1
|
Jaworski D, Hundsdorfer L, Bastounis E, Constantinou I. StretchView - A Multi-Axial Cell-Stretching Device for Long-Term Automated Videomicroscopy of Living Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408853. [PMID: 39792792 PMCID: PMC11884571 DOI: 10.1002/advs.202408853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Indexed: 01/12/2025]
Abstract
Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging. Using StretchView, long-term image acquisition of cells in the relaxed and stretched states is shown for the first time (experimental time of 12 h) without the need for human intervention. Homogeneous and stable strain fields are demonstrated for 18 h of cyclic stretching, highlighting the platform's versatility and robustness. As proof-of-principle, the effect of stretching on cell kinematics and spatiotemporal localization of the cell-cell adhesion protein E-cadherin is examined for MDCK cells in monolayer. First evidence of a monotonic increase in junctional E-cadherin localization upon exposure to stretch is presented using live-cell imaging data acquired during cyclic stretching, suggestive of an increase in barrier integrity of the monolayer. These findings highlight the potential of StretchView in providing insights into cell mechanobiology and beyond.
Collapse
Affiliation(s)
- David Jaworski
- Institute of Microtechnology (IMT)Technische Universität BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| | - Lara Hundsdorfer
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenAuf der Morgenstelle 2872076TübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), EXC 2124University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Effie Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT)University of TübingenAuf der Morgenstelle 2872076TübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), EXC 2124University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Iordania Constantinou
- Institute of Microtechnology (IMT)Technische Universität BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| |
Collapse
|
2
|
Aparicio-Yuste R, Hundsdorfer L, Bastounis EE, Gomez-Benito MJ. Hybrid model to simulate host cell biomechanics and infection spread during intracellular infection of epithelial monolayers. Comput Biol Med 2025; 185:109506. [PMID: 39662314 DOI: 10.1016/j.compbiomed.2024.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Mechanical signals are crucial in regulating the response of cells in a monolayer to both physiological and pathological stressors, including intracellular bacterial infections. In particular, during intracellular infection of epithelial cells in monolayer with the food-borne bacterial pathogen Listeria monocytogenes, cellular biomechanics dictates the degree of bacterial dissemination across the monolayer. This occurs through a process whereby surrounder uninfected cells mechanically compete and eventually extrude infected cells. However, the plethora of physical mechanisms involved and their temporal dynamics are still not fully uncovered, which could inform whether they benefit or harm the host. To further investigate these mechanisms, we propose a two-dimensional hybrid computational model that combines an agent-based model with a finite element method to simulate the kinematics and dynamics of epithelial cell monolayers in the absence or presence of infection. The model accurately replicated the impact of cell density on the mechanical behaviour of uninfected monolayers, showing that increased cell density reduces cell motility and coordination of motion, cell fluidity and monolayer stresses. Moreover, when simulating the intercellular spread of infection, the model successfully reproduced the mechanical competition between uninfected and infected cells. Infected cells showed a reduction in cell area, while the surrounder cells migrated towards the infection site, exerting increased monolayer stresses, consistent with our in vitro observations. This model offers a powerful tool for studying epithelial monolayers in health and disease, by providing in silico predictions of cell shapes, kinematics and dynamics that can then be tested experimentally.
Collapse
Affiliation(s)
- Raul Aparicio-Yuste
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain; Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Lara Hundsdorfer
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany.
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain.
| |
Collapse
|
3
|
Hundsdorfer L, Muenkel M, Aparicio-Yuste R, Sanchez-Rendon JC, Gomez-Benito MJ, Balmes A, Schäffer TE, Velic A, Yeh YT, Constantinou I, Wright K, Özbaykal Güler G, Brokatzky D, Maček B, Mostowy S, Bastounis EE. ERK activation waves coordinate mechanical cell competition leading to collective elimination via extrusion of bacterially infected cells. Cell Rep 2025; 44:115193. [PMID: 39817903 DOI: 10.1016/j.celrep.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Epithelial cells respond to infection with the intracellular bacterial pathogen Listeria monocytogenes by altering their mechanics to promote collective infected cell extrusion (CICE) and limit infection spread across cell monolayers. However, the underlying biochemical pathways remain elusive. Here, using in vitro (epithelial monolayers) and in vivo (zebrafish larvae) models of infection with L. monocytogenes or Shigella flexneri, we explored the role of extracellular-signal-regulated kinase (ERK) activity waves in coordinating the mechanical battle between infected and surrounder uninfected cells that leads to CICE. We discovered that when ERK waves are suppressed, cells fail to exhibit alterations in cell shape and kinematics associated with CICE and behave more like quiescent uninfected monolayers. In particular, uninfected cells surrounding infection foci are unable to polarize, reinforce their monolayer stresses, and promote CICE. Our findings reveal that crosstalk between ERK waves and cell mechanics is key to collective elimination of large domains of infected cells.
Collapse
Affiliation(s)
- Lara Hundsdorfer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Marie Muenkel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Raul Aparicio-Yuste
- Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Julio Cesar Sanchez-Rendon
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Maria Jose Gomez-Benito
- Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Ana Velic
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Yi-Ting Yeh
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Iordania Constantinou
- Institute of Microtechnology, Technische Universität Brauschweig, 38106 Braunschweig, Lower Saxony, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Lower Saxony, Germany
| | - Kathryn Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Gizem Özbaykal Güler
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Boris Maček
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany.
| |
Collapse
|
4
|
Keshavanarayana P, Aparicio-Yuste R, Spill F, Gomez-Benito MJ, Bastounis EE. Leveraging computational modeling to explore epithelial and endothelial cell monolayer mechanobiology. Trends Cell Biol 2025:S0962-8924(24)00282-4. [PMID: 39837738 DOI: 10.1016/j.tcb.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025]
Abstract
Endothelial cells (ENCs) and epithelial cells (EPCs) form monolayers whose barrier function is critical for the maintenance of physiological processes and extremely sensitive to mechanical cues. Computational models have emerged as powerful tools to elucidate how mechanical cues impact the behavior of these monolayers in health and disease. Herein, the importance of mechanics in regulating ENC and EPC monolayer behavior is established, highlighting similarities and differences in various biological contexts. Concurrently, computational approaches and their importance in accelerating mechanobiology studies are discussed, emphasizing their limitations and suggesting future directions. The aim is to inspire further synergies between cell biologists and modelers, which are crucial for accelerating cell mechanobiology research.
Collapse
Affiliation(s)
- Pradeep Keshavanarayana
- School of Mathematics, University of Birmingham, Birmingham, UK; Centre for Computational Medicine, University College London, London, UK
| | - Raul Aparicio-Yuste
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, UK.
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain.
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Abstract
Our understanding of free-living bacterial models like Escherichia coli far outpaces that of obligate intracellular bacteria, which cannot be cultured axenically. All obligate intracellular bacteria are host-associated, and many cause serious human diseases. Their constant exposure to the distinct biochemical niche of the host has driven the evolution of numerous specialized bacteriological and genetic adaptations, as well as innovative molecular mechanisms of infection. Here, we review the history and use of pathogenic Rickettsia species, which cause an array of vector-borne vascular illnesses, as model systems to probe microbial biology. Although many challenges remain in our studies of these organisms, the rich pathogenic and biological diversity of Rickettsia spp. constitutes a unique backdrop to investigate how microbes survive and thrive in host and vector cells. We take a bacterial-focused perspective and highlight emerging insights that relate to new host-pathogen interactions, bacterial physiology, and evolution. The transformation of Rickettsia spp. from pathogens to models demonstrates how recalcitrant microbes may be leveraged in the lab to tap unmined bacterial diversity for new discoveries. Rickettsia spp. hold great promise as model systems not only to understand other obligate intracellular pathogens but also to discover new biology across and beyond bacteria.
Collapse
Affiliation(s)
- Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Yeh YT, Del Álamo JC, Caffrey CR. Biomechanics of parasite migration within hosts. Trends Parasitol 2024; 40:164-175. [PMID: 38172015 DOI: 10.1016/j.pt.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The dissemination of protozoan and metazoan parasites through host tissues is hindered by cellular barriers, dense extracellular matrices, and fluid forces in the bloodstream. To overcome these diverse biophysical impediments, parasites implement versatile migratory strategies. Parasite-exerted mechanical forces and upregulation of the host's cellular contractile machinery are the motors for these strategies, and these are comparably better characterized for protozoa than for helminths. Using the examples of the protozoans, Toxoplasma gondii and Plasmodium, and the metazoan, Schistosoma mansoni, we highlight how quantitative tools such as traction force and reflection interference contrast microscopies have improved our understanding of how parasites alter host mechanobiology to promote their migration.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| | - Juan C Del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 93093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC0657, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Feng Y, Wang S, Liu X, Han Y, Xu H, Duan X, Xie W, Tian Z, Yuan Z, Wan Z, Xu L, Qin S, He K, Huang J. Geometric constraint-triggered collagen expression mediates bacterial-host adhesion. Nat Commun 2023; 14:8165. [PMID: 38071397 PMCID: PMC10710423 DOI: 10.1038/s41467-023-43827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Cells living in geometrically confined microenvironments are ubiquitous in various physiological processes, e.g., wound closure. However, it remains unclear whether and how spatially geometric constraints on host cells regulate bacteria-host interactions. Here, we reveal that interactions between bacteria and spatially constrained cell monolayers exhibit strong spatial heterogeneity, and that bacteria tend to adhere to these cells near the outer edges of confined monolayers. The bacterial adhesion force near the edges of the micropatterned monolayers is up to 75 nN, which is ~3 times higher than that at the centers, depending on the underlying substrate rigidities. Single-cell RNA sequencing experiments indicate that spatially heterogeneous expression of collagen IV with significant edge effects is responsible for the location-dependent bacterial adhesion. Finally, we show that collagen IV inhibitors can potentially be utilized as adjuvants to reduce bacterial adhesion and thus markedly enhance the efficacy of antibiotics, as demonstrated in animal experiments.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Shuyi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, 102206, Beijing, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Wenyue Xie
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Zhuoling Tian
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Liang Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Siying Qin
- School of Life Sciences, Peking University, 100871, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
8
|
Constantinou I, Bastounis EE. Cell-stretching devices: advances and challenges in biomedical research and live-cell imaging. Trends Biotechnol 2023; 41:939-950. [PMID: 36604290 DOI: 10.1016/j.tibtech.2022.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
Basic human functions such as breathing and digestion require mechanical stretching of cells and tissues. However, when it comes to laboratory experiments, the mechanical stretching that cells experience in the body is not often replicated, limiting the biomimetic nature of the studies and the relevance of results. Herein, we establish the importance of mechanical stretching during in vitro investigations by reviewing seminal works performed using cell-stretching platforms, highlighting important outcomes of these works as well as the engineering characteristics of the platforms used. Emphasis is placed on the compatibility of cell-stretching devices (CSDs) with live-cell imaging as well as their limitations and on the research advancements that could arise from live-cell imaging performed during cell stretching.
Collapse
Affiliation(s)
- Iordania Constantinou
- Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Effie E Bastounis
- Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" EXC 2124, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Muenkel M, Aparicio-Yuste R, Tal MC, Kraiczy P, Bastounis EE. Spatiotemporal characterization of endothelial cell motility and physical forces during exposure to Borrelia burgdorferi. STAR Protoc 2022; 3:101832. [DOI: 10.1016/j.xpro.2022.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Yuste RA, Muenkel M, Axarlis K, Gómez Benito MJ, Reuss A, Blacker G, Tal MC, Kraiczy P, Bastounis EE. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience 2022; 25:104793. [PMID: 35992087 PMCID: PMC9389243 DOI: 10.1016/j.isci.2022.104793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Borrelia burgdorferi (Bb), a vector-borne bacterial pathogen and the causative agent of Lyme disease, can spread to distant tissues in the human host by traveling in and through monolayers of endothelial cells (ECs) lining the vasculature. To examine whether Bb alters the physical forces of ECs to promote its dissemination, we exposed ECs to Bb and observed a sharp and transient increase in EC traction and intercellular forces, followed by a prolonged decrease in EC motility and physical forces. All variables returned to baseline at 24 h after exposure. RNA sequencing analysis revealed an upregulation of innate immune signaling pathways during early but not late Bb exposure. Exposure of ECs to heat-inactivated Bb recapitulated only the early weakening of EC mechanotransduction. The differential responses to live versus heat-inactivated Bb indicate a tight interplay between innate immune signaling and physical forces in host ECs and suggest their active modulation by Bb. Early exposure to Borrelia decreases endothelial cell motility and physical forces Early exposure to Borrelia also upregulates the host’s innate immune signaling pathways Host cell mechanics and signaling return to steady state at late exposure times Exposure to dead bacteria steadily reduces motility and physical forces of host cells
Collapse
|
11
|
Aparicio-Yuste R, Muenkel M, Clark AG, Gómez-Benito MJ, Bastounis EE. A Stiff Extracellular Matrix Favors the Mechanical Cell Competition that Leads to Extrusion of Bacterially-Infected Epithelial Cells. Front Cell Dev Biol 2022; 10:912318. [PMID: 35813215 PMCID: PMC9257086 DOI: 10.3389/fcell.2022.912318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cell competition refers to the mechanism whereby less fit cells (“losers”) are sensed and eliminated by more fit neighboring cells (“winners”) and arises during many processes including intracellular bacterial infection. Extracellular matrix (ECM) stiffness can regulate important cellular functions, such as motility, by modulating the physical forces that cells transduce and could thus modulate the output of cellular competitions. Herein, we employ a computational model to investigate the previously overlooked role of ECM stiffness in modulating the forceful extrusion of infected “loser” cells by uninfected “winner” cells. We find that increasing ECM stiffness promotes the collective squeezing and subsequent extrusion of infected cells due to differential cell displacements and cellular force generation. Moreover, we discover that an increase in the ratio of uninfected to infected cell stiffness as well as a smaller infection focus size, independently promote squeezing of infected cells, and this phenomenon is more prominent on stiffer compared to softer matrices. Our experimental findings validate the computational predictions by demonstrating increased collective cell extrusion on stiff matrices and glass as opposed to softer matrices, which is associated with decreased bacterial spread in the basal cell monolayer in vitro. Collectively, our results suggest that ECM stiffness plays a major role in modulating the competition between infected and uninfected cells, with stiffer matrices promoting this battle through differential modulation of cell mechanics between the two cell populations.
Collapse
Affiliation(s)
- Raúl Aparicio-Yuste
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Instituto de Investigación en Ingeniería de Aragón (I3A), University of Zaragoza, Zaragoza, Spain
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Marie Muenkel
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology/Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - María J. Gómez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Instituto de Investigación en Ingeniería de Aragón (I3A), University of Zaragoza, Zaragoza, Spain
- *Correspondence: María J. Gómez-Benito, ; Effie E. Bastounis,
| | - Effie E. Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
- *Correspondence: María J. Gómez-Benito, ; Effie E. Bastounis,
| |
Collapse
|