cassettes comprise an AMR gene flanked by short recombination sites (attI and attC or attC and attC). Integrons are genetic elements able to capture, excise and shuffle these cassettes, providing 'adaptation on demand', and can be found on both chromosomes and plasmids. Understanding the patterns of integron diversity may help to understand the epidemiology of AMR genes. As a case study, we examined the clinical resistance gene bla GES-5, an integron-associated class A carbapenemase first reported in Greece in 2004 and since observed worldwide, which to our knowledge has not been the subject of a previous global analysis. Using a dataset comprising all de-duplicated NCBI contigs containing bla GES-5 (n=104), we developed a pangenome graph-based workflow to characterize and cluster the diversity of bla GES-5-associated integrons. We demonstrate that bla GES-5-associated integrons on plasmids are different to those on chromosomes. Chromosomal integrons were almost all identified in Pseudomonas aeruginosa ST235, with a consistent gene cassette content and order. We observed instances where insertion sequence IS110 disrupted attC sites, which might immobilize the gene cassettes and explain the conserved integron structure despite the presence of intI1 integrase promoters, which would typically facilitate capture or excision and rearrangement. The plasmid-associated integrons were more diverse in their gene cassette content and order, which could be an indication of greater integrase activity and 'shuffling' of integrons on plasmids.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liam P. Shaw
- Department of Biology, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
11
|
Kovalchuk SN, Arkhipova AL, Bondar SV, Konanov DN, Krivonos DV, Chulkova PS, Ageevets VA, Fedorova LS, Ilina EN. A TaqMan real-time PCR assay for detection of qacEΔ1 gene in Gram-negative bacteria. J Microbiol Methods 2024; 227:107054. [PMID: 39395725 DOI: 10.1016/j.mimet.2024.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
The transfer of biocide and antibiotic resistance genes by mobile genetic elements is the most common mechanism for rapidly acquiring and spreading resistance among bacteria. The qacEΔ1 gene confers the resistance to quaternary ammonium compounds (QACs). It has also been considered a genetic marker for the presence of class 1 integrons associated with multidrug-resistant (MDR) phenotypes in Gram-negative bacteria. In this study, a TaqMan real-time PCR assay was developed to detect the qacEΔ1 gene in Gram-negative bacteria. The assay has a detection limit of 80 copies of the qacEΔ1 gene per reaction. No false-positive or false-negative results have been observed. Simultaneous amplification and detection of the 16S rRNA gene is performed as an endogenous internal amplification control (IAC). The TaqMan real-time PCR assay developed is a rapid, sensitive, and specific method that could be used to monitor resistance to QACs, the spread of class 1 integrons, and the prediction of associated MDR phenotypes in Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Anna L Arkhipova
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Svetlana V Bondar
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Dmitry N Konanov
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Danil V Krivonos
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Polina S Chulkova
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 Saint Petersburg, Russia
| | - Vladimir A Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 Saint Petersburg, Russia
| | | | - Elena N Ilina
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| |
Collapse
|
12
|
Qi Q, Ghaly TM, Rajabal V, Russell DH, Gillings MR, Tetu SG. Vegetable phylloplane microbiomes harbour class 1 integrons in novel bacterial hosts and drive the spread of chlorite resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176348. [PMID: 39304140 DOI: 10.1016/j.scitotenv.2024.176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial hosts in vegetable phylloplanes carry mobile genetic elements, such as plasmids and transposons that are associated with integrons. These mobile genetic elements and their cargo genes can enter human microbiomes via consumption of fresh agricultural produce, including uncooked vegetables. This presents a risk of acquiring antimicrobial resistance genes from uncooked vegetables. To better understand horizontal gene transfer of class 1 integrons in these compartments, we applied epicPCR, a single-cell fusion-PCR surveillance technique, to link the class 1 integron integrase (intI1) gene with phylogenetic markers of their bacterial hosts. Ready-to-eat salads carried class 1 integrons from the phyla Bacteroidota and Pseudomonadota, including four novel genera that were previously not known to be associated with intI1. We whole-genome sequenced Pseudomonas and Erwinia hosts of pre-clinical class 1 integrons that are embedded in Tn402-like transposons. The proximal gene cassette in these integrons was identified as a chlorite dismutase gene cassette, which we showed experimentally to confer chlorite resistance. Chlorine-derived compounds such as acidified sodium chlorite and chloride dioxide are used to disinfectant raw vegetables in food processing facilities, suggesting selection for chlorite resistance in phylloplane integrons. The spread of integrons conferring chlorite resistance has the potential to exacerbate integron-mediated antimicrobial resistance (AMR) via co-selection of chlorite resistance and AMR, thus highlighting the importance of monitoring chlorite residues in agricultural produce. These results demonstrate the strength of combining epicPCR and culture-based isolation approaches for identifying hosts and dissecting the molecular ecology of class 1 integrons.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales, Australia; Manchester Institute of Biotechnology, The University of Manchester, Greater Manchester, United Kingdom.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Dylan H Russell
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia.
| |
Collapse
|
13
|
Yan X, Yang M, Ayala JE, Li L, Zhou Y, Hou R, Liu S, Li Y, Yue C, Zhang D, Su X. Antimicrobial resistance, virulence genes profiles and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae strains from captive giant pandas (Ailuropoda melanoleuca). BMC Vet Res 2024; 20:532. [PMID: 39609820 PMCID: PMC11603722 DOI: 10.1186/s12917-024-04377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) increases the difficulty of clinical treatment of giant pandas. This study aimed to investigate the antibiotic susceptibility, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence genes, and molecular epidemiology of CRKP strains isolated from giant pandas. A total of 187 nonduplicated Klebsiella pneumoniae (KP) isolates were collected from fresh feces of captive giant pandas at the Chengdu Research Base of Giant Panda Breeding. Then CRKP were isolated and identified through carbapenase Carba NP assay. Subsequently, the antimicrobial susceptibility testing and antibiotic resistance genes of CRKP isolates were studied by disk diffusion (K-B) and HT-qPCR, respectively. Then both the MGEs and virulence genes of CRKP isolates were analyzed by PCR. In addition, molecular epidemiology was analyzed among the CRKP strains using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). RESULTS Eight strains of CRKP (4.5%) were isolated and identified among the 187 KP strains, and seven of eight CRKP strains both exhibited resistance to imipenem, while one strain showed resistance to meropenem, and one demonstrated multiple resistance; eight CRKP strains carried a large amount of ARGs, among which ampC/blaDHA, blaSHV-01, blaSHV-02, tetB-01, tetB-02, tetC-01, and tetC-02 were the most abundant. The MGEs analysis revealed the presence of intI1 in all strains, while the detection rates of other MGEs varied, and strain 24 exhibited the highest diversity of MGE species. Seven virulence genes, including wabG, uge, ycf, entB, kpn, alls, and wcaG, showed positive results with different proportions across the strains. In addition, PFGE patterns indicated a high level of genetic diversity among the CRKP strains. MLST analysis classified the strains into different sequence types (STs). CONCLUSIONS This study highlighted the diversity of CRKP strains isolated from giant panda feces, which exhibited varying levels of antibiotic resistance along with multiple ARGs, MGEs and virulence genes present. These findings emphasized the importance of monitoring and researching antibiotic resistance within wildlife populations to protect the health status of these conservation dependent animals.
Collapse
Affiliation(s)
- Xia Yan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Mei Yang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - James Edward Ayala
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Lin Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Yang Zhou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Yunli Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Dongsheng Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Xiaoyan Su
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China.
| |
Collapse
|
14
|
Souque C, González Ojeda I, Baym M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annu Rev Microbiol 2024; 78:361-382. [PMID: 39141706 DOI: 10.1146/annurev-micro-041522-102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.
Collapse
Affiliation(s)
- Célia Souque
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Indra González Ojeda
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| |
Collapse
|
15
|
Wang Q, Geng L, Gao Z, Sun Y, Li X, Sun S, Luo Y. Microalgae Enhances the Adaptability of Epiphytic Bacteria to Sulfamethoxazole Stress and Proliferation of Antibiotic Resistance Genes Mediated by Integron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19397-19407. [PMID: 39417646 DOI: 10.1021/acs.est.4c04925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The transmission of ARGs in the microalgae-associated epiphytic bacteria remains unclear under antibiotic exposure, apart from altering the microbial community structure. In this study, Chlorella vulgaris cocultured with bacteria screened from surface water was examined to explore the spread of ARGs in the presence of sulfamethoxazole (SMX). The extracellular polymers released by Chlorella vulgaris could reduce antibiotic-induced collateral damage to bacteria, thus increasing the diversity of the microalgae-associated epiphytic bacteria. The abundances of sul1 and intI1 in the phycosphere at 1 mg/L SMX dose increased by 290 and 28 times, respectively. Metagenomic sequencing further confirmed that SMX bioaccumulation stimulated the horizontal transfer of sul1 mediated by intI1 in the microalgae-associated epiphytic bacteria, while reactive oxygen species (ROS)-mediated oxidative stress induced the SOS response and thus enhanced the transformation of sul1 in the J group. This is the first study to verify that microalgae protect bacteria from antibiotic damage and hinder the spread of ARGs mediated by SOS response, while the transfer of ARGs mediated by integron is promoted due to the bioaccumulation of SMX in the phycosphere. The results contribute to present comprehensive understanding of the risk of ARG proliferation by the presence of emerging contaminants residues in river.
Collapse
Affiliation(s)
- Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Linlin Geng
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Ziao Gao
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
16
|
Guo X, Zhao W, Yin D, Mei Z, Wang F, Tiedje J, Ling S, Hu S, Xu T. Aspirin altered antibiotic resistance genes response to sulfonamide in the gut microbiome of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124566. [PMID: 39025292 DOI: 10.1016/j.envpol.2024.124566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Pharmaceuticals are widespread in aquatic environments and might contribute to the prevalence of antibiotic resistance. However, the co-effect of antibiotics and non-antibiotic pharmaceuticals on the gut microbiome of fish is poorly understood. In this study, we characterized the variation of the zebrafish gut microbiome and resistome after exposure to sulfamethoxazole (SMX) and aspirin under different treatments. SMX contributed to the significant increase in the antibiotic resistance genes (ARGs) richness and abundance with 46 unique ARGs and five mobile genetic elements (MGEs) detected. Combined exposure to SMX and aspirin enriched total ARGs abundance and rearranged microbiota under short-term exposure. Exposure time was more responsible for resistome and the gut microbiome than exposure concentrations. Perturbation of the gut microbiome contributed to the functional variation related to RNA processing and modification, cell motility, signal transduction mechanisms, and defense mechanisms. A strong significant positive correlation (R = 0.8955, p < 0.001) was observed between total ARGs and MGEs regardless of different treatments revealing the key role of MGEs in ARGs transmission. Network analysis indicated most of the potential ARGs host bacteria belonged to Proteobacteria. Our study suggested that co-occurrence of non-antibiotics and antibiotics could accelerate the spread of ARGs in gut microbial communities and MGEs played a key role.
Collapse
Affiliation(s)
- Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wanting Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhi Mei
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824, USA
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
17
|
Wu X, Jia W, Fang Z, Sun H, Wang G, Liu L, Zheng M, Chen G. Cyanobacteria mediate the dissemination of bacterial antibiotic resistance through conjugal transfer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124592. [PMID: 39047887 DOI: 10.1016/j.envpol.2024.124592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Cyanobacterial blooms are expanding world-wide in freshwater and marine environments, and can cause serious ecological and environmental issues, which also contribute to the spread of antibiotic resistance genes (ARGs). However, the mechanistic understanding of cyanobacteria-mediated resistance dynamics is not fully elucidated yet. We selected Microcystis aeruginosa as a model cyanobacteria to illustrate how cyanobacteria mediate the evolution and transfer processes of bacterial antibiotic resistance. The results show that the presence of cyanobacteria significantly decreased the abundance of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by 3%-99% and 2%-18%, respectively. In addition, it clearly altered bacterial community structure, with the dominant genera evolving from Acinetobacter (27%) and Enterobacter (42%) to Porphyrobacter (59%). The abundance of ARGs positively correlated with Proteobacteria and Firmicutes, rather than Cyanobacteria, and Bacteroidetes. In the presence of cyanobacteria, the transfer events of bacterial resistance genes via conjugation were found to decrease by 10%-89% (p < 0.05). Surprisingly, we found an extradentary high transfer frequency (about 0.1) for the ARGs via plasmid conjugation from the bacteria into M. aeruginosa population. It confirmed the role of cyanobacterial population as the competent hosts to facilitate ARGs spreading. Our findings provide valuable information on the risk evaluation of ARGs caused by cyanobacterial blooms in aquatic environments, key for the protection and assessment of aquatic environmental quality.
Collapse
Affiliation(s)
- Xuefei Wu
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Jia
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhipeng Fang
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hualong Sun
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Liu
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mengqi Zheng
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
18
|
Hossain AKMZ, Chowdhury AMMA. Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review. J Basic Microbiol 2024; 64:e2400259. [PMID: 39113256 DOI: 10.1002/jobm.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 10/05/2024]
Abstract
Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health.
Collapse
Affiliation(s)
- A K M Zakir Hossain
- Laboratory of Microbial and Cancer Genomics, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - A M Masudul Azad Chowdhury
- Laboratory of Microbial and Cancer Genomics, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
19
|
Kim MB, Lee YJ. Emergence of Salmonella Infantis carrying the pESI-like plasmid from eggs in egg grading and packing plants in Korea. Food Microbiol 2024; 122:104568. [PMID: 38839227 DOI: 10.1016/j.fm.2024.104568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
The plasmid of emerging S. Infantis (pESI) or pESI-like plasmid in Salmonella enterica Infantis are consistently reported in poultry and humans worldwide. However, there has been limited research on these plasmids of S. Infantis isolated from eggs. Therefore, this study aimed to analyze the prevalence and characteristics of S. Infantis carrying the pESI-like plasmid from eggs in egg grading and packing plants. In this study, the pESI-like plasmid was only detected in 18 (78.3%) of 23 S. Infantis isolates, and it was absent in the other 9 Salmonella serovars. In particular, S. Infantis isolates carrying the pESI-like plasmid showed the significantly higher resistance to β-lactams, phenicols, cephams, aminoglycosides, quinolones, sulfonamides, and tetracyclines than Salmonella isolates without the pESI-like plasmid (p < 0.05). Moreover, all S. Infantis isolates carrying the pESI-like plasmid were identified as extended-spectrum β-lactamase (ESBL) producer, harboring the blaCTX-M-65 and blaTEM-1 genes, and carried non-β-lactamase resistance genes (ant(3'')-Ia, aph(4)-Ia, aac(3)-IVa, aph(3')-Ic, sul1, tetA, dfrA14, and floR) against five antimicrobial classes. However, all isolates without the pESI-like plasmid only carried the blaTEM-1 gene among the β-lactamase genes, and either had no non-β-lactamase resistance genes or harbored non-β-lactamase resistance genes against one or two antimicrobial classes. Furthermore, all S. Infantis isolates carrying the pESI-like plasmid carried class 1 and 2 integrons and the aadA1 gene cassette, but none of the other isolates without the pESI-like plasmid harbored integrons. In particular, D87Y substitution in the gyrA gene and IncP replicon type were observed in all the S. Infantis isolates carrying the pESI-like plasmid but not in the S. Infantis isolates without the pESI-like plasmid. The distribution of pulsotypes between pESI-positive and pESI-negative S. Infantis isolates was clearly distinguished, but all S. Infantis isolates were classified as sequence type 32, regardless of whether they carried the pESI-like plasmid. This study is the first to report the characteristics of S. Infantis carrying the pESI-like plasmid isolated from eggs and can provide valuable information for formulating strategies to control the spread of Salmonella in the egg industry worldwide.
Collapse
Affiliation(s)
- Min Beom Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, 41556, Republic of Korea.
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, 41556, Republic of Korea.
| |
Collapse
|
20
|
Jung JM, Rahman A, Schiffer AM, Weisberg AJ. Beav: a bacterial genome and mobile element annotation pipeline. mSphere 2024; 9:e0020924. [PMID: 39037262 PMCID: PMC11351099 DOI: 10.1128/msphere.00209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024] Open
Abstract
Comprehensive and accurate genome annotation is crucial for inferring the predicted functions of an organism. Numerous tools exist to annotate genes, gene clusters, mobile genetic elements, and other diverse features. However, these tools and pipelines can be difficult to install and run, be specialized for a particular element or feature, or lack annotations for larger elements that provide important genomic context. Integrating results across analyses is also important for understanding gene function. To address these challenges, we present the Beav annotation pipeline. Beav is a command-line tool that automates the annotation of bacterial genome sequences, mobile genetic elements, molecular systems and gene clusters, key regulatory features, and other elements. Beav uses existing tools in addition to custom models, scripts, and databases to annotate diverse elements, systems, and sequence features. Custom databases for plant-associated microbes are incorporated to improve annotation of key virulence and symbiosis genes in agriculturally important pathogens and mutualists. Beav includes an optional Agrobacterium-specific pipeline that identifies and classifies oncogenic plasmids and annotates plasmid-specific features. Following the completion of all analyses, annotations are consolidated to produce a single comprehensive output. Finally, Beav generates publication-quality genome and plasmid maps. Beav is on Bioconda and is available for download at https://github.com/weisberglab/beav. IMPORTANCE Annotation of genome features, such as the presence of genes and their predicted function, or larger loci encoding secretion systems or biosynthetic gene clusters, is necessary for understanding the functions encoded by an organism. Genomes can also host diverse mobile genetic elements, such as integrative and conjugative elements and/or phages, that are often not annotated by existing pipelines. These elements can horizontally mobilize genes encoding for virulence, antimicrobial resistance, or other adaptive functions and alter the phenotype of an organism. We developed a software pipeline, called Beav, that combines new and existing tools for the comprehensive annotation of these and other major features. Existing pipelines often misannotate loci important for virulence or mutualism in plant-associated bacteria. Beav includes custom databases and optional workflows for the improved annotation of plant-associated bacteria. Beav is designed to be easy to install and run, making comprehensive genome annotation broadly available to the research community.
Collapse
Affiliation(s)
- Jewell M. Jung
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Arafat Rahman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Andrea M. Schiffer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
21
|
Naidoo Y, Pierneef RE, Cowan DA, Valverde A. Characterization of the soil resistome and mobilome in Namib Desert soils. Int Microbiol 2024; 27:967-975. [PMID: 37968548 PMCID: PMC11300574 DOI: 10.1007/s10123-023-00454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
The study of the soil resistome is important in understanding the evolution of antibiotic resistance and its dissemination between the clinic and the environment. However, very little is known about the soil resistome, especially of those from deserts. Here, we characterize the bacterial communities, using targeted sequencing of the 16S rRNA genes, and both the resistome and the mobilome in Namib Desert soils, using shotgun metagenomics. We detected a variety of antibiotic resistance genes (ARGs) that conferred resistance to antibiotics such as elfamycin, rifampicin, and fluoroquinolones, metal/biocide resistance genes (MRGs/BRGs) conferring resistance to metals such as arsenic and copper, and mobile genetic elements (MGEs) such as the ColE1-like plasmid. The presence of metal/biocide resistance genes in close proximity to ARGs indicated a potential for co-selection of resistance to antibiotics and metals/biocides. The co-existence of MGEs and horizontally acquired ARGs most likely contributed to a decoupling between bacterial community composition and ARG profiles. Overall, this study indicates that soil bacterial communities in Namib Desert soils host a diversity of resistance elements and that horizontal gene transfer, rather than host phylogeny, plays an essential role in their dynamics.
Collapse
Affiliation(s)
- Yashini Naidoo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | - Rian E Pierneef
- Biotechnology Platform, Agricultural Research Council, Soutpan Road, Onderstepoort Campus, Pretoria, 0110, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Angel Valverde
- IRNASA-CSIC, Cordel de Merinas, 37008, Salamanca, Spain.
| |
Collapse
|
22
|
Zhou Z, Zhu R, Song Y, Zhang W, Sun B, Zhang Z, Yao H. Penguin-Driven Dissemination and High Enrichment of Antibiotic Resistance Genes in Lake Sediments across Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39083437 DOI: 10.1021/acs.est.4c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Numerous penguins can propagate pathogens with antibiotic resistance genes (ARGs) into Antarctica. However, the effects of penguin dissemination on the lake ARGs still have received little attention via guano deposition. Here, we have profiled ARGs in ornithogenic sediments subject to penguin guano (OLS) and nonornithogenic sediments (NOLS) from 16 lakes across Antarctica. A total of 191 ARGs were detected in all sediment samples, with a much higher abundance and diversity in OLS than in NOLS. Surprisingly, highly diverse and abundant ARGs were found in the OLS with a detection frequency of >40% and an absolute abundance of (2.34 × 109)-(4.98 × 109) copies g-1, comparable to those in coastal estuarine sediments and pig farms. The strong correlations of identified resistance genes with penguin guano input amount, environmental factors, mobile genetic elements, and bacterial community, in conjunction with network and redundancy analyses, all indicated that penguins were responsible for the dissemination and high enrichment of ARGs in lake sediments via the guano deposition, which might greatly outweigh local human-activity effects. Our results revealed that ARGs could be carried into lakes across the Antarctica through penguin migration, food chains, and guano deposition, which were closely connected with the widespread pollution of ARGs at the global scale.
Collapse
Affiliation(s)
- Zeming Zhou
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Song
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wanying Zhang
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, U.K
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
23
|
Yuan W, Liu Y, Liu R, Li L, Deng P, Fu S, Riaz L, Lu J, Li G, Yang Z. Unveiling the overlooked threat: antibiotic resistance in groundwater near an abandoned sulfuric acid plant in Xingyang, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:309. [PMID: 39002061 DOI: 10.1007/s10653-024-02100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Groundwater near a sulfuric acid plant in Xingyang, Henan, China was sampled from seven distinct sites to explore the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). Results showed that genes aadA, blaCTX-M, tetA, qnrA, and sul1 were detected with 100% frequency followed by aac(6')-Ib (85.71%), ermB (85.71%), and tetX (71.42%). Most abundant ARGs were sul1 in LSA2 (1.15 × 1011 copies/mL), tetA in LSA6 (4.95 × 1010 copies/mL), aadA in LSA2 (4.56 × 109 copies/mL), blaCTX-M in LSA4 (1.19 × 109 copies/mL), and ermB in LSA5 (1.07 × 109 copies/mL). Moreover, in LSA2, intl1 as a marker of class 1 integron emerged as the most abundant gene as part of MGE (2.25 × 1011 copies/mL), trailed by ISCR1 (1.57 × 109 copies/mL). Environmental factors explained 81.34% of ARG variations, with a strong positive correlation between the intl2 and blaCTX-M genes, as well as the ISCR1 gene and qnrA, tetA, intl2, and blaCTX-M. Furthermore, the intI1 gene had a strong positive connection with the aadA, tetA, and sul1 genes. Moreover, the aac(6')-Ib gene was associated with As, Pb, Mg, Ca, and HCO3-. The intl2 gene was also shown to be strongly associated with Cd. Notably, network analysis highlighted blaCTX-M as the most frequently appearing gene across networks of at least five genera. Particularly, Lactobacillus, Plesiomonas, and Ligilactobacillus demonstrated correlations with aadA, qnrA, blaCTX-M, intI2, and ISCR1. Based on 16S rRNA sequencing, the dominant phyla were Proteobacteria, Firmicutes, Bacteroidota, Acidobacteriota, and Actinobacteriota, with dominant genera including Pseudomonas, Ligilactobacillus, Azoarcus, Vogesella, Streptococcus, Plesiomonas, and Ferritrophicum. These findings enhance our understanding of ARG distribution in groundwater, signaling substantial contamination by ARGs and potential risks to public health.
Collapse
Affiliation(s)
- Wei Yuan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Yafei Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Ruihao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Leicheng Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Peiyuan Deng
- Henan Engineering Research Center of Bird-Related Outage, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China
| | - Shuai Fu
- College of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang, 471023, Henan, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Punjab, Pakistan
| | - Jianhong Lu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
24
|
Razzaq R, Sheraz A, Arshad MM, Awan AB, Haque A. Integrons and multidrug resistance across phylogenetic groups of clinical isolates of Escherichia coli. Pak J Med Sci 2024; 40:1190-1195. [PMID: 38952530 PMCID: PMC11190423 DOI: 10.12669/pjms.40.6.8886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/27/2024] [Accepted: 02/15/2024] [Indexed: 07/03/2024] Open
Abstract
Objective This study was aimed to investigate the multidrug resistance patterns in clinical isolates of Escherichia coli and their correlation with integrons and phylogenetic groupings. Methods A total of 37 clinical E. coli isolates were evaluated for drug resistance patterns by disk diffusion method. Phylogenetic groupings and the presence of integrons among E. coli were determined by multiplex PCR assays. Results Multidrug resistance was identified in 84% of the clinical isolates of E. coli with higher resistance found against cephalosporins (94.6%) and fluoroquinolones (83.8%), while lower resistance was observed against polymyxins (24.3%) and carbapenems (29.7%). Metallo-β-lactamases were found in all carbapenem resistant isolates. The phylogenetic group B2 was the most dominant (40.5%), followed by groups A (35.1%), D (13.5%) and B1 (10.8%). Integrons were detected in 25 (67.6%) isolates and intI1, intI2, and intI3 genes were found in 62.2%, 18.9% and 10.8% of isolates respectively. Conclusion Our results show that phylogenetic classification of E. coli is not relevant with antimicrobial resistance. However, there was strong association between the integron classes and resistance against β-lactam and fluoroquinolones antimicrobials. Additionally, this study highlighted that the presence of integrons plays a crucial role in the development of multidrug resistance in clinical isolates of E. coli. Most significantly, this is the first report of detection of three classes of integron among clinical isolates of E. coli in Pakistan.
Collapse
Affiliation(s)
- Rimsha Razzaq
- Rimsha Razzaq Department of Health Biotechnology, Akhuwat FIRST, Faisalabad, Pakistan
| | - Ahmad Sheraz
- Ahmad Sheraz Department of Health Biotechnology, Akhuwat FIRST, Faisalabad, Pakistan
| | - Muhammad Mohsin Arshad
- Muhammad Mohsin Arshad Department of Health Biotechnology, Akhuwat FIRST, Faisalabad, Pakistan
| | - Asad Bashir Awan
- Asad Bashir Awan Department of Health Biotechnology, Akhuwat FIRST, Faisalabad, Pakistan
| | - Abdul Haque
- Abdul Haque Department of Health Biotechnology, Akhuwat FIRST, Faisalabad, Pakistan
| |
Collapse
|
25
|
Tavares RDS, Fidalgo C, Rodrigues ET, Tacão M, Henriques I. Integron-associated genes are reliable indicators of antibiotic resistance in wastewater despite treatment- and seasonality-driven fluctuations. WATER RESEARCH 2024; 258:121784. [PMID: 38761599 DOI: 10.1016/j.watres.2024.121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The present study aims to characterize the bacterial community, resistome and integron abundance of a municipal wastewater treatment plant (WWTP) over the course of 12 months and evaluate the year-long performance of integron-related genes as potential indicators of antibiotic resistance mechanisms in influents and effluents. For that, total DNA was extracted and subjected to 16S rRNA-targeted metabarcoding, high-throughput (HT) qPCR (48 targets) and standard qPCR (5 targets). Targets included integrase genes, antibiotic resistance genes (ARGs) and putative pathogenic groups. A total of 16 physicochemical parameters determined in the wastewater samples were also considered. Results revealed that the WWTP treatment significantly impacted the bacterial community, as well as the content in ARGs and integrase genes. Indeed, there was a relative enrichment from influent to effluent of 13 pathogenic groups (e.g., Legionella and Mycobacterium) and genes conferring resistance to sulphonamides, aminoglycosides and disinfectants. Effluent samples (n = 25) also presented seasonal differences, with an increase of the total ARGs' concentration in summer, and differences between winter and summer on relative abundance of sulphonamide and disinfectant resistance mechanisms. From the eight putative integron-related genes selected, all were positively correlated with the total ARGs' content in wastewater and the relative abundance of resistance to most of the specific antibiotic classes. The genes intI1, blaGES and qacE∆1 were the most strongly correlated with the total concentration of ARGs. Genes blaGES and blaVIM, were better correlated to resistance to beta-lactams, aminoglycosides and tetracyclines. This study supports the use of integron-related genes as powerful indicators of antibiotic resistance in wastewater, being robust despite the variability caused by wastewater treatment and seasonality.
Collapse
Affiliation(s)
- Rafael D S Tavares
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal; Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cátia Fidalgo
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elsa T Rodrigues
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Marta Tacão
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabel Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
26
|
Zhang Y, Wang M, Zhou X, Cheng W, Ren J, Wan T, Liu X. Transmission mechanism of antibiotic resistance genes and their differences between water and sediment in the Weihe River Basin. ENVIRONMENTAL RESEARCH 2024; 252:119057. [PMID: 38705450 DOI: 10.1016/j.envres.2024.119057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging microbial pollutants that are regulated by many factors and pose potential threats to aquatic environments. In this study, we used network analysis, correlation analysis, and constructed models based on metagenomic sequencing results to explore the spatial patterns, impact mechanisms, transmission risks and differences in ARGs in the water and sediment of the Weihe River Basin. The findings revealed notable disparities in ARGs, mobile genetic elements (MGEs), and bacterial communities. In the sediment, the abundance of ARGs was considerably greater than that in water. Moreover, the percentage of ARGs shared by the two components reached a value of 85.8%. Through network analysis, it was determined that the presence of 16 MGEs and 20 bacterial phyla was strongly associated with ARGs (R2 > 0.7, P < 0.05). The Mantel test showed that abiotic factors including DO, pH, nutrients, and heavy metals played important roles in the distribution of ARGs (P < 0.05). A structural equation model revealed that the key factors influencing the distribution of ARGs in water were bacterial diversity and environmental parameters (standardized effects of -0.730 and -0.667), and those in sediment were bacterial diversity and MGEs (standardized effects of -0.751 and 0.851). Neutral modeling indicated that deterministic processes played an important role in the assembly of ARGs in the water of the Weihe River Basin, and stochastic processes were dominant in the sediment. There was a highly significant positive linear correlation between ARGs and pathogens, and there was more complex co-occurrence in the water than in the sediment (R2 > 0.9, P < 0.05), with stronger migration and transmission occurring. Exploring ARGs in large-scale watersheds is immensely important for elucidating their traits and transmission mechanisms and consequently paving the way for the formulation of efficient strategies to mitigate resistance threats.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Xiaoping Zhou
- Power China Northwest Engineering Corporation Limited, Xi'an, Shaanxi, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Xiaoyan Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
27
|
Zhang X, Ma Z, Hao P, Ji S, Gao Y. Characteristics and health impacts of bioaerosols in animal barns: A comprehensive study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116381. [PMID: 38676963 DOI: 10.1016/j.ecoenv.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Bioaerosols produced during animal production have potential adverse effects on the health of workers and animals. Our objective was to investigate characteristics, antibiotic-resistance genes (ARGs), and health risks of bioaerosols in various animal barns. Poultry and swine barns had high concentrations of airborne bacteria (11156 and 10917 CFU/m3, respectively). Acinetobacter, Clostridium sensu stricto, Corynebacterium, Pseudomonas, Psychrobacter, Streptococcus, and Staphylococcus were dominant pathogenic bacteria in animal barns, with Firmicutes being the most abundant bacterial phylum. Based on linear discriminant analysis effect size (LEfSe), there were more discriminative biomarkers in cattle barns than in poultry or swine barns, although the latter had the highest abundance of bacterial pathogens and high abundances of ARGs (including tetM, tetO, tetQ, tetW sul1, sul2, ermA, ermB) and intI1). Based on network analyses, there were higher co-occurrence patterns between bacteria and ARGs in bioaerosol from swine barns. Furthermore, in these barns, relative abundance of bacteria in bioaerosol samples was greatly affected by environmental factors, mainly temperature, relative humidity, and concentrations of CO2, NH3, and PM2.5. This study provided novel data regarding airborne bio-contaminants in animal enclosures and an impetus to improve management to reduce potential health impacts on humans and animals.
Collapse
Affiliation(s)
- Xiqing Zhang
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Zhenhua Ma
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Peng Hao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Shaoze Ji
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China
| | - Yunhang Gao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun 130118, China.
| |
Collapse
|
28
|
Tian L, Fang G, Li G, Li L, Zhang T, Mao Y. Metagenomic approach revealed the mobility and co-occurrence of antibiotic resistomes between non-intensive aquaculture environment and human. MICROBIOME 2024; 12:107. [PMID: 38877573 PMCID: PMC11179227 DOI: 10.1186/s40168-024-01824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Aquaculture is an important food source worldwide. The extensive use of antibiotics in intensive large-scale farms has resulted in resistance development. Non-intensive aquaculture is another aquatic feeding model that is conducive to ecological protection and closely related to the natural environment. However, the transmission of resistomes in non-intensive aquaculture has not been well characterized. Moreover, the influence of aquaculture resistomes on human health needs to be further understood. Here, metagenomic approach was employed to identify the mobility of aquaculture resistomes and estimate the potential risks to human health. RESULTS The results demonstrated that antibiotic resistance genes (ARGs) were widely present in non-intensive aquaculture systems and the multidrug type was most abundant accounting for 34%. ARGs of non-intensive aquaculture environments were mainly shaped by microbial communities accounting for 51%. Seventy-seven genera and 36 mobile genetic elements (MGEs) were significantly associated with 23 ARG types (p < 0.05) according to network analysis. Six ARGs were defined as core ARGs (top 3% most abundant with occurrence frequency > 80%) which occupied 40% of ARG abundance in fish gut samples. Seventy-one ARG-carrying contigs were identified and 75% of them carried MGEs simultaneously. The qacEdelta1 and sul1 formed a stable combination and were detected simultaneously in aquaculture environments and humans. Additionally, 475 high-quality metagenomic-assembled genomes (MAGs) were recovered and 81 MAGs carried ARGs. The multidrug and bacitracin resistance genes were the most abundant ARG types carried by MAGs. Strikingly, Fusobacterium_A (opportunistic human pathogen) carrying ARGs and MGEs were identified in both the aquaculture system and human guts, which indicated the potential risks of ARG transfer. CONCLUSIONS The mobility and pathogenicity of aquaculture resistomes were explored by a metagenomic approach. Given the observed co-occurrence of resistomes between the aquaculture environment and human, more stringent regulation of resistomes in non-intensive aquaculture systems may be required. Video Abstract.
Collapse
Affiliation(s)
- Li Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Guimei Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Guijie Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Liguan Li
- The University of Hong Kong Shenzhen Institute of Research and Innovation, HKU SIRI, Shenzhen, Guangdong, 518057, China
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong SAR, China
| | - Tong Zhang
- The University of Hong Kong Shenzhen Institute of Research and Innovation, HKU SIRI, Shenzhen, Guangdong, 518057, China
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, The University of Hong Kong, Hong Kong SAR, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China.
| |
Collapse
|
29
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Mercuri C, Bulotta RM, Britti D, Palma E. Antimicrobial Resistance in Livestock: A Serious Threat to Public Health. Antibiotics (Basel) 2024; 13:551. [PMID: 38927217 PMCID: PMC11200672 DOI: 10.3390/antibiotics13060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial resistance represents an alarming public health problem; its importance is related to the significant clinical implications (increased morbidity, mortality, disease duration, development of comorbidities, and epidemics), as well as its economic effects on the healthcare sector. In fact, therapeutic options are severely limited by the advent and spread of germs resistant to many antibiotics. The situation worldwide is worrying, especially in light of the prevalence of Gram-negative bacteria-Klebsiella pneumoniae and Acinetobacter baumannii-which are frequently isolated in hospital environments and, more specifically, in intensive care units. The problem is compounded by the ineffective treatment of infections by patients who often self-prescribe therapy. Resistant bacteria also show resistance to the latest generation antibiotics, such as carbapenems. In fact, superbacteria, grouped under the acronym extended-spectrum betalactamase (ESBL), are becoming common. Antibiotic resistance is also found in the livestock sector, with serious repercussions on animal production. In general, this phenomenon affects all members of the biosphere and can only be addressed by adopting a holistic "One Health" approach. In this literature overview, a stock is taken of what has been learned about antibiotic resistance, and suggestions are proposed to stem its advance.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Caterina Mercuri
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
30
|
Shi B, Jiang L, Ma R, Zhao W, Zheng Y, Pan W, Liu M, Jin S, Zhou Y. Ti 3C 2T x -AuNP based paper substrates for label-free SERS detection of bacteria and multimodal antibacterials. RSC Adv 2024; 14:18739-18749. [PMID: 38867737 PMCID: PMC11167614 DOI: 10.1039/d4ra03723e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Bacterial infections have become a serious global health problem due to the misuse of antibiotics which causes the emergence of antibiotic-resistant strains. Photothermal therapy (PTT) has been widely studied in recent years as a method to combat the development of bacterial resistance. However, PPT may cause damage to the human body due to excessive laser power. Therefore, it is important and urgent to develop a multifunctional platform that can sensitively detect bacteria and effectively inhibit or kill bacteria at low laser power. Herein, a novel multifunctional paper substrate of Ti3C2T x -AuNP was successfully synthesized by a self-assembly and freeze-drying method for bacterial detection and photothermal sterilization at low laser power. The typical Gram-negative Escherichia coli (E. coli) and the Gram-positive Methicillin-resistant Staphylococcus aureus (MRSA) were used as models to perform label-free, rapid and sensitive detection of bacteria based on the surface-enhanced Raman spectroscopy (SERS) method with detection limits as low as 105 CFU mL-1 and 5 × 105 CFU mL-1, respectively, demonstrating the paper substrate's ability to detect bacteria with sensitivity and accuracy. The paper substrate of Ti3C2T x -AuNP exhibits significant antibacterial effects when irradiated with 808 nm light at a low laser power of only 300 mW cm-2 and a short irradiation time of 5 minutes, and the germicidal rates for E. coli and MRSA were 99.94% and 92.71%, respectively. At the same time, the paper substrate of Ti3C2T x -AuNP also produces a variety of reactive oxygen species under 808 nm laser irradiation, resulting in photodynamic therapy (PDT). Accordingly, this paper substrate of Ti3C2T x -AuNP can not only sensitively detect bacteria, but also has photothermal and photodynamic sterilization, providing a promising countermeasure for the clinical treatment of diseases caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Boya Shi
- College of Optical and Electronic Technology, China Jiliang University Hangzhou 310018 P. R. China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University Hangzhou 310018 P. R. China
| | - Ruikai Ma
- College of Optical and Electronic Technology, China Jiliang University Hangzhou 310018 P. R. China
| | - Weidan Zhao
- College of Optical and Electronic Technology, China Jiliang University Hangzhou 310018 P. R. China
| | - Yekai Zheng
- College of Optical and Electronic Technology, China Jiliang University Hangzhou 310018 P. R. China
| | - Wangwei Pan
- College of Optical and Electronic Technology, China Jiliang University Hangzhou 310018 P. R. China
| | - Mi Liu
- College of Optical and Electronic Technology, China Jiliang University Hangzhou 310018 P. R. China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University Hangzhou 310018 P. R. China
| | - Yan Zhou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| |
Collapse
|
31
|
Thibodeau AJ, Barret M, Mouchet F, Nguyen VX, Pinelli E. The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123894. [PMID: 38599270 DOI: 10.1016/j.envpol.2024.123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.
Collapse
Affiliation(s)
- Alexandre J Thibodeau
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France.
| | - Maialen Barret
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Florence Mouchet
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Van Xuan Nguyen
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Eric Pinelli
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| |
Collapse
|
32
|
Dulyayangkul P, Beavis T, Lee WWY, Ardagh R, Edwards F, Hamilton F, Head I, Heesom KJ, Mounsey O, Murarik M, Pinweha P, Reding C, Satapoomin N, Shaw JM, Takebayashi Y, Tooke CL, Spencer J, Williams PB, Avison MB. Harvesting and amplifying gene cassettes confers cross-resistance to critically important antibiotics. PLoS Pathog 2024; 20:e1012235. [PMID: 38843111 PMCID: PMC11156391 DOI: 10.1371/journal.ppat.1012235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Amikacin and piperacillin/tazobactam are frequent antibiotic choices to treat bloodstream infection, which is commonly fatal and most often caused by bacteria from the family Enterobacterales. Here we show that two gene cassettes located side-by-side in and ancestral integron similar to In37 have been "harvested" by insertion sequence IS26 as a transposon that is widely disseminated among the Enterobacterales. This transposon encodes the enzymes AAC(6')-Ib-cr and OXA-1, reported, respectively, as amikacin and piperacillin/tazobactam resistance mechanisms. However, by studying bloodstream infection isolates from 769 patients from three hospitals serving a population of 1.2 million people in South West England, we show that increased enzyme production due to mutation in an IS26/In37-derived hybrid promoter or, more commonly, increased transposon copy number is required to simultaneously remove these two key therapeutic options; in many cases leaving only the last-resort antibiotic, meropenem. These findings may help improve the accuracy of predicting piperacillin/tazobactam treatment failure, allowing stratification of patients to receive meropenem or piperacillin/tazobactam, which may improve outcome and slow the emergence of meropenem resistance.
Collapse
Affiliation(s)
- Punyawee Dulyayangkul
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Thomas Beavis
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Winnie W. Y. Lee
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robbie Ardagh
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Frances Edwards
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- North Bristol NHS Trust, Bristol, United Kingdom
| | | | - Ian Head
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Somerset NHS Foundation Trust, Taunton, United Kingdom
| | - Kate J. Heesom
- Bristol University Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Oliver Mounsey
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Marek Murarik
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Peechanika Pinweha
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Carlos Reding
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Naphat Satapoomin
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - John M. Shaw
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Catherine L. Tooke
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - James Spencer
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Philip B. Williams
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Matthew B. Avison
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
33
|
Xiu Y, Dai Y, Yin S, Wei Q. Analysis of the Class 1 Integrons, Carbapenemase Genes and Biofilm Formation Genes Occurrence in Acinetobacter baumannii Clinical Isolates. Pol J Microbiol 2024; 73:189-197. [PMID: 38808771 PMCID: PMC11192457 DOI: 10.33073/pjm-2024-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Acinetobacter baumannii is a non-fermentative Gram-negative bacterium that can cause nosocomial infections in critically ill patients. Carbapenem-resistant A. baumannii (CRAB) has spread rapidly in clinical settings and has become a key concern. The main objective of this study was to identify the distribution of integrons and biofilm-formation-related virulence genes in CRAB isolates. A total of 269 A. baumannii isolates (219 isolates of CRAB and 50 isolates of carbapenem-sensitive A. baumannii (CSAB)) were collected. Carbapenemase genes (bla KPC, bla VIM, bla IMP, bla NDM, and bla OXA-23-like) and biofilm-formation-related virulence genes (abal, bfms, bap, and cusE) were screened with PCR. Class 1 integron was screened with PCR, and common promoters and gene cassette arrays were determined with restriction pattern analysis combined with primer walking sequencing. Whole-genome sequencing was conducted, and data were analyzed for a bla OXA-23-like-negative isolate. All 219 CRAB isolates were negative for bla KPC, bla VIM, bla IMP, and bla NDM, while bla OXA-23-like was detected in 218 isolates. The detection rates for abal, bfms, bap, and cusE in 219 CRAB were 93.15%, 63.93%, 88.13%, and 77.63%, respectively. Class 1 integron was detected in 75 CRAB (34.25%) and in 3 CSAB. The single gene cassette array aacA4-catB8-aadA1 with relatively strong PcH2 promoter was detected in class 1 integrons. The bla OXA-23-like-negative CRAB isolate was revealed to be a new sequence type (Oxford 3272, Pasteur 2520) carrying bla OXA-72, bla OXA-259, and bla ADC-26. In conclusion, bla OXA-23-like was the main reason for CRAB's resistance to carbapenems. A new (Oxford 3272, Pasteur 2520) CRAB sequence type carrying the bla OXA-72, bla OXA-259, and bla ADC-26 was reported.
Collapse
Affiliation(s)
- Yu Xiu
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Yueru Dai
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Shasha Yin
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| |
Collapse
|
34
|
Visca A, Di Gregorio L, Clagnan E, Bevivino A. Sustainable strategies: Nature-based solutions to tackle antibiotic resistance gene proliferation and improve agricultural productivity and soil quality. ENVIRONMENTAL RESEARCH 2024; 248:118395. [PMID: 38307185 DOI: 10.1016/j.envres.2024.118395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity.
Collapse
Affiliation(s)
- Andrea Visca
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy.
| | - Luciana Di Gregorio
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Elisa Clagnan
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| |
Collapse
|
35
|
Ghaly TM, Gillings MR, Rajabal V, Paulsen IT, Tetu SG. Horizontal gene transfer in plant microbiomes: integrons as hotspots for cross-species gene exchange. Front Microbiol 2024; 15:1338026. [PMID: 38741746 PMCID: PMC11089894 DOI: 10.3389/fmicb.2024.1338026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| |
Collapse
|
36
|
Nery Garcia BL, Dantas STA, da Silva Barbosa K, Mendes Mitsunaga T, Butters A, Camargo CH, Nobrega DB. Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Other Antimicrobial-Resistant Gram-Negative Pathogens Isolated from Bovine Mastitis: A One Health Perspective. Antibiotics (Basel) 2024; 13:391. [PMID: 38786120 PMCID: PMC11117280 DOI: 10.3390/antibiotics13050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an imminent threat to global public health, driven in part by the widespread use of antimicrobials in both humans and animals. Within the dairy cattle industry, Gram-negative coliforms such as Escherichia coli and Klebsiella pneumoniae stand out as major causative agents of clinical mastitis. These same bacterial species are frequently associated with severe infections in humans, including bloodstream and urinary tract infections, and contribute significantly to the alarming surge in antimicrobial-resistant bacterial infections worldwide. Additionally, mastitis-causing coliforms often carry AMR genes akin to those found in hospital-acquired strains, notably the extended-spectrum beta-lactamase genes. This raises concerns regarding the potential transmission of resistant bacteria and AMR from mastitis cases in dairy cattle to humans. In this narrative review, we explore the distinctive characteristics of antimicrobial-resistant E. coli and Klebsiella spp. strains implicated in clinical mastitis and human infections. We focus on the molecular mechanisms underlying AMR in these bacterial populations and critically evaluate the potential for interspecies transmission. Despite some degree of similarity observed in sequence types and mobile genetic elements between strains found in humans and cows, the existing literature does not provide conclusive evidence to assert that coliforms responsible for mastitis in cows pose a direct threat to human health. Finally, we also scrutinize the existing literature, identifying gaps and limitations, and propose avenues for future research to address these pressing challenges comprehensively.
Collapse
Affiliation(s)
- Breno Luis Nery Garcia
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Stéfani Thais Alves Dantas
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Kristian da Silva Barbosa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Thatiane Mendes Mitsunaga
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (B.L.N.G.); (S.T.A.D.); (K.d.S.B.); (T.M.M.)
| | - Alyssa Butters
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | | | - Diego Borin Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
37
|
Zhu Y, Wang T, Zhu W, Wei Q. Molecular Characterization of Class 1 Integrons and Carbapenem-Resistant Genes in Enterobacter cloacae Complex Isolates. Curr Microbiol 2024; 81:158. [PMID: 38658428 DOI: 10.1007/s00284-024-03679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Enterobacter cloacae complex (ECC) widely exists in the hospital environment and is one of the important conditional pathogens of hospital-acquired infection. To investigate the distribution of integrons and carbapenem-resistant genes in clinical ECC, 70 isolates of ECC from non-sputum specimens were collected. Class 1 and class 2 integron integrase gene intI1 and intI2, as well as common carbapenem-resistant genes, blaKPC, blaVIM, blaIMP, blaNDM, blaGES, and blaOXA-23, were screened. Gene cassette arrays and common promoters of class 1 integron together with subtypes of carbapenem-resistant genes were determined by sequencing. Resistant rates to commonly used antimicrobial agents between class 1 integron-positive and integron-negative ECC isolates were analyzed. The whole-genome of blaNDM-7 harboring Enterobacter hormaechei was sequenced and the sequence around blaNDM-7 was analyzed. Twenty isolates were positive for intI1. Nineteen different antimicrobial-resistant gene cassettes and 11 different gene cassette arrays, including aadA22-lnuF, were detected in this study. Common promoters of class 1 integron PcH1, PcW, PcW-P2, and PcH2 were detected in 12, 4, 3, and 1 isolates, respectively. The rates of antimicrobial resistance of intI1-positive isolates were higher than those of intI1-negative isolates to clinical commonly used antimicrobial agents. Carbapenem-resistant genes blaKPC-2, blaNDM-1, blaNDM-2, and blaNDM-7 were detected in 2, 1, 1, and 1 isolates, respectively. blaNDM-7 was located between bleMBL and IS5. To the best of our knowledge, this study reported for the first time of blaNDM-7 in ECC isolate in China.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Laboratory Medicine, Yancheng Second People's Hospital, Jiangsu, 224000, China
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Tong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Wenwen Zhu
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
38
|
Takei K, Ogawa M, Sakata R, Kanamori H. Molecular Epidemiology of Carbapenem-Resistant Klebsiella aerogenes in Japan. Int J Mol Sci 2024; 25:4494. [PMID: 38674079 PMCID: PMC11049973 DOI: 10.3390/ijms25084494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Information regarding Klebsiella aerogenes haboring carbapenemase in Japan is limited. A comprehensive nationwide survey was conducted from September 2014 to December 2022, and 67 non-duplicate strains of carbapenem-resistant K. aerogenes were isolated from 57 healthcare facilities in Japan. Through genetic testing and whole-genome sequencing, six strains were found to possess carbapenemases, including imipenemase (IMP)-1, IMP-6, New Delhi metallo-β-lactamase (NDM)-1, and NDM-5. The strain harboring blaNDM-5 was the novel strain ST709, which belongs to the clonal complex of the predominant ST4 in China. The novel integron containing blaIMP-1 featured the oxacillinase-101 gene, which is a previously unreported structure, with an IncN4 plasmid type. However, integrons found in the strains possessing blaIMP-6, which were the most commonly identified, matched those reported domestically in Klebsiella pneumoniae, suggesting the prevalence of identical integrons. Transposons containing blaNDM are similar or identical to the transposon structure of K. aerogenes harboring blaNDM-5 previously reported in Japan, suggesting that the same type of transposon could have been transmitted to K. aerogenes in Japan. This investigation analyzed mobile genetic elements, such as integrons and transposons, to understand the spread of carbapenemases, highlighting the growing challenge of carbapenem-resistant Enterobacterales in Japan and underscoring the critical need for ongoing surveillance to control these pathogens.
Collapse
Affiliation(s)
- Kentarou Takei
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Miho Ogawa
- Department of Bacteriology, BML Inc., Kawagoe 350-1101, Japan
| | - Ryuji Sakata
- Department of Bacteriology, BML Inc., Kawagoe 350-1101, Japan
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| |
Collapse
|
39
|
Araújo D, Silva AR, Fernandes R, Serra P, Barros MM, Campos AM, Oliveira R, Silva S, Almeida C, Castro J. Emerging Approaches for Mitigating Biofilm-Formation-Associated Infections in Farm, Wild, and Companion Animals. Pathogens 2024; 13:320. [PMID: 38668275 PMCID: PMC11054384 DOI: 10.3390/pathogens13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
The importance of addressing the problem of biofilms in farm, wild, and companion animals lies in their pervasive impact on animal health and welfare. Biofilms, as resilient communities of microorganisms, pose a persistent challenge in causing infections and complicating treatment strategies. Recognizing and understanding the importance of mitigating biofilm formation is critical to ensuring the welfare of animals in a variety of settings, from farms to the wild and companion animals. Effectively addressing this issue not only improves the overall health of individual animals, but also contributes to the broader goals of sustainable agriculture, wildlife conservation, and responsible pet ownership. This review examines the current understanding of biofilm formation in animal diseases and elucidates the complex processes involved. Recognizing the limitations of traditional antibiotic treatments, mechanisms of resistance associated with biofilms are explored. The focus is on alternative therapeutic strategies to control biofilm, with illuminating case studies providing valuable context and practical insights. In conclusion, the review highlights the importance of exploring emerging approaches to mitigate biofilm formation in animals. It consolidates existing knowledge, highlights gaps in understanding, and encourages further research to address this critical facet of animal health. The comprehensive perspective provided by this review serves as a foundation for future investigations and interventions to improve the management of biofilm-associated infections in diverse animal populations.
Collapse
Affiliation(s)
- Daniela Araújo
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Rita Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Rúben Fernandes
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Patrícia Serra
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Maria Margarida Barros
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Maria Campos
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Ricardo Oliveira
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sónia Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Almeida
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Castro
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
40
|
Blanco P, Hipólito A, García-Pastor L, Trigo da Roza F, Toribio-Celestino L, Ortega A, Vergara E, San Millán Á, Escudero J. Identification of promoter activity in gene-less cassettes from Vibrionaceae superintegrons. Nucleic Acids Res 2024; 52:2961-2976. [PMID: 38214222 PMCID: PMC11014356 DOI: 10.1093/nar/gkad1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Integrons are genetic platforms that acquire new genes encoded in integron cassettes (ICs), building arrays of adaptive functions. ICs generally encode promoterless genes, whose expression relies on the platform-associated Pc promoter, with the cassette array functioning as an operon-like structure regulated by the distance to the Pc. This is relevant in large sedentary chromosomal integrons (SCIs) carrying hundreds of ICs, like those in Vibrio species. We selected 29 gene-less cassettes in four Vibrio SCIs, and explored whether their function could be related to the transcription regulation of adjacent ICs. We show that most gene-less cassettes have promoter activity on the sense strand, enhancing the expression of downstream cassettes. Additionally, we identified the transcription start sites of gene-less ICs through 5'-RACE. Accordingly, we found that most of the superintegron in Vibrio cholerae is not silent. These promoter cassettes can trigger the expression of a silent dfrB9 cassette downstream, increasing trimethoprim resistance >512-fold in V. cholerae and Escherichia coli. Furthermore, one cassette with an antisense promoter can reduce trimethoprim resistance when cloned downstream. Our findings highlight the regulatory role of gene-less cassettes in the expression of adjacent cassettes, emphasizing their significance in SCIs and their clinical importance if captured by mobile integrons.
Collapse
Affiliation(s)
- Paula Blanco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alberto Hipólito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Lucía García-Pastor
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alba Cristina Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ester Vergara
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid 28222, Spain
| | - José Antonio Escudero
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
41
|
Minnick MF. Functional Roles and Genomic Impact of Miniature Inverted-Repeat Transposable Elements (MITEs) in Prokaryotes. Genes (Basel) 2024; 15:328. [PMID: 38540387 PMCID: PMC10969869 DOI: 10.3390/genes15030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Prokaryotic genomes are dynamic tapestries that are strongly influenced by mobile genetic elements (MGEs), including transposons (Tn's), plasmids, and bacteriophages. Of these, miniature inverted-repeat transposable elements (MITEs) are undoubtedly the least studied MGEs in bacteria and archaea. This review explores the diversity and distribution of MITEs in prokaryotes and describes what is known about their functional roles in the host and involvement in genomic plasticity and evolution.
Collapse
Affiliation(s)
- Michael F Minnick
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
42
|
Zhou Z, Tang J, Tang K, An M, Liu Z, Wu Z, Cao X, He C. Selective enrichment of bacteria and antibiotic resistance genes in microplastic biofilms and their potential hazards in coral reef ecosystems. CHEMOSPHERE 2024; 352:141309. [PMID: 38281603 DOI: 10.1016/j.chemosphere.2024.141309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Microplastics become hotspots for bacteria to trigger a series of ecological effects, but few studies have focused on the potential impacts of microplastic biofilms in coral reef ecosystems. Here, we measured the bacterial communities and antibiotic resistance genes (ARGs) in the seawater and microplastic biofilms. Results showed that microbial biofilms were formed on the surface of microplastics. The alpha diversity of the bacterial community in the microplastic biofilms was lower than that in the seawater, and the bacterial communities were distinct between the two. Further analysis revealed that several bacteria in the microplastic biofilms carried ARGs, and the proportion of which was correlated to the concentration of antibiotics in the seawater. Specifically, Vibrio was positively correlated to sul1 in the microplastic biofilms under higher concentrations of sulfonamides. Pathway analysis reflected significant overrepresentation of human disease related pathways in the bacterial community of microplastic biofilms. These results suggest that the microplastic biofilms could selectively enrich bacteria from the reef environments, causing the development of ARGs under antibiotic driving. This may pose a serious threat to coral reef ecosystems and human health. Our study provides new insights into the ecological impacts of microplastic biofilms in coral reef ecosystems.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Kai Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China.
| | - Xiaocong Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Chunlong He
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
43
|
Magalhães EA, de Jesus HE, Pereira PHF, Gomes AS, Santos HFD. Beach sand plastispheres are hotspots for antibiotic resistance genes and potentially pathogenic bacteria even in beaches with good water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123237. [PMID: 38159625 DOI: 10.1016/j.envpol.2023.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Massive amounts of microplastics are transported daily from the oceans and rivers onto beaches. The ocean plastisphere is a hotspot and a vector for antibiotic resistance genes (ARGs) and potentially pathogenic bacteria. However, very little is known about the plastisphere in beach sand. Thus, to describe whether the microplastics from beach sand represent a risk to human health, we evaluated the bacteriome and abundance of ARGs on microplastic and sand sampled at the drift line and supralittoral zones of four beaches of poor and good water quality. The bacteriome was evaluated by sequencing of 16S rRNA gene, and the ARGs and bacterial abundances were evaluated by high-throughput real-time PCR. The results revealed that the microplastic harbored a bacterial community that is more abundant and distinct from that of beach sand, as well as a greater abundance of potential human and marine pathogens, especially the microplastics deposited closer to seawater. Microplastics also harbored a greater number and abundance of ARGs. All antibiotic classes evaluated were found in the microplastic samples, but not in the beach sand ones. Additionally, 16 ARGs were found on the microplastic alone, including genes related to multidrug resistance (blaKPC, blaCTX-M, tetM, mdtE and acrB_1), genes that have the potential to rapidly and horizontally spread (blaKPC, blaCTX-M, and tetM), and the gene that confers resistance to antibiotics that are typically regarded as the ultimate line of defense against severe multi-resistant bacterial infections (blaKPC). Lastly, microplastic harbored a similar bacterial community and ARGs regardless of beach water quality. Our findings suggest that the accumulation of microplastics in beach sand worldwide may constitute a potential threat to human health, even in beaches where the water quality is deemed satisfactory. This phenomenon may facilitate the emergence and dissemination of bacteria that are resistant to multiple drugs.
Collapse
Affiliation(s)
- Emily Amorim Magalhães
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Pedro Henrique Freitas Pereira
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Abílio Soares Gomes
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Henrique Fragoso Dos Santos
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
44
|
Freddi S, Rajabal V, Tetu SG, Gillings MR, Penesyan A. Microbial biofilms on macroalgae harbour diverse integron gene cassettes. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001446. [PMID: 38488860 PMCID: PMC10963911 DOI: 10.1099/mic.0.001446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Integrons are genetic platforms that capture, rearrange and express mobile modules called gene cassettes. The best characterized gene cassettes encode antibiotic resistance, but the function of most integron gene cassettes remains unknown. Functional predictions suggest that many gene cassettes could encode proteins that facilitate interactions with other cells and with the extracellular environment. Because cell interactions are essential for biofilm stability, we sequenced gene cassettes from biofilms growing on the surface of the marine macroalgae Ulva australis and Sargassum linearifolium. Algal samples were obtained from coastal rock platforms around Sydney, Australia, using seawater as a control. We demonstrated that integrons in microbial biofilms did not sample genes randomly from the surrounding seawater, but harboured specific functions that potentially provided an adaptive advantage to both the bacterial cells in biofilm communities and their macroalgal host. Further, integron gene cassettes had a well-defined spatial distribution, suggesting that each bacterial biofilm acquired these genetic elements via sampling from a large but localized pool of gene cassettes. These findings suggest two forms of filtering: a selective acquisition of different integron-containing bacterial species into the distinct biofilms on Ulva and Sargassum surfaces, and a selective retention of unique populations of gene cassettes at each sampling location.
Collapse
Affiliation(s)
- Stefano Freddi
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Michael R. Gillings
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| |
Collapse
|
45
|
Li X, Zhu L, Zhang SY, Li J, Lin D, Wang M. Characterization of microbial contamination in agricultural soil: A public health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169139. [PMID: 38070547 DOI: 10.1016/j.scitotenv.2023.169139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Soil is widely recognized as a reservoir of microbial contaminants including antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs), which are major public health concerns. Although the risks associated with soil safety in different soil habitats have been studied, the results are not comprehensive. In this study, dryland soils used for vegetable, corn, and soybean planting, and submerged soils used for rice planting and crab farming were collected and subjected to metagenomic sequencing to characterize HBPs, ARGs, and virulence factor genes (VFGs). The results showed that submerged soils had a higher abundance of HBP than dryland soils. In addition, the submerged soil microbiome acquired significantly higher levels of high-risk ARGs than the dryland soil microbiome and these ARGs were mainly assigned to bacA, sul1, and aadA genes submerged. Network analysis revealed that 11 HBPs, including Yersinia enterocolitica, Vibrio cholerae, Escherichia coli, and Leptospira interrogans, were high-risk because of their close association with ARGs, VFGs, and mobile genetic elements (MGEs). Procrustes and network analyses showed that HBPs and ARGs were more closely linked in submerged soil. This study confirms that submerged field has higher ecological environment risk and human health risk than dryland soil.
Collapse
Affiliation(s)
- Xiaodi Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lin Zhu
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Si-Yu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jingpeng Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Da Lin
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
46
|
Wang L, Guan Y, Lin X, Wei J, Zhang Q, Zhang L, Tan J, Jiang J, Ling C, Cai L, Li X, Liang X, Wei W, Li RM. Whole-Genome Sequencing of an Escherichia coli ST69 Strain Harboring blaCTX-M-27 on a Hybrid Plasmid. Infect Drug Resist 2024; 17:365-375. [PMID: 38318209 PMCID: PMC10840416 DOI: 10.2147/idr.s427571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Objective Escherichia coli is a common Gram-negative human pathogen. The emergence of E. coli with multiple-antibiotic-resistant phenotypes has become a serious health concern. This study reports the whole-genome sequences of third-generation cephalosporin-resistant (3GC-R) and multidrug-resistant (MDR) E. coli EC6868 and explores the acquired antibiotic-resistance genes (ARGs) as well as their genetic contexts. Methods E. coli EC6868 was isolated from a vaginal secretion sample of a pregnant patient in China. The antimicrobial susceptibility was assessed, and whole-genome sequencing was conducted. The acquired ARGs, insertion sequence (IS) elements, and integrons within the genome of E. coli EC6868 were identified, and the genetic contexts associated with the ARGs were analyzed systematically. Results E. coli EC6868 was determined to belong to ST69 and harbored a 144.9-kb IncF plasmid (pEC6868-1) with three replicons (Col156, IncFIBAP001918, and IncFII). The ESBL gene blaCTX-M-27 was located on the structure "∆ISEcp1-blaCTX-M-27-IS903B", which was widely present in the species of Enterobacteriales. Other ARGs carried by plasmid pEC6868-1 were mainly located on the 18.9-kb IS26-composite transposon (five copies of intact IS26 and one copy of truncated IS26) composing of IS26-mphA-mrx(A)-mphR(A)-IS6100, ∆TnAs3-eamA-tet(A)-tetR(A)-aph(6)-Id-aph(3")-Ib-sul2-IS26, and a class 1 integron, which was widely present on IncF plasmids of E. coli, mainly distributed in ST131, ST38, and ST405. Notably, pEC6868 in our study was the first report on a plasmid harboring the 18.9-kb structure in E. coli ST69 in China. Conclusion The 3GC-R E. coli ST69 strain with an MDR IncF plasmid carrying blaCTX-M-27 and other ARGs, conferring resistance to aminoglycosides, macrolides, sulfonamides, tetracycline, and trimethoprim, was identified in a hospital in China. Mobile genetic elements including ISEcp1, IS903B, IS26, Tn3, IS6100 and class 1 integron were found within the MDR region, which could play important roles in the global dissemination of these resistance genes.
Collapse
Affiliation(s)
- Ling Wang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Yuee Guan
- Department of Cardiology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Xu Lin
- Department of Gastrointestinal Surgery, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Qinghuan Zhang
- Department of Clinical Laboratory, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jing Tan
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jie Jiang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Caiqin Ling
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Lei Cai
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Xiong Liang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Rui-Man Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|
47
|
Nomoto R, Osawa K, Kinoshita S, Kitagawa K, Nakanishi N, Sarassari R, Raharjo D, Fujisawa M, Kuntaman K, Shirakawa T. Metagenome and Resistome Analysis of Beta-Lactam-Resistant Bacteria Isolated from River Waters in Surabaya, Indonesia. Microorganisms 2024; 12:199. [PMID: 38258025 PMCID: PMC10819989 DOI: 10.3390/microorganisms12010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial agents are administered to humans and livestock, and bacterial antimicrobial resistance (AMR) and antimicrobial agents are released into the environment. In this study, to investigate the trend of AMR in humans, livestock, and the environment, we performed a metagenomic analysis of multidrug-resistant bacteria with CHROMagar ESBL in environmental river water samples, which were collected using syringe filter units from waters near hospitals, downtown areas, residential areas, and water treatment plants in Surabaya, Indonesia. Our results showed that Acinetobacter, Pseudomonas, Aeromonas, Enterobacter, Escherichia, and Klebsiella grew in CHROMagar ESBL; they were most frequently detected in water samples from rivers surrounding hospitals contaminated with various AMR genes (ARGs) in high levels. These results identified bacteria as ARG reservoirs and revealed that hospitals could be sources for various ARGs disseminated into the environment. In conclusion, this study details a novel metagenomic analysis of collected bacteria in environmental water samples using a syringe filter unit for an AMR epidemiological study based on the One Health approach.
Collapse
Affiliation(s)
- Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe 650-0046, Japan; (R.N.); (N.N.)
| | - Kayo Osawa
- Department of Medical Technology, Kobe Tokiwa University, Kobe 653-0838, Japan
| | - Shohiro Kinoshita
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe 650-0017, Japan; (S.K.); (K.K.); (T.S.)
| | - Koichi Kitagawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe 650-0017, Japan; (S.K.); (K.K.); (T.S.)
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe 650-0046, Japan; (R.N.); (N.N.)
| | - Rosantia Sarassari
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia; (R.S.); (K.K.)
| | - Dadik Raharjo
- Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia;
| | - Masato Fujisawa
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Kuntaman Kuntaman
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia; (R.S.); (K.K.)
- Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia;
| | - Toshiro Shirakawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe 650-0017, Japan; (S.K.); (K.K.); (T.S.)
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| |
Collapse
|
48
|
Tang H, Liu Z, Hu B, Zhu L. D-Ring Modifications of Tetracyclines Determine Their Ability to Induce Resistance Genes in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1338-1348. [PMID: 38157442 DOI: 10.1021/acs.est.3c07559] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The widespread utilization of tetracyclines (TCs) in agriculture and medicine has led to the borderless spread of tetracycline resistance in humans, animals, and the environment, posing huge risks to both the ecosystem and human society. Changes in the functional group modifications resulted in a higher bacteriostatic efficacy of the new generation of TCs, but their effect on the emergence and evolution of antibiotic resistance genes (ARGs) is not yet known. To this end, four TCs from three generations were chosen to compare their structural effects on influencing the evolution of ARGs in soil microbial communities. The findings revealed that low-generation TCs, such as tetracycline and oxytetracycline, exhibited a greater propensity to stimulate the production and proliferation of ARGs than did high-generation tigecycline. Molecular docking analysis demonstrated that modifications of the D-ring functional group determined the binding capacity of TCs to the substrate-binding pocket of transcriptional regulators and efflux pumps mainly involved in drug resistance. This can be further evidenced by reverse transcription-quantitative polymerase chain reaction quantification and intracellular antibiotic accumulation assessment. This study sheds light on the mechanism of the structural effect of antibiotic-induced ARG production from the perspective of compound-protein binding, therefore providing theoretical support for controlling the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Huiming Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
49
|
Dželalija M, Fredotović Ž, Udiković-Kolić N, Kalinić H, Jozić S, Šamanić I, Ordulj M, Maravić A. Large-Scale Biogeographical Shifts of Abundance of Antibiotic Resistance Genes and Marine Bacterial Communities as Their Carriers along a Trophic Gradient. Int J Mol Sci 2024; 25:654. [PMID: 38203824 PMCID: PMC10779287 DOI: 10.3390/ijms25010654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The role of marine environments in the global spread of antibiotic resistance still remains poorly understood, leaving gaps in the One Health-based research framework. Antibiotic resistance genes (ARGs) encoding resistance to five major antibiotic classes, including sulfonamides (sul1, sul2), tetracyclines (tetA, tetB), β-lactams (blaCTX-M, blaTEMblaVIM), macrolides (ermB, mphA), aminoglycosides (aac3-2), and integrase gene (intl1) were quantified by RT-qPCR, and their distribution was investigated in relation to environmental parameters and the total bacterial community in bottom layer and surface waters of the central Adriatic (Mediterranean), over a 68 km line from the wastewater-impacted estuary to coastal and pristine open sea. Seasonal changes (higher in winter) were observed for antibiotic resistance frequency and the relative abundances of ARGs, which were generally higher in eutrophic coastal areas. In particular, intl1, followed by blaTEM and blaVIM, were strongly associated with anthropogenic influence and Gammaproteobacteria as their predominant carriers. Water column stratification and geographic location had a significant influence on ARGs distribution in the oligotrophic zone, where the bacterial community exhibited a seasonal shift from Gammaproteobacteria in winter to Marine group II in summer.
Collapse
Affiliation(s)
- Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia; (M.D.); (Ž.F.); (I.Š.)
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia; (M.D.); (Ž.F.); (I.Š.)
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, 10002 Zagreb, Croatia;
| | - Hrvoje Kalinić
- Department of Informatics, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Slaven Jozić
- Institute of Oceanography and Fisheries, 21000 Split, Croatia;
| | - Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia; (M.D.); (Ž.F.); (I.Š.)
| | - Marin Ordulj
- University Department of Marine Studies, University of Split, 21000 Split, Croatia;
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia; (M.D.); (Ž.F.); (I.Š.)
| |
Collapse
|
50
|
Qi Q, Ghaly TM, Rajabal V, Gillings MR, Tetu SG. Dissecting molecular evolution of class 1 integron gene cassettes and identifying their bacterial hosts in suburban creeks via epicPCR. J Antimicrob Chemother 2024; 79:100-111. [PMID: 37962091 DOI: 10.1093/jac/dkad353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVES Our study aimed to sequence class 1 integrons in uncultured environmental bacterial cells in freshwater from suburban creeks and uncover the taxonomy of their bacterial hosts. We also aimed to characterize integron gene cassettes with altered DNA sequences relative to those from databases or literature and identify key signatures of their molecular evolution. METHODS We applied a single-cell fusion PCR-based technique-emulsion, paired isolation and concatenation PCR (epicPCR)-to link class 1 integron gene cassette arrays to the phylogenetic markers of their bacterial hosts. The levels of streptomycin resistance conferred by the WT and altered aadA5 and aadA11 gene cassettes that encode aminoglycoside (3″) adenylyltransferases were experimentally quantified in an Escherichia coli host. RESULTS Class 1 integron gene cassette arrays were detected in Alphaproteobacteria and Gammaproteobacteria hosts. A subset of three gene cassettes displayed signatures of molecular evolution, namely the gain of a regulatory 5'-untranslated region (5'-UTR), the loss of attC recombination sites between adjacent gene cassettes, and the invasion of a 5'-UTR by an IS element. Notably, our experimental testing of a novel variant of the aadA11 gene cassette demonstrated that gaining the observed 5'-UTR contributed to a 3-fold increase in the MIC of streptomycin relative to the ancestral reference gene cassette in E. coli. CONCLUSIONS Dissecting the observed signatures of molecular evolution of class 1 integrons allowed us to explain their effects on antibiotic resistance phenotypes, while identifying their bacterial hosts enabled us to make better inferences on the likely origins of novel gene cassettes and IS that invade known gene cassettes.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Timothy M Ghaly
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Vaheesan Rajabal
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Michael R Gillings
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| | - Sasha G Tetu
- School of Natural Sciences, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence for Synthetic Biology, 14 Eastern Road, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|