1
|
Yang S, Song C. Multiple-Basin Go̅-Martini for Investigating Conformational Transitions and Environmental Interactions of Proteins. J Chem Theory Comput 2025; 21:5304-5321. [PMID: 40359486 PMCID: PMC12120924 DOI: 10.1021/acs.jctc.5c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Proteins are inherently dynamic molecules, and their conformational transitions among various states are essential for numerous biological processes, which are often modulated by their interactions with surrounding environments. Although molecular dynamics (MD) simulations are widely used to investigate these transitions, all-atom (AA) methods are often limited by short time scales and high computational costs, and coarse-grained (CG) implicit-solvent Go̅-like models are usually incapable of studying the interactions between proteins and their environments. Here, we present an approach called Multiple-basin Go̅-Martini, which combines the recent Go̅-Martini model with an exponential mixing scheme to facilitate the simulation of spontaneous protein conformational transitions in explicit environments. We demonstrate the versatility of our method through five diverse case studies: GlnBP, Arc, Hinge, SemiSWEET, and TRAAK, representing ligand-binding proteins, fold-switching proteins, de novo designed proteins, transporters, and mechanosensitive ion channels, respectively. Multiple-basin Go̅-Martini offers a new computational tool for investigating protein conformational transitions, identifying key intermediate states, and elucidating essential interactions between proteins and their environments, particularly protein-membrane interactions. In addition, this approach can efficiently generate thermodynamically meaningful data sets of protein conformational space, which may enhance deep learning-based models for predicting protein conformation distributions.
Collapse
Affiliation(s)
- Song Yang
- Center
for Quantitative Biology, Peking-Tsinghua Center for Life Sciences,
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
- School
of Medicine, Fuzhou University, Fuzhou, Fujian350108, China
| | - Chen Song
- Center
for Quantitative Biology, Peking-Tsinghua Center for Life Sciences,
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| |
Collapse
|
2
|
Avci FG, Prasun T, Wendisch VF. Metabolic engineering for microbial production of sugar acids. BMC Biotechnol 2025; 25:36. [PMID: 40361067 PMCID: PMC12076931 DOI: 10.1186/s12896-025-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Carbohydrates including sugar acids are commonly used as carbon sources in microbial biotechnology. These sugar acids are themselves desirable and often overlooked targets for biobased production since they find applications in a broad range of industries, examples include food, construction, medical, textile, and polymer industries. Different stages of oxidation for natural sugar acids can be distinguished. Oxidation of the aldehyde group yields aldonic acids, oxidation of the primary hydroxy group leads to uronic acids, and both oxidations combined yield aldaric acids. While the chemical oxidation of sugars to their acid forms often is a one-pot reaction under harsh conditions, their biosynthesis is much more delicate. Bio-based production can involve enzymatic conversion, whole-cell biotransformation, and fermentation. Generally, the in vivo approaches are preferred because they are less resource-intensive than enzymatic conversion. Metabolic engineering plays a crucial role in optimizing microbial strains for efficient sugar acid production. Strategies include pathway engineering to overexpress key enzymes involved in sugar oxidation, deletion of competing pathways to enhance the precursor availability and eliminate the product consumption, cofactor balancing for efficient redox reactions, and transporter engineering to facilitate precursor import or sugar acid export. Synthetic biology tools, such as CRISPR-Cas and dynamic regulatory circuits, have further improved strain development by enabling precise genetic modifications and adaptive control of metabolic fluxes. The usage of plant biomass hydrolysates for bio-based production further adds to the environmental friendliness of the in vivo approaches. This review highlights the different approaches for the production of C5 and C6 sugar acids, their applications, and their catabolism in microbes.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Türkiye
| | - Tim Prasun
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
3
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Du Y, Cooper HJ. Native ambient mass spectrometry of membrane proteins directly from bacterial colonies. Chem Commun (Camb) 2025; 61:4168-4171. [PMID: 39963858 PMCID: PMC11833770 DOI: 10.1039/d4cc03881a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Native ambient mass spectrometry (NAMS) enables analysis of protein structure directly from biological substrates by use of liquid junction sampling techniques together with sampling solvents which mimic the proteins' natural environment. Here, we demonstrate detection of membrane and membrane-associated proteins directly from E. coli by combining liquid extraction surface analysis (LESA) with a straightforward washing protocol, which attenuates soluble proteins and enables detection of membrane proteins.
Collapse
Affiliation(s)
- Yuying Du
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Knoke LR, Muskietorz M, Kühn L, Leichert LI. The ABC transporter Opp imports reduced glutathione, while Gsi imports glutathione disulfide in Escherichia coli. Redox Biol 2025; 79:103453. [PMID: 39689618 PMCID: PMC11719327 DOI: 10.1016/j.redox.2024.103453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
Glutathione is the major thiol-based antioxidant in a wide variety of biological systems, ranging from bacteria to eukaryotes. As a redox couple, consisting of reduced glutathione (GSH) and its oxidized form, glutathione disulfide (GSSG), it is crucial for the maintenance of the cellular redox balance. Glutathione transport out of and into cellular compartments and the extracellular space is a determinant of the thiol-disulfide redox state of the organelles and bodily fluids in question, but is currently not well understood. Here we use the genetically-encoded, glutathione-measuring redox probe Grx1-roGFP2 to comprehensively elucidate the import of extracellular glutathione into the cytoplasm of the model organism Escherichia coli. The elimination of only two ATP-Binding Cassette (ABC) transporter systems, Gsi and Opp, completely abrogates glutathione import into E. coli's cytoplasm, both in its reduced and oxidized form. The lack of only one of them, Gsi, completely prevents import of GSSG, while the lack of the other, Opp, substantially retards the uptake of reduced glutathione (GSH).
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Bochum, Germany
| | - Maik Muskietorz
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Bochum, Germany
| | - Lena Kühn
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Bochum, Germany.
| |
Collapse
|
6
|
He W, Liang H, Li W, Gao X, Hu T, Lin X, Wu Z, Sun J, Li X, Wang M, Hou X, Jie Z, Tong X, Jin X, Xiao L, Zou Y. Revealing an unprecedented diversity of episymbiotic Saccharibacteria in a high-quality genome collection. NPJ Biofilms Microbiomes 2024; 10:153. [PMID: 39702451 DOI: 10.1038/s41522-024-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
The episymbiotic Candidatus Saccharibacteria is the most studied lineage of candidate phyla radiation. Living an epiparasitic lifestyle, Saccharibacteria might be associated with human mucosal diseases by modulating the structure of the oral microbiome through interactions with host bacteria. However, the knowledge of Saccharibacterial genomic diversity and the potential underlying their adaptation to a wide range of habitats remains limited. Here, we construct a high-quality genome collection of Saccharibacteria from multiple sources, providing 2041 high-quality genomes and previously unidentified taxa. The comparative genomic analysis shows the widespread metabolic defects of Saccharibacteria. Specific metabolic modules are commonly found in Saccharibacteria of different habitats, suggesting Saccharibacteria might have undergone habitat adaptation during the transition from different environments. We additionally show that Saccharibacteria account for ~1% of the Chinese oral microbiome. A preliminary analysis of rheumatoid arthritis individuals and healthy controls implies that Saccharibacteria might be associated with human systemic disease.
Collapse
Affiliation(s)
- Wenxin He
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | | | - Wenxi Li
- BGI Research, Shenzhen, 518083, China
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China
| | | | | | | | - Zhinan Wu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxi Sun
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Li
- BGI Research, Shenzhen, 518083, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengmeng Wang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxue Hou
- BGI Research, Shenzhen, 518083, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhuye Jie
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China.
| | - Yuanqiang Zou
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
7
|
Miri S, Mottawea W, Leao L, Chiba M, Li Y, Minic Z, Hammami R. Ligilactobacillus-Derived Extracellular Vesicles Inhibit Growth and Virulence of Enteric Pathogens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10423-z. [PMID: 39680344 DOI: 10.1007/s12602-024-10423-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Bacterial intra-kingdom communication involves the secretion of outer membrane vesicles as signaling carriers to the target cells. However, limited research exists on extracellular vesicles (EVs) from Gram-positive gut bacteria, their interactions with enteric pathogens, and potential inhibitory effects. In this study, we characterized the structure, protein content, and inhibitory effects of EVs from three new potential probiotic gut symbionts, Ligilactobacillus salivarius UO.C109, Ligilactobacillus saerimneri UO.C121, and Ligilactobacillus salivarius UO.C249. EVs were isolated and characterized using three different methods (ultracentrifugation, density gradient purification, and size exclusion chromatography). The purity, dose-dependency, structure, and proteome profiles of the purified EVs were evaluated. Antibacterial and anti-virulence activities of EV subpopulations were assessed against Salmonella enterica serovar Typhimurium and Campylobacter jejuni. EVs from Lg. salivarius UO.C109 and Lg. saerimneri UO.C121 showed inhibitory activity against S. Typhimurium, whereas EVs from Lg. salivarius UO.C249 inhibited the growth of C. jejuni. Notably, purified F3 fraction exhibited the highest inhibitory activity and was enriched in lysin motif (LysM)-containing proteins, peptidoglycan hydrolases, peptidoglycan recognition proteins (PGRPs), and metallopeptidases, which have been shown to play a prominent role in antimicrobial activities against pathogens. F3 had the highest concentration (73.8%) in the 80-90 nm size compared to the other fractions. Gene expression analysis revealed that EVs from Lg. salivarius UO.C109 and Lg. saerimneri UO.C121 downregulated adhesion and invasion factors in S. Typhimurium. Likewise, EVs from Lg. salivarius UO.C249 reduced pathogenicity gene expression in C. jejuni. This study highlighted the potential of gut bacterial EVs as therapeutic agents against enteric pathogens.
Collapse
Affiliation(s)
- Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Farhana A, Alsrhani A, Ejaz H, Alruwaili M, Alameen AAM, Manni E, Rasheed Z, Khan YS. Substrate-Induced Structural Dynamics and Evolutionary Linkage of Siderophore-Iron ABC Transporters of Mycobacterium tuberculosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1891. [PMID: 39597076 PMCID: PMC11596928 DOI: 10.3390/medicina60111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Background and Objective: ATP-binding cassette (ABC) transporters are prominent drug targets due to their highly efficient trafficking capabilities and their significant physiological and clinical roles. Gaining insight into their biophysical and biomechanistic properties is crucial to maximize their pharmacological potential. Materials and Methods: In this study, we present the biochemical and biophysical characterization, and phylogenetic analysis of the domains of Mycobacterium tuberculosis (M. tuberculosis) ABC transporters: the exporter Rv1348 (IrtA) and the importer system Rv1349-Rv2895c (IrtB-Rv2895c), both involved in siderophore-mediated iron uptake. Results: Our findings reveal that the substrate-binding domain (SBD) of IrtA functions as an active monomer, while Rv2895c, which facilitates the uptake of siderophore-bound iron, exists in a dynamic equilibrium between dimeric and monomeric forms. Furthermore, ATP binding induces the dimerization of the ATPase domains in both IrtA (ATPase I) and IrtB (ATPaseII), but only the ATPase domain of IrtA (ATPase I) is active independently. We also analyzed the stability of substrate binding to the domains of the two transporters across varying temperature and pH ranges, revealing significant shifts in their activity under different conditions. Our study highlights the conformational changes that accompany substrate interaction with the transporter domains, providing insights into the fundamental mechanism required for the translocation of siderophore to the extracytoplasmic milieu by IrtB and, subsequently, import of their ferrated forms by the IrtB-Rv2895c complex. Phylogenetic analyses based on ATPase domains reveal that IrtA shares features with both archaeal and eukaryotic transporters, while IrtB is unique to mycobacterial species. Conclusions: Together, these findings provide valuable insights, which could accelerate the development of intervention strategies for this critical pathway pivotal in the progression of M. tuberculosis infection.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Ayman A. M. Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia; (A.A.); (H.E.); (M.A.); (A.A.M.A.); (E.M.)
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Qassim, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, University of Hail, Hail 55476, Hail, Saudi Arabia
| |
Collapse
|
9
|
Alothaim AS, Alhoqail WA, Menakha M, Vijayakumar R. Combining molecular modelling and experimental approaches to gain mechanistic insights into the LuxP drug target in Streptococcus pyogens. J Biomol Struct Dyn 2024; 42:9494-9504. [PMID: 37642991 DOI: 10.1080/07391102.2023.2252079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Autoinducer-2 can mediate inter- and intra-species communication signal between bacteria and these signals from AI-2 is noted from limited species of bacteria. In humans, S. pyogenes is a pathogen that causes a wide range of illnesses and can survive in the host system and transmit infection. The process by which S. pyogenes acquires the competence to live and disseminate infection remains unknown. We hypothesized that AI-2 and their receptors would play a significant role during infection, and for that present investigation provides the experimental and molecular insights. In the absence of details about the receptor LuxP and LuxQ, the screening approach provides supporting insights. The evolutionary relationship and similarities of the PBP domain (Spy 1535) and the signal transmission PDZ domain (Spy 1536) were studied in relation to their counterparts in other bacteria. Molecular docking and modeling confirmed the domain-enhanced specificity for AI-2 binding. In vitro studies showed that AI-2, which is present in the cell-free supernatant of S. pyogenes, regulates luminescence in P. luminous and biofilm development in E. coli using the LuxS reporter genes. Examination of S. pyogenes gene expression revealed modulation of virulence genes when the pathogen was exposed to V. harveyi HSL and AI-2. Therefore, S. pyogenes pathogenicity is sequentially regulated by AI-2 it acquires from other commensal bacteria. Overall, this study lays the groundwork for understanding the signalling mechanism from AI-2, which are critical to the pathogenic mechanism of S. pyogenes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdulaziz S Alothaim
- Department of Biology, College of Science, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Wardah A Alhoqail
- Department of Biology, College of Education, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Muniraj Menakha
- Department of Bio-informatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science, Majmaah University, Al-Majmaah, Saudi Arabia
| |
Collapse
|
10
|
Ponamareva I, Andreeva A, Bileschi ML, Colwell L, Bateman A. Investigation of protein family relationships with deep learning. BIOINFORMATICS ADVANCES 2024; 4:vbae132. [PMID: 39399373 PMCID: PMC11467057 DOI: 10.1093/bioadv/vbae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/01/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Motivation In this article, we propose a method for finding similarities between Pfam families based on the pre-trained neural network ProtENN2. We use the model ProtENN2 per-residue embeddings to produce new high-dimensional per-family embeddings and develop an approach for calculating inter-family similarity scores based on these embeddings, and evaluate its predictions using structure comparison. Results We apply our method to Pfam annotation by refining clan membership for Pfam families, suggesting both new members of existing clans and potential new clans for future Pfam releases. We investigate some of the failure modes of our approach, which suggests directions for future improvements. Our method is relatively simple with few parameters and could be applied to other protein family classification models. Overall, our work suggests potential benefits of employing deep learning for improving our understanding of protein family relationships and functions of previously uncharacterized families. Availability and implementation github.com/iponamareva/ProtCNNSim, 10.5281/zenodo.10091909.
Collapse
Affiliation(s)
- Irina Ponamareva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Antonina Andreeva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | | | - Lucy Colwell
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Google Research, Cambridge, MA 02142, United States
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| |
Collapse
|
11
|
Hernández-Herreros N, Rodríguez A, Galán B, Auxiliadora Prieto M. Boosting hydrogen production in Rhodospirillum rubrum by syngas-driven photoheterotrophic adaptive evolution. BIORESOURCE TECHNOLOGY 2024; 406:130972. [PMID: 38876276 DOI: 10.1016/j.biortech.2024.130972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Rhodospirillum rubrum is a photosynthetic purple non-sulphur bacterium with great potential to be used for complex waste valorisation in biotechnological applications due to its metabolic versatility. This study investigates the production of hydrogen (H2) and polyhydroxyalkanoates (PHA) by R. rubrum from syngas under photoheterotrophic conditions. An adaptive laboratory evolution strategy (ALE) has been carried out to improve the yield of the process. After 200 generations, two evolved strains were selected that showed reduced lag phase and enhanced poly-3-hydroxybutyrate (PHB) and H2 synthesis compared to the parental strain. Genomic analysis of the photo-adapted (PA) variants showed four genes with single point mutations, including the photosynthesis gene expression regulator PpsR. The proteome of the variants suggested that the adapted variants overproduced H2 due to a more efficient CO oxidation through the CO-dehydrogenase enzyme complex and confirmed that energy acquisition was enhanced through overexpression of the photosynthetic system and metal cofactors essential for pigment biosynthesis.
Collapse
Affiliation(s)
- Natalia Hernández-Herreros
- Microbial & Plant Biotechnology Department, Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Alberto Rodríguez
- Microbial & Plant Biotechnology Department, Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Beatriz Galán
- Microbial & Plant Biotechnology Department, Environmental Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Microbial & Plant Biotechnology Department, Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
12
|
Kane BJ, Okuda‐Shimazaki J, Andrews MM, Kerrigan JA, Murphy KV, Sode K. Discovery of periplasmic solute binding proteins with specificity for ketone bodies: β-hydroxybutyrate binding proteins. Protein Sci 2024; 33:e5025. [PMID: 38864689 PMCID: PMC11167705 DOI: 10.1002/pro.5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
Polyhydroxyalkanoates are a class of biodegradable, thermoplastic polymers which represent a major carbon source for various bacteria. Proteins which mediate the translocation of polyhydroxyalkanoate breakdown products, such as β-hydroxybutyrate (BHB)-a ketone body which in humans serves as an important biomarker, have not been well characterized. In our investigation to screen a solute-binding protein (SBP) which can act as a suitable recognition element for BHB, we uncovered insights at the intersection of bacterial metabolism and diagnostics. Herein, we identify SBPs associated with putative ATP-binding cassette transporters that specifically recognize BHB, with the potential to serve as recognition elements for continuous quantification of this analyte. Through bioinformatic analysis, we identified candidate SBPs from known metabolizers of polyhydroxybutyrate-including proteins from Cupriavidus necator, Ensifer meliloti, Paucimonas lemoignei, and Thermus thermophilus. After recombinant expression in Escherichia coli, we demonstrated with intrinsic tryptophan fluorescence spectroscopy that four candidate proteins interacted with BHB, ranging from nanomolar to micromolar affinity. Tt.2, an intrinsically thermostable protein from Thermus thermophilus, was observed to have the tightest binding and specificity for BHB, which was confirmed by isothermal calorimetry. Structural analyses facilitated by AlphaFold2, along with molecular docking and dynamics simulations, were used to hypothesize key residues in the binding pocket and to model the conformational dynamics of substrate unbinding. Overall, this study provides strong evidence identifying the cognate ligands of SBPs which we hypothesize to be involved in prokaryotic cellular translocation of polyhydroxyalkanoate breakdown products, while highlighting these proteins' promising biotechnological application.
Collapse
Affiliation(s)
- Bryant J. Kane
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Junko Okuda‐Shimazaki
- Department of Biotechnology and Life Science, Graduate School of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
| | - Madelyn M. Andrews
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Joseph A. Kerrigan
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Kyle V. Murphy
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| | - Koji Sode
- Joint Department of Biomedical EngineeringThe University of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
| |
Collapse
|
13
|
Diep P, Stogios PJ, Evdokimova E, Savchenko A, Mahadevan R, Yakunin AF. Ni(II)-binding affinity of CcNikZ-II and its homologs: the role of the HH-prong and variable loop revealed by structural and mutational studies. FEBS J 2024; 291:2980-2993. [PMID: 38555564 DOI: 10.1111/febs.17125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Extracytoplasmic Ni(II)-binding proteins (NiBPs) are molecular shuttles involved in cellular nickel uptake. Here, we determined the crystal structure of apo CcNikZ-II at 2.38 Å, which revealed a Ni(II)-binding site comprised of the double His (HH-)prong (His511, His512) and a short variable (v-)loop nearby (Thr59-Thr64, TEDKYT). Mutagenesis of the site identified Glu60 and His511 as critical for high affinity Ni(II)-binding. Phylogenetic analysis showed 15 protein clusters with two groups containing the HH-prong. Metal-binding assays with 11 purified NiBPs containing this feature yielded higher Ni(II)-binding affinities. Replacement of the wild type v-loop with those from other NiBPs improved the affinity by up to an order of magnitude. This work provides molecular insights into the determinants for Ni(II) affinity and paves way for NiBP engineering.
Collapse
Affiliation(s)
- Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
- Systems & Synthetic Biology Group, Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, BioZone - Centre for Applied Bioscience and Bioengineering, University of Toronto, Toronto, Ontario, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Wales, UK
| |
Collapse
|
14
|
Yang S, Song C. Switching Go̅ -Martini for Investigating Protein Conformational Transitions and Associated Protein-Lipid Interactions. J Chem Theory Comput 2024; 20:2618-2629. [PMID: 38447049 PMCID: PMC10976636 DOI: 10.1021/acs.jctc.3c01222] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Proteins are dynamic biomolecules that can transform between different conformational states when exerting physiological functions, which is difficult to simulate using all-atom methods. Coarse-grained (CG) Go̅-like models are widely used to investigate large-scale conformational transitions, which usually adopt implicit solvent models and therefore cannot explicitly capture the interaction between proteins and surrounding molecules, such as water and lipid molecules. Here, we present a new method, named Switching Go̅-Martini, to simulate large-scale protein conformational transitions between different states, based on the switching Go̅ method and the CG Martini 3 force field. The method is straightforward and efficient, as demonstrated by the benchmarking applications for multiple protein systems, including glutamine binding protein (GlnBP), adenylate kinase (AdK), and β2-adrenergic receptor (β2AR). Moreover, by employing the Switching Go̅-Martini method, we can not only unveil the conformational transition from the E2Pi-PL state to E1 state of the type 4 P-type ATPase (P4-ATPase) flippase ATP8A1-CDC50 but also provide insights into the intricate details of lipid transport.
Collapse
Affiliation(s)
- Song Yang
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chen Song
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Ranjit P, Varkey D, Shah BS, Paulsen IT. Substrate specificity and ecological significance of PstS homologs in phosphorus uptake in marine Synechococcus sp. WH8102. Microbiol Spectr 2024; 12:e0278623. [PMID: 38179917 PMCID: PMC10846223 DOI: 10.1128/spectrum.02786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Phosphorus, a vital macronutrient, often limits primary productivity in marine environments. Marine Synechococcus strains, including WH8102, rely on high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate in oligotrophic oceans. However, WH8102 possesses three distinct PstS homologs whose substrate specificity and ecological roles are unclear. The three PstS homologs were heterologously expressed and purified to investigate their substrate specificity and binding kinetics. Our study revealed that all three PstS homologs exhibited a high degree of specificity for phosphate but differed in phosphate binding affinities. Notably, PstS1b displayed nearly 10-fold higher binding affinity (KD = 0.44 µM) compared to PstS1a (KD = 3.3 μM) and PstS2 (KD = 4.3 μM). Structural modeling suggested a single amino acid variation in the binding pocket of PstS1b (threonine instead of serine in PstS1a and PstS2) likely contributed to its higher Pi affinity. Genome context data, together with the protein biophysical data, suggest distinct ecological roles for the three PstS homologs. We propose that PstS1b may be involved in scavenging inorganic phosphorus in oligotrophic conditions and that PstS1a may be involved in transporting recycled phosphate derived from organic phosphate cleavage. The role of PstS2 is less clear, but it may be involved in phosphate uptake when environmental phosphate concentrations are transiently higher. The conservation of three distinct PstS homologs in Synechococcus clade III strains likely reflects distinct adaptations for P acquisition under varying oligotrophic conditions.IMPORTANCEPhosphorus is an essential macronutrient that plays a key role in marine primary productivity and biogeochemistry. However, intense competition for bioavailable phosphorus in the marine environment limits growth and productivity of ecologically important cyanobacteria. In oligotrophic oceans, marine Synechococcus strains, like WH8102, utilize high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate. However, WH8102 possesses three distinct PstS homologs, with unclear substrate specificity and ecological roles, creating a knowledge gap in understanding phosphorus acquisition mechanisms in picocyanobacteria. Through genomic, functional, biophysical, and structural analysis, our study unravels the ecological functions of these homologs. Our findings enhance our understanding of cyanobacterial nutritional uptake strategies and shed light on the crucial role of these conserved nutrient uptake systems in adaptation to specific niches, which ultimately underpins the success of marine Synechococcus across a diverse array of marine ecosystems.
Collapse
Affiliation(s)
- Pramita Ranjit
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Deepa Varkey
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Bhumika S. Shah
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Rashid FZM, Crémazy FGE, Hofmann A, Forrest D, Grainger DC, Heermann DW, Dame RT. The environmentally-regulated interplay between local three-dimensional chromatin organisation and transcription of proVWX in E. coli. Nat Commun 2023; 14:7478. [PMID: 37978176 PMCID: PMC10656529 DOI: 10.1038/s41467-023-43322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Laboratoire Infection et Inflammation, INSERM, UVSQ, Université Paris-Saclay, Versailles, 78180, France
| | - Andreas Hofmann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Dieter W Heermann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands.
| |
Collapse
|
17
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
18
|
Chen L, Wang C, Su J. Understanding the Effect of Different Glucose Concentrations in the Oligotrophic Bacterium Bacillus subtilis BS-G1 through Transcriptomics Analysis. Microorganisms 2023; 11:2401. [PMID: 37894061 PMCID: PMC10609351 DOI: 10.3390/microorganisms11102401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Glucose is an important carbon source for microbial growth, and its content in infertile soils is essential for the growth of bacteria. Since the mechanism of oligotrophic bacterium adaptation in barren soils is unclear, this research employed RNA-seq technology to examine the impact of glucose concentration on the oligotrophic bacterium B. subtilis BS-G1 in soil affected by desertification. A global transcriptome analysis (RNA-Seq) revealed that the significantly differentially expressed genes (DEGs) histidine metabolism, glutamate synthesis, the HIF-1 signaling pathway, sporulation, and the TCA cycle pathway of B. subtilis BS-G1 were significantly enriched with a 0.015 g/L glucose concentration (L group), compared to a 10 g/L glucose concentration (H group). The DEGs amino acid system, two-component system, metal ion transport, and nitrogen metabolism system of B. subtilis BS-G1 were significantly enriched in the 5 g/L glucose concentration (M group), compared with the H group. In addition, the present study identified the regulation pattern and key genes under a low-glucose environment (7 mRNAs and 16 sRNAs). This study primarily investigates the variances in the regulatory pathways of the oligotrophic B. subtilis BS-G1, which holds substantial importance in comprehending the mechanism underlying the limited sugar tolerance of oligotrophic bacteria.
Collapse
Affiliation(s)
- Liping Chen
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Chenglong Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jianyu Su
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
19
|
Yousef MM, Zohri ANA, Darwish AMG, Shamseldin A, Kabeil SA, Abdelkhalek A, Binsuwaidan R, Jaremko M, Alshwyeh HA, Hafez EE, Saied EM. Exploring the antibacterial potential of plant extracts and essential oils against Bacillus thermophilus in beet sugar for enhanced sucrose retention: a comparative assessment and implications. Front Microbiol 2023; 14:1219823. [PMID: 37547698 PMCID: PMC10400092 DOI: 10.3389/fmicb.2023.1219823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
Sugar beet is one of the greatest sources for producing sugar worldwide. However, a group of bacteria grows on beets during the storage process, leading to a reduction in sucrose yield. Our study focused on identifying common bacterial species that grow on beets during manufacturing and contribute to sucrose loss. The ultimate goal was to find a potential antibacterial agent from various plant extracts and oils to inhibit the growth of these harmful bacteria and reduce sucrose losses. The screening of bacterial species that grow on beet revealed that a large group of mesophilic bacteria, such as Bacillus subtilis, Leuconostoc mesenteroides, Pseudomonas fluorescens, Escherichia coli, Acinetobacter baumannii, Staphylococcus xylosus, Enterobacter amnigenus, and Aeromonas species, in addition to a dominant thermophilic species called Bacillus thermophilus, were found to be present during the manufacturing of beets. The application of 20 plant extracts and 13 different oils indicated that the extracts of Geranium gruinum, Datura stramonium, and Mentha spicata were the best antibacterials to reduce the growth of B. thermophilus with inhibition zones equal to 40, 39, and 35 mm, respectively. In contrast, the best active oils for inhibiting the growth of B. thermophilus were Mentha spicata and Ocimum bacilicum, with an inhibitory effect of 50 and 45 mm, respectively. RAPD-PCR with different primers indicated that treating sugar juice with the most effective oils against bacteria resulted in new recombinant microorganisms, confirming their roles as strong antibacterial products. The characterization of Mentha spicata and Ocimum bacilicum oils using GC/MS analysis identified cis-iso pulegone and hexadecanoic acid as the two main bioactive compounds with potential antibacterial activity. An analysis of five genes using DD-PCR that have been affected due to antibacterial activity from the highly effective oil from Mentha spicata concluded that all belonged to the family of protein defense. Our findings indicate that the application of these pure antibacterial plant extracts and oils would minimize the reduction of sucrose during sugar production.
Collapse
Affiliation(s)
- Mohamed M. Yousef
- Faculty of Sugar Industry Technology and Integrated Industries, Assiut University, Assiut, Egypt
| | - Abdel-Naser A. Zohri
- Department of Botany and Microbiology, Faculty of Science, Assuit University, Assiut, Egypt
| | - Amira M. G. Darwish
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University, Alexandria, Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Abdelaal Shamseldin
- Department of Environmental Biotechnology, GEBRI Institute at the City of Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
| | - Sanaa A. Kabeil
- Department of Protein Research, GEBRI Institute at the City of Scientific Research and Technology Applications, Alexandria, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering, Smart-Health Initiative and Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
González-Lozano KJ, Aréchiga-Carvajal ET, Jiménez-Salas Z, Valdez-Rodríguez DM, León-Ramírez CG, Ruiz-Herrera J, Adame-Rodríguez JM, López-Cabanillas-Lomelí M, Campos-Góngora E. Identification and Characterization of Dmct: A Cation Transporter in Yarrowia lipolytica Involved in Metal Tolerance. J Fungi (Basel) 2023; 9:600. [PMID: 37367535 DOI: 10.3390/jof9060600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Yarrowia lipolytica is a dimorphic fungus used as a model organism to investigate diverse biotechnological and biological processes, such as cell differentiation, heterologous protein production, and bioremediation strategies. However, little is known about the biological processes responsible for cation concentration homeostasis. Metals play pivotal roles in critical biochemical processes, and some are toxic at unbalanced intracellular concentrations. Membrane transport proteins control intracellular cation concentrations. Analysis of the Y. lipolytica genome revealed a characteristic functional domain of the cation efflux protein family, i.e., YALI0F19734g, which encodes YALI0F19734p (a putative Yl-Dmct protein), which is related to divalent metal cation tolerance. We report the in silico analysis of the putative Yl-Dmct protein's characteristics and the phenotypic response to divalent cations (Ca2+, Cu2+, Fe2+, and Zn2+) in the presence of mutant strains, Δdmct and Rdmct, constructed by deletion and reinsertion of the DMCT gene, respectively. The absence of the Yl-Dmct protein induces cellular and growth rate changes, as well as dimorphism differences, when calcium, copper, iron, and zinc are added to the cultured medium. Interestingly, the parental and mutant strains were able to internalize the ions. Our results suggest that the protein encoded by the DMCT gene is involved in cell development and cation homeostasis in Y. lipolytica.
Collapse
Affiliation(s)
- Katia Jamileth González-Lozano
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Zacarías Jiménez-Salas
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey CP 64460, Nuevo León, Mexico
| | - Debany Marlen Valdez-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Claudia Geraldine León-Ramírez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato CP 36824, Guanajuato, Mexico
| | - José Ruiz-Herrera
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato CP 36824, Guanajuato, Mexico
| | - Juan Manuel Adame-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Manuel López-Cabanillas-Lomelí
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey CP 64460, Nuevo León, Mexico
| | - Eduardo Campos-Góngora
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey CP 64460, Nuevo León, Mexico
| |
Collapse
|
21
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
22
|
Quinn C, Tomás-Cortázar J, Ofioritse O, Cosgrave J, Purcell C, McAloon C, Frost S, McClean S. GlnH, a Novel Antigen That Offers Partial Protection against Verocytotoxigenic Escherichia coli Infection. Vaccines (Basel) 2023; 11:175. [PMID: 36680019 PMCID: PMC9863631 DOI: 10.3390/vaccines11010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) causes zoonotic infections, with potentially devastating complications, and children under 5 years old are particularly susceptible. Antibiotic treatment is contraindicated, and due to the high proportion of infected children that suffer from severe and life-changing complications, there is an unmet need for a vaccine to prevent VTEC infections. Bacterial adhesins represent promising candidates for the successful development of a vaccine against VTEC. Using a proteomic approach to identify bacterial proteins interacting with human gastrointestinal epithelial Caco-2 and HT-29 cells, we identified eleven proteins by mass spectrometry. These included a glutamine-binding periplasmic protein, GlnH, a member of the ABC transporter family. The glnH gene was identified in 13 of the 15 bovine and all 5 human patient samples tested, suggesting that it is prevalent. We confirmed that GlnH is involved in the host cell attachment of an O157:H7 prototype E. coli strain to gastrointestinal cells in vitro. Recombinant GlnH was expressed and purified prior to the immunisation of mice. When alum was used as an adjuvant, GlnH was highly immunogenic, stimulating strong serological responses in immunised mice, and it resulted in a modest reduction in faecal shedding but did not reduce colonisation. GlnH immunisation with a T-cell-inducing adjuvant (SAS) also showed comparable antibody responses and an IgG1/IgG2a ratio suggestive of a mixed Th1/Th2 response but was partially protective, with a 1.5-log reduction in colonisation of the colon and caecum at 7 days relative to the adjuvant only (p = 0.0280). It is clear that future VTEC vaccine developments should consider the contribution of adjuvants in addition to antigens. Moreover, it is likely that a combined cellular and humoral response may prove more beneficial in providing protective interventions against VTEC.
Collapse
Affiliation(s)
- Conor Quinn
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, D18 DH5 Co. Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| | - Oritsejolomi Ofioritse
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Cosgrave
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Purcell
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanna Frost
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| |
Collapse
|
23
|
Structure-function studies reveal ComEA contains an oligomerization domain essential for transformation in gram-positive bacteria. Nat Commun 2022; 13:7724. [PMID: 36513643 PMCID: PMC9747964 DOI: 10.1038/s41467-022-35129-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
An essential step in bacterial transformation is the uptake of DNA into the periplasm, across the thick peptidoglycan cell wall of Gram-positive bacteria, or the outer membrane and thin peptidoglycan layer of Gram-negative bacteria. ComEA, a DNA-binding protein widely conserved in transformable bacteria, is required for this uptake step. Here we determine X-ray crystal structures of ComEA from two Gram-positive species, Bacillus subtilis and Geobacillus stearothermophilus, identifying a domain that is absent in Gram-negative bacteria. X-ray crystallographic, genetic, and analytical ultracentrifugation (AUC) analyses reveal that this domain drives ComEA oligomerization, which we show is required for transformation. We use multi-wavelength AUC (MW-AUC) to characterize the interaction between DNA and the ComEA DNA-binding domain. Finally, we present a model for the interaction of the ComEA DNA-binding domain with DNA, suggesting that ComEA oligomerization may provide a pulling force that drives DNA uptake across the thick cell walls of Gram-positive bacteria.
Collapse
|
24
|
Liu N, Gagnot S, Denis Y, Byrne D, Faulds C, Fierobe HP, Perret S. Selfish uptake versus extracellular arabinoxylan degradation in the primary degrader Ruminiclostridium cellulolyticum, a new string to its bow. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:127. [PMID: 36403068 PMCID: PMC9675976 DOI: 10.1186/s13068-022-02225-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Primary degraders of polysaccharides play a key role in anaerobic biotopes, where plant cell wall accumulates, providing extracellular enzymes to release fermentable carbohydrates to fuel themselves and other non-degrader species. Ruminiclostridium cellulolyticum is a model primary degrader growing amongst others on arabinoxylan. It produces large multi-enzymatic complexes called cellulosomes, which efficiently deconstruct arabinoxylan into fermentable monosaccharides. RESULTS Complete extracellular arabinoxylan degradation was long thought to be required to fuel the bacterium during this plant cell wall deconstruction stage. We discovered and characterized a second system of "arabinoxylan" degradation in R. cellulolyticum, which challenged this paradigm. This "selfish" system is composed of an ABC transporter dedicated to the import of large and possibly acetylated arabinoxylodextrins, and a set of four glycoside hydrolases and two esterases. These enzymes show complementary action modes on arabinoxylo-dextrins. Two α-L-arabinofuranosidases target the diverse arabinosyl side chains, and two exo-xylanases target the xylo-oligosaccharides backbone either at the reducing or the non-reducing end. Together, with the help of two different esterases removing acetyl decorations, they achieve the depolymerization of arabinoxylo-dextrins in arabinose, xylose and xylobiose. The in vivo study showed that this new system is strongly beneficial for the fitness of the bacterium when grown on arabinoxylan, leading to the conclusion that a part of arabinoxylan degradation is achieved in the cytosol, even if monosaccharides are efficiently provided by the cellulosomes in the extracellular space. These results shed new light on the strategies used by anaerobic primary degrader bacteria to metabolize highly decorated arabinoxylan in competitive environments. CONCLUSION The primary degrader model Ruminiclostridium cellulolyticum has developed a "selfish" strategy consisting of importing into the bacterium, large arabinoxylan-dextrin fractions released from a partial extracellular deconstruction of arabinoxylan, thus complementing its efficient extracellular arabinoxylan degradation system. Genetic studies suggest that this system is important to support fitness and survival in a competitive biotope. These results provide a better understanding of arabinoxylan catabolism in the primary degrader, with biotechnological application for synthetic microbial community engineering for the production of commodity chemicals from lignocellulosic biomass.
Collapse
Affiliation(s)
- Nian Liu
- Aix Marseille Univ, CNRS, LCB, Marseille, France, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, Marseille, France
| | - Séverine Gagnot
- Aix Marseille Univ, CNRS, LCB, Marseille, France, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, Marseille, France
| | - Yann Denis
- Aix Marseille Univ, CNRS, IMM, Marseille, France
| | | | - Craig Faulds
- INRAE, Aix Marseille Univ, INRAE, BBF, Marseille, France, 13009, Marseille, France
| | - Henri-Pierre Fierobe
- Aix Marseille Univ, CNRS, LCB, Marseille, France, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, Marseille, France
| | - Stéphanie Perret
- Aix Marseille Univ, CNRS, LCB, Marseille, France, 31 chemin Joseph Aiguier F-13402, Marseille Cedex 20, Marseille, France.
| |
Collapse
|
25
|
Ortega Á, Matilla MA, Krell T. The Repertoire of Solute-Binding Proteins of Model Bacteria Reveals Large Differences in Number, Type, and Ligand Range. Microbiol Spectr 2022; 10:e0205422. [PMID: 36121253 PMCID: PMC9602780 DOI: 10.1128/spectrum.02054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 12/31/2022] Open
Abstract
Solute-binding proteins (SBPs) are of central physiological relevance for bacteria. They are located in the extracytosolic space, where they present substrates to transporters but also stimulate different types of transmembrane receptors coordinating compound uptake with signal transduction. SBPs are a superfamily composed of proteins recognized by 45 Pfam profiles. The definition of SBP profiles for bacteria is hampered by the fact that these Pfam profiles recognize sensor domains for different types of signaling proteins or cytosolic proteins with alternative functions. We report here the retrieval of the SBPs from 49 bacterial model strains with different lifestyles and phylogenetic distributions. Proteins were manually curated, and the ligands recognized were predicted bioinformatically. There were very large differences in the number and type of SBPs between strains, ranging from 7 SBPs in Helicobacter pylori 26695 to 189 SBPs in Sinorhizobium meliloti 1021. SBPs were found to represent 0.22 to 5.13% of the total protein-encoding genes. The abundance of SBPs was largely determined by strain phylogeny, and no obvious link with the bacterial lifestyle was noted. Most abundant (36%) were SBPs predicted to recognize amino acids or peptides, followed by those expected to bind different sugars (18%). To the best of our knowledge, this is the first comparative study of bacterial SBP repertoires. Given the importance of SBPs in nutrient uptake and signaling, this study enhances the knowledge of model bacteria and will permit the definition of SBP profiles of other strains. IMPORTANCE SBPs are essential components for many transporters, but multiple pieces of more recent evidence indicate that the SBP-mediated stimulation of different transmembrane receptors is a general and widespread signal transduction mechanism in bacteria. The double function of SBPs in coordinating transport with signal transduction remains to a large degree unexplored and represents a major research need. The definition of the SBP repertoire of the 49 bacterial model strains examined here, along with information on their cognate ligand profiles forms the basis to close this gap in knowledge. Furthermore, this study provides information on the forces that have driven the evolution of transporters with different ligand specificities in bacteria that differ in phylogenetics and lifestyle. This article is also a first step in setting up automatic algorithms that permit the large-scale identification of the SBP repertoire in proteomes.
Collapse
Affiliation(s)
- Álvaro Ortega
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
26
|
Jung J, Bugenyi AW, Lee MR, Choi YJ, Song KD, Lee HK, Son YO, Lee DS, Lee SC, Son YJ, Heo J. High-quality metagenome-assembled genomes from proximal colonic microbiomes of synbiotic-treated korean native black pigs reveal changes in functional capacity. Sci Rep 2022; 12:14595. [PMID: 36109557 PMCID: PMC9478101 DOI: 10.1038/s41598-022-18503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Synbiotics are feed supplements with the potential to promote health and productivity in pigs partly, through modulation of the intestinal microbiome. Our study used shotgun sequencing and 16S rRNA gene sequencing techniques to characterize the effect of a synbiotic containing three Lactobacillus species and a fructo-oligosaccharide on the proximal colonic microbiome of 4- to 7-month-old Korean native black gilts. With shotgun sequencing we constructed unique metagenome-assembled genomes of gut microbiota in Native Black Pig for the first time, which we then used for downstream analysis. Results showed that synbiotic treatment did not alter microbial diversity and evenness within the proximal colons, but altered composition of some members of the Lactobacillaceae, Enterococcaceae and Streptococcaceae families. Functional analysis of the shotgun sequence data revealed 8 clusters of orthologous groups (COGs) that were differentially represented in the proximal colonic microbiomes of synbiotic-treated Jeju black pigs relative to controls. In conclusion, our results show that administering this synbiotic causes changes in the functional capacity of the proximal colonic microbiome of the Korean native black pig. This study improves our understanding of the potential impact of synbiotics on the colonic microbiome of Korean native black pigs.
Collapse
Affiliation(s)
- Jaehoon Jung
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
- eGnome, 26 Beobwon-ro, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Andrew W Bugenyi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- National Agricultural Research Organization, Mbarara, Uganda
| | - Ma-Ro Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yeon-Jae Choi
- International Agricultural Development and Cooperation Center, Jeonbuk National University, Jeonju, 54896, Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- International Agricultural Development and Cooperation Center, Jeonbuk National University, Jeonju, 54896, Korea
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
- Jeju Microbiome Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Dong-Sun Lee
- Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
- Jeju Microbiome Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | | | | | - Jaeyoung Heo
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
27
|
Guo J, Deng X, Zhang Y, Song S, Zhao T, Zhu D, Cao S, Baryshnikov PI, Cao G, Blair HT, Chen C, Gu X, Liu L, Zhang H. The Flagellar Transcriptional Regulator FtcR Controls Brucella melitensis 16M Biofilm Formation via a betI-Mediated Pathway in Response to Hyperosmotic Stress. Int J Mol Sci 2022; 23:ijms23179905. [PMID: 36077302 PMCID: PMC9456535 DOI: 10.3390/ijms23179905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of flagellar proteins in Brucella species likely evolved through genetic transference from other microorganisms, and contributed to virulence, adaptability, and biofilm formation. Despite significant progress in defining the molecular mechanisms behind flagellar gene expression, the genetic program controlling biofilm formation remains unclear. The flagellar transcriptional factor (FtcR) is a master regulator of the flagellar system’s expression, and is critical for B. melitensis 16M’s flagellar biogenesis and virulence. Here, we demonstrate that FtcR mediates biofilm formation under hyperosmotic stress. Chromatin immunoprecipitation with next-generation sequencing for FtcR and RNA sequencing of ftcR-mutant and wild-type strains revealed a core set of FtcR target genes. We identified a novel FtcR-binding site in the promoter region of the osmotic-stress-response regulator gene betI, which is important for the survival of B. melitensis 16M under hyperosmotic stress. Strikingly, this site autoregulates its expression to benefit biofilm bacteria’s survival under hyperosmotic stress. Moreover, biofilm reduction in ftcR mutants is independent of the flagellar target gene fliF. Collectively, our study provides new insights into the extent and functionality of flagellar-related transcriptional networks in biofilm formation, and presents phenotypic and evolutionary adaptations that alter the regulation of B. melitensis 16M to confer increased tolerance to hyperosmotic stress.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Peter Ivanovic Baryshnikov
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- College of Veterinary, Altai State Agricultural University, 656000 Barnaul, Russia
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China
| | - Hugh T. Blair
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- International Sheep Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xinli Gu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| |
Collapse
|
28
|
Guo J, Zhu J, Zhao T, Sun Z, Song S, Zhang Y, Zhu D, Cao S, Deng X, Chai Y, Sun Y, Maratbek S, Chen C, Liu L, Zhang H. Survival characteristics and transcriptome profiling reveal the adaptive response of the Brucella melitensis 16M biofilm to osmotic stress. Front Microbiol 2022; 13:968592. [PMID: 36060772 PMCID: PMC9428795 DOI: 10.3389/fmicb.2022.968592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Brucella can inhabit hostile environments, including osmotic stress. How Brucella responds collectively to osmotic stress is largely unexplored, particularly in spatially structured communities such as a biofilm. To gain insight into this growth mode, we set out to characterize the Brucella melitensis 16M biofilm, describe its phenotype, and carry out a comparative transcriptomic analysis between biofilms under osmotic stress and control conditions. We determined that the bacteria challenged with 1.5 M NaCl had a reduced ability to aggregate and form clumps and develop a biofilm; however, the salt stress promoted the release of the outer membrane vesicles from the biofilm. Together with the genotypical response to osmotic stress, we identified 279 differentially expressed genes in B. melitensis 16M grown under osmotic conditions compared with control conditions; 69 genes were upregulated and 210 downregulated. Under osmotic stress, the main changed genes of biofilm were predicted to be involved in flagellar assembly, cell envelope, translation, small RNA regulation, transport and binding proteins, and energy metabolism. In addition, the ABC transporter was enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We highlight 12 essential ABC transporter genes associated with a bacterial response to osmotic stress at the biofilm stage, including one specific locus, BME_RS12880, mediating betaine accumulation in biofilms to eliminate osmotic stress. The current study results can help researchers gain insights into B. melitensis 16M biofilm adaptation to osmotic stress and provide information for developing intervention strategies to control Brucella.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jiale Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongxue Sun
- Collaborative Innovation Center for Sheep Healthy Farming and Zoonotic Disease Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Suleimenov Maratbek
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- College of Veterinary, National Agricultural University of Kazakhstan, Nur-Sultan, Kazakhstan
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Liangbo Liu,
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Hui Zhang,
| |
Collapse
|
29
|
Chai HH, Ham JS, Kim TH, Lim D. Identifying ligand-binding specificity of the oligopeptide receptor OppA from Bifidobacterium longum KACC91563 by structure-based molecular modeling. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Ma B, Sundararajan S, Nadimpalli G, France M, McComb E, Rutt L, Lemme-Dumit JM, Janofsky E, Roskes LS, Gajer P, Fu L, Yang H, Humphrys M, Tallon LJ, Sadzewicz L, Pasetti MF, Ravel J, Viscardi RM. Highly Specialized Carbohydrate Metabolism Capability in Bifidobacterium Strains Associated with Intestinal Barrier Maturation in Early Preterm Infants. mBio 2022; 13:e0129922. [PMID: 35695455 PMCID: PMC9239261 DOI: 10.1128/mbio.01299-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
"Leaky gut," or high intestinal barrier permeability, is common in preterm newborns. The role of the microbiota in this process remains largely uncharacterized. We employed both short- and long-read sequencing of the 16S rRNA gene and metagenomes to characterize the intestinal microbiome of a longitudinal cohort of 113 preterm infants born between 240/7 and 326/7 weeks of gestation. Enabled by enhanced taxonomic resolution, we found that a significantly increased abundance of Bifidobacterium breve and a diet rich in mother's breastmilk were associated with intestinal barrier maturation during the first week of life. We combined these factors using genome-resolved metagenomics and identified a highly specialized genetic capability of the Bifidobacterium strains to assimilate human milk oligosaccharides and host-derived glycoproteins. Our study proposes mechanistic roles of breastmilk feeding and intestinal microbial colonization in postnatal intestinal barrier maturation; these observations are critical toward advancing therapeutics to prevent and treat hyperpermeable gut-associated conditions, including necrotizing enterocolitis (NEC). IMPORTANCE Despite improvements in neonatal intensive care, necrotizing enterocolitis (NEC) remains a leading cause of morbidity and mortality. "Leaky gut," or intestinal barrier immaturity with elevated intestinal permeability, is the proximate cause of susceptibility to NEC. Early detection and intervention to prevent leaky gut in "at-risk" preterm neonates are critical for decreasing the risk of potentially life-threatening complications like NEC. However, the complex interactions between the developing gut microbial community, nutrition, and intestinal barrier function remain largely uncharacterized. In this study, we reveal the critical role of a sufficient breastmilk feeding volume and the specialized carbohydrate metabolism capability of Bifidobacterium in the coordinated postnatal improvement of the intestinal barrier. Determining the clinical and microbial biomarkers that drive the intestinal developmental disparity will inform early detection and novel therapeutic strategies to promote appropriate intestinal barrier maturation and prevent NEC and other adverse health conditions in preterm infants.
Collapse
Affiliation(s)
- Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sripriya Sundararajan
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gita Nadimpalli
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elias McComb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lindsay Rutt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jose M. Lemme-Dumit
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elise Janofsky
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa S. Roskes
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Li Fu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hongqiu Yang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mike Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luke J. Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F. Pasetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rose M. Viscardi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Lee Y, Balaraju K, Kim SY, Jeon Y. Occurrence of phenotypic variation in Paenibacillus polymyxa E681 associated with sporulation and carbohydrate metabolism. BIOTECHNOLOGY REPORTS 2022; 34:e00719. [PMID: 35686012 PMCID: PMC9171445 DOI: 10.1016/j.btre.2022.e00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/12/2022] [Indexed: 12/02/2022]
Abstract
We report phenotypic variation in P. polymyxa E681 occurred when grown on media. F-type exhibited faster cell growth than B-type after utilization of carbon sources. 2-DE identified proteins involved in various metabolic activities. The motility is mediated via the downregulation of sporulation and flagella production.
We report the phenotypic variation in Paenibacillus polymyxa E681 (E681), a plant growth-promoting rhizobacterium (PGPR) isolated from a winter barley root in Korea. Phenotypic variation (F-type) occurred when E681 (B-type) was grown in the media, and F-type was generated from B-type. B- and F-types were characterized by their morphological, Biolog, and GC-MIDI analyses. F-type cells altered the original biological capacity of B-type cells on endospore and flagella formation, changes in pH in culture, and carbon utilization. In growth curve analysis, B-type variants recovered bacterial growth as the variation occurred after the decline phase, but F-type variants did not. To determine this cause, we conducted comparative proteome analysis between B- and F-types using two-dimensional gel electrophoresis (2-DE). Of the identified proteins, 47% were involved in glycolysis and other metabolic pathways associated with carbohydrate metabolism. Therefore, our findings provide new knowledge on the mechanism of phenotypic variation and insights into agricultural biotechnology.
Collapse
|
32
|
Rajasekaran MB, Hussain R, Siligardi G, Andrews SC, Watson KA. Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system. Biometals 2022; 35:573-589. [PMID: 35348940 PMCID: PMC9174327 DOI: 10.1007/s10534-022-00389-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
EfeUOB/M has been characterised in Pseudomonas syringae pathovar. syringae as a novel type of ferrous-iron transporter, consisting of an inner-membrane protein (EfeUPsy) and three periplasmic proteins (EfeOPsy, EfeMPsy and EfeBPsy). The role of an iron permease and peroxidase function has been identified for the EfeU and EfeB proteins, respectively, but the role of EfeO/M remains unclear. EfeMPsy is an 'M75-only' EfeO-like protein with a C-terminal peptidase-M75 domain (EfeOII/EfeM family). Herein, we report the 1.6 Å resolution crystal structure of EfeMPsy, the first structural report for an EfeM component of P. syringae pv. syringae. The structure possesses the bi-lobate architecture found in other bacterial periplasmic substrate/solute binding proteins. Metal binding studies, using SRCD and ICP-OES, reveal a preference of EfeMPsy for copper, iron and zinc. This work provides detailed knowledge of the structural scaffold, the metal site geometry, and the divalent metal binding potential of EfeM. This work provides crucial underpinning for a more detailed understanding of the role of EfeM/EfeO proteins and the peptidase-M75 domains in EfeUOB/M iron uptake systems in bacteria.
Collapse
Affiliation(s)
- Mohan B Rajasekaran
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN19QJ, UK
| | - Rohanah Hussain
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Giuliano Siligardi
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Simon C Andrews
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK
| | - Kimberly A Watson
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK.
| |
Collapse
|
33
|
Allert MJ, Hellinga HW. Discovery of Thermostable, Fluorescently Responsive Glucose Biosensors by Structure-Assisted Function Extrapolation. Biochemistry 2022; 61:276-293. [PMID: 35084821 DOI: 10.1021/acs.biochem.1c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate assignment of protein function from sequence remains a fascinating and difficult challenge. The periplasmic-binding protein (PBP) superfamily present an interesting case of function prediction because they are both ubiquitous in prokaryotes and tend to diversify through gene duplication "explosions" that can lead to large numbers of paralogs in a genome. An engineered version of the moderately thermostable glucose-binding PBP from Escherichia coli has been used successfully as a reagentless fluorescent biosensor both in vitro and in vivo. To develop more robust sensors that meet the challenges of real-world applications, we report the discovery of thermostable homologues that retain a glucose-mediated conformationally coupled fluorescence response. Accurately identifying a glucose-binding PBP homologue among closely related paralogs is challenging. We demonstrate that a structure-based method that filters sequences by residues that bind glucose in an archetype structure is highly effective. Using fully sequenced bacterial genomes, we found that this filter reduced high paralog numbers to single hits in a genome, consistent with the accurate separation of glucose binding from other functions. We expressed engineered proteins for eight homologues, chosen to represent different degrees of sequence identity, and tested their glucose-mediated fluorescence responses. We accurately predicted the presence of glucose binding down to 31% sequence identity. We have also successfully identified suitable candidates for next-generation robust, fluorescent glucose sensors.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| |
Collapse
|
34
|
Fındık BK, Cilesiz U, Bali SK, Atilgan C, Aviyente V, Dedeoglu B. Investigation of iron release from the N- and C-lobes of human serum transferrin by quantum chemical calculations. Org Biomol Chem 2022; 20:8766-8774. [DOI: 10.1039/d2ob01518h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cluster models of iron binding sites of the N- and C-lobes highlights the inequivalence of each lobe in iron release.
Collapse
Affiliation(s)
- Basak Koca Fındık
- Department of Chemistry, Bogazici University, Istanbul, 34342, Bebek, Turkey
| | - Umut Cilesiz
- Department of Chemistry, Bogazici University, Istanbul, 34342, Bebek, Turkey
| | - Semiha Kevser Bali
- Department of Chemistry, Bogazici University, Istanbul, 34342, Bebek, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı-Tuzla, Istanbul, 34956, Turkey
| | - Viktorya Aviyente
- Department of Chemistry, Bogazici University, Istanbul, 34342, Bebek, Turkey
| | - Burcu Dedeoglu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| |
Collapse
|
35
|
Ford BA, Sullivan GJ, Moore L, Varkey D, Zhu H, Ostrowski M, Mabbutt BC, Paulsen IT, Shah BS. Functional characterisation of substrate-binding proteins to address nutrient uptake in marine picocyanobacteria. Biochem Soc Trans 2021; 49:2465-2481. [PMID: 34882230 PMCID: PMC8786288 DOI: 10.1042/bst20200244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/05/2022]
Abstract
Marine cyanobacteria are key primary producers, contributing significantly to the microbial food web and biogeochemical cycles by releasing and importing many essential nutrients cycled through the environment. A subgroup of these, the picocyanobacteria (Synechococcus and Prochlorococcus), have colonised almost all marine ecosystems, covering a range of distinct light and temperature conditions, and nutrient profiles. The intra-clade diversities displayed by this monophyletic branch of cyanobacteria is indicative of their success across a broad range of environments. Part of this diversity is due to nutrient acquisition mechanisms, such as the use of high-affinity ATP-binding cassette (ABC) transporters to competitively acquire nutrients, particularly in oligotrophic (nutrient scarce) marine environments. The specificity of nutrient uptake in ABC transporters is primarily determined by the peripheral substrate-binding protein (SBP), a receptor protein that mediates ligand recognition and initiates translocation into the cell. The recent availability of large numbers of sequenced picocyanobacterial genomes indicates both Synechococcus and Prochlorococcus apportion >50% of their transport capacity to ABC transport systems. However, the low degree of sequence homology among the SBP family limits the reliability of functional assignments using sequence annotation and prediction tools. This review highlights the use of known SBP structural representatives for the uptake of key nutrient classes by cyanobacteria to compare with predicted SBP functionalities within sequenced marine picocyanobacteria genomes. This review shows the broad range of conserved biochemical functions of picocyanobacteria and the range of novel and hypothetical ABC transport systems that require further functional characterisation.
Collapse
Affiliation(s)
- Benjamin A. Ford
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Lisa Moore
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Deepa Varkey
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Hannah Zhu
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Martin Ostrowski
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Bridget C. Mabbutt
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S. Shah
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
36
|
Lukacik P, Owen CD, Harris G, Bolla JR, Picaud S, Alibay I, Nettleship JE, Bird LE, Owens RJ, Biggin PC, Filippakopoulos P, Robinson CV, Walsh MA. The structure of nontypeable Haemophilus influenzae SapA in a closed conformation reveals a constricted ligand-binding cavity and a novel RNA binding motif. PLoS One 2021; 16:e0256070. [PMID: 34653190 PMCID: PMC8519434 DOI: 10.1371/journal.pone.0256070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap (sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (Kd 282 μM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated Kd 4.4 μM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.
Collapse
Affiliation(s)
- Petra Lukacik
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - C. David Owen
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Picaud
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Joanne E. Nettleship
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Louise E. Bird
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Raymond J. Owens
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Martin A. Walsh
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
38
|
Martínez FL, Rajal VB, Irazusta VP. Genomic characterization and proteomic analysis of the halotolerant Micrococcus luteus SA211 in response to the presence of lithium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147290. [PMID: 33940405 DOI: 10.1016/j.scitotenv.2021.147290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Micrococcus luteus SA211, isolated from the Salar del Hombre Muerto in Argentina, developed responses that allowed its survival and growth in presence of high concentrations of lithium chloride (LiCl). In this research, analysis of total genome sequencing and a comparative proteomic approach were performed to investigate the responses of this bacterium to the presence of Li. Through proteomic analysis, we found differentially synthesized proteins in growth media without LiCl (DM) and with 10 (D10) and 30 g/L LiCl (D30). Bi-dimensional separation of total protein extracts allowed the identification of 17 over-synthesized spots when growth occurred in D30, five in D10, and six in both media with added LiCl. The results obtained showed different metabolic pathways involved in the ability of M. luteus SA211 to interact with Li. These pathways include defense against oxidative stress, pigment and protein synthesis, energy production, and osmolytes biosynthesis and uptake. Furthermore, mono-dimensional gel electrophoresis revealed differential protein synthesis at equivalent NaCl and LiCl concentrations, suggesting that this strain would be able to develop different responses depending on the nature of the ion. Moreover, the percentage of proteins with acidic pI predicted and observed was highlighted, indicating an adaptation to saline environments. To the best of our knowledge, this is the first report showing the relationship between protein synthesis and genome sequence analysis in response to Li, showing the great biotechnological potential that native microorganisms present, especially those isolated from extreme environments.
Collapse
Affiliation(s)
- Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ingeniería, UNSa, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ciencias Naturales, UNSa, Argentina.
| |
Collapse
|
39
|
Periplasmic-binding protein-based biosensors and bioanalytical assay platforms: Advances, considerations, and strategies for optimal utility. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
41
|
Norris N, Levine NM, Fernandez VI, Stocker R. Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria. PLoS Comput Biol 2021; 17:e1009023. [PMID: 34010286 PMCID: PMC8168909 DOI: 10.1371/journal.pcbi.1009023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/01/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022] Open
Abstract
Marine bacterial diversity is immense and believed to be driven in part by trade-offs in metabolic strategies. Here we consider heterotrophs that rely on organic carbon as an energy source and present a molecular-level model of cell metabolism that explains the dichotomy between copiotrophs—which dominate in carbon-rich environments—and oligotrophs—which dominate in carbon-poor environments—as the consequence of trade-offs between nutrient transport systems. While prototypical copiotrophs, like Vibrios, possess numerous phosphotransferase systems (PTS), prototypical oligotrophs, such as SAR11, lack PTS and rely on ATP-binding cassette (ABC) transporters, which use binding proteins. We develop models of both transport systems and use them in proteome allocation problems to predict the optimal nutrient uptake and metabolic strategy as a function of carbon availability. We derive a Michaelis–Menten approximation of ABC transport, analytically demonstrating how the half-saturation concentration is a function of binding protein abundance. We predict that oligotrophs can attain nanomolar half-saturation concentrations using binding proteins with only micromolar dissociation constants and while closely matching transport and metabolic capacities. However, our model predicts that this requires large periplasms and that the slow diffusion of the binding proteins limits uptake. Thus, binding proteins are critical for oligotrophic survival yet severely constrain growth rates. We propose that this trade-off fundamentally shaped the divergent evolution of oligotrophs and copiotrophs. Marine bacteria utilize carbon as a building block and an energy source and thus exert an important control on the amount of carbon that is sequestered in the ocean versus respired into the atmosphere. They use a spectrum of strategies to consume carbon: while copiotrophic bacteria dominate in nutrient-rich environments, oligotrophic bacteria dominate in nutrient-poor environments and are typically smaller, nonmotile, and slower growing. Yet the paragon oligotroph SAR11 is the planet’s most abundant organism. Despite this, most of our understanding of bacteria derives from research on copiotrophs. Here we use molecular-level models to understand how an oligotroph’s physiology enables it to outperform copiotrophs in nutrient-poor but not in nutrient-rich environments. We contrast copiotrophs’ prevalent method of sugar transport with oligotrophs’ reliance on binding proteins, which trap nutrients in the periplasm. Binding proteins allow cells to attain affinities that are much higher than the transport proteins’ intrinsic affinities. However, our model predicts that attaining such high affinities requires large periplasms with high abundances of the slowly diffusing binding proteins, which precludes high growth rates. By quantifying the benefits and costs of binding proteins, we provide a mechanistic explanation for the divergent evolution of oligotrophs and copiotrophs.
Collapse
Affiliation(s)
- Noele Norris
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, United States of America
- Department of Biological Sciences, University of Southern California, Los Angeles, United States of America
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, Switzerland
- * E-mail: (NN); (RS)
| | - Naomi M. Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, United States of America
| | - Vicente I. Fernandez
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, Switzerland
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, Switzerland
- * E-mail: (NN); (RS)
| |
Collapse
|
42
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
43
|
Structural Flexibility of Peripheral Loops and Extended C-terminal Domain of Short Length Substrate Binding Protein from Rhodothermus marinus. Protein J 2021; 40:184-191. [PMID: 33651244 PMCID: PMC7923407 DOI: 10.1007/s10930-021-09970-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 11/15/2022]
Abstract
Substrate binding proteins (SBPs) bind to specific ligands in the periplasmic regions of cells and then bind to membrane proteins to participate in transport or signal transduction. Typically, SBPs consist of two α/β domains and recognize the substrate by a flexible hinge region between the two domains. Conversely, the short-length SBPs are often observed in protein databases, which are located around methyl-accepting chemotaxis protein genes. We previously determined the crystal structure of Rhodothermus marinus SBP (named as RmSBP), consisting of a single α/β domain; however, the substrate recognition mechanism is still unclear. To better understand the functions of short length RmSBP, we performed a comprehensive study, involving comparative structure analysis, computational substrate docking, and X-ray crystallographic data. RmSBP shares a high level of similarity in the α/β domain region with other SBPs, but it has a distinct topology in the C-terminal domain. The substrate binding model suggested that conformational changes in the peripheral region of RmSBP was required to recognize the substrate. We determined the crystal structures of RmSBP at pH 5.5, 6.0, and 7.5. RmSBP showed structural flexibility in the β1–α2 loop, β5–β6 loop, and extended C-terminal domains, based on the electron density map and temperature B-factor analysis. These results provide information that will further our understanding on the functions of the short length SBP.
Collapse
|
44
|
Huang K, Zhang B, Chen Y, Liu ZQ, Zheng YG. Comparative Transcriptome Analysis of Streptomyces nodosus Mutant With a High-Yield Amphotericin B. Front Bioeng Biotechnol 2021; 8:621431. [PMID: 33598451 PMCID: PMC7882699 DOI: 10.3389/fbioe.2020.621431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Antibiotics play an important role in human health. Most antibiotics are derived from microbial secondary metabolites. Amphotericin is a polyene macrolide antibiotic synthesized by Streptomyces nodosus. S. nodosus ZJB2016050 with high-yield amphotericin B (AmB) was obtained by traditional mutagenesis using S. nodosus ATCC14899 as the original strain. The differences in the characterization of the two strains were found in color, mycelium morphology, and AmB yield. Subsequent comparative transcriptome explained the yield differences between the two strains. Pathways including the carbohydrate metabolic pathway and the secondary product synthesis pathway were targeted. The upregulation of glucokinase, phosphoglycerate mutase, and pyruvate dehydrogenase accelerates the consumption of glucose and has great effects on the accumulation of precursors. One of the competitive secondary metabolites of the polyketone synthetase (PKS) II type sapromomycin analog synthesis gene cluster was downregulated, which competes for malonyl-CoA. Five PKS modules (except for the first module amphA) of the amphotericin synthetic gene cluster in the high-yielding strain were downregulated, which resulted in the total amphotericin A (AmA) and AmB of S. nodosus ZJB2016050 being less than that of the wild-type S. nodosus ATCC14899. Combined with gene differential expression in the pentose phosphate pathway and the reaction mechanism of the ER5 domain, the reason that S. nodosus ZJB2016050 preferred to synthesize AmB was probably related to intracellular reduction.
Collapse
Affiliation(s)
- Kai Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
45
|
Yang M, Tang Y, Weng J, Liu Z, Wang W. The Role of Calcium in Regulating the Conformational Dynamics of d-Galactose/d-Glucose-Binding Protein Revealed by Markov State Model Analysis. J Chem Inf Model 2021; 61:891-900. [PMID: 33445873 DOI: 10.1021/acs.jcim.0c01119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The d-glucose/d-galactose-binding protein (GGBP) from Escherichia coli is a substrate-binding protein (SBP) associated with sugar transport and chemotaxis. It is also a calcium-binding protein, which makes it unique in the SBP family. However, the functional importance of Ca2+ binding is not fully understood. Here, the calcium-dependent properties of GGBP were explored by all-atom molecular dynamics simulations and Markov state model (MSM) analysis as well as single-molecule Förster resonance energy transfer (smFRET) measurements. In agreement with previous experimental studies, we observed the structure stabilization effect of Ca2+ binding on the C-terminal domain of GGBP, especially the Ca2+-binding site. Interestingly, the MSMs of calcium-depleted GGBP and calcium-bound GGBP (GGBP/Ca2+) demonstrate that Ca2+ greatly stabilizes the open conformation, and smFRET measurements confirmed this result. Further analysis reveals that Ca2+ binding disturbs the local hydrogen bonding interactions and the conformational dynamics of the hinge region, thereby weakening the long-range interdomain correlations to favor the open conformation. These results suggest an active regulatory role of Ca2+ binding in GGBP, which finely tunes the conformational distribution. The work sheds new light on the study of calcium-binding proteins in prokaryotes.
Collapse
Affiliation(s)
- Maohua Yang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yegen Tang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Jingwei Weng
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wenning Wang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
46
|
Helble JD, McCarthy JE, Hu LT. Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle. Parasite Immunol 2021; 43:e12816. [PMID: 33368329 DOI: 10.1111/pim.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
The bacterial pathogen Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans through an Ixodes tick vector. B. burgdorferi is able to survive in both mammalian and tick hosts through careful modulation of its gene expression. This allows B. burgdorferi to adapt to the environmental and nutritional changes that occur when it is transmitted between the two hosts. Distinct interactions between the spirochete and its host occur at every step of the enzootic cycle and dictate the ability of the spirochete to survive until the next stage of the cycle. Studying the interface between B. burgdorferi, the Ixodes tick vector and the natural mammalian reservoirs has been made significantly more feasible through the complete genome sequences of the organisms and the advent of high throughput screening technologies. Ultimately, a thorough investigation of the interplay between the two domains (and two phyla within one domain) is necessary in order to completely understand how the pathogen is transmitted.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Julie E McCarthy
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| |
Collapse
|
47
|
Dokainish HM, Sugita Y. Exploring Large Domain Motions in Proteins Using Atomistic Molecular Dynamics with Enhanced Conformational Sampling. Int J Mol Sci 2020; 22:ijms22010270. [PMID: 33383937 PMCID: PMC7796230 DOI: 10.3390/ijms22010270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 11/26/2022] Open
Abstract
Conformational transitions in multidomain proteins are essential for biological functions. The Apo conformations are typically open and flexible, while the Holo states form more compact conformations stabilized by protein-ligand interactions. Unfortunately, the atomically detailed mechanisms for such open-closed conformational changes are difficult to be accessed experimentally as well as computationally. To simulate the transitions using atomistic molecular dynamics (MD) simulations, efficient conformational sampling algorithms are required. In this work, we propose a new approach based on generalized replica-exchange with solute tempering (gREST) for exploring the open-closed conformational changes in multidomain proteins. Wherein, selected surface charged residues in a target protein are defined as the solute region in gREST simulation and the solute temperatures are different in replicas and exchanged between them to enhance the domain motions. This approach is called gREST selected surface charged residues (gREST_SSCR) and is applied to the Apo and Holo states of ribose binding protein (RBP) in solution. The conformational spaces sampled with gREST_SSCR are much wider than those with the conventional MD, sampling open-closed conformational changes while maintaining RBP domains’ stability. The free-energy landscapes of RBP in the Apo and Holo states are drawn along with twist and hinge angles of the two moving domains. The inter-domain salt-bridges that are not observed in the experimental structures are also important in the intermediate states during the conformational changes.
Collapse
Affiliation(s)
- Hisham M. Dokainish
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Yuji Sugita
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- RIKEN Center for Computational Science, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Center for Biosystems Dynamics Research, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Correspondence: ; Tel.: +81-48-462-1407
| |
Collapse
|
48
|
Kaczmarski JA, Mahawaththa MC, Feintuch A, Clifton BE, Adams LA, Goldfarb D, Otting G, Jackson CJ. Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. Nat Commun 2020; 11:5945. [PMID: 33230119 PMCID: PMC7683729 DOI: 10.1038/s41467-020-19695-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Several enzymes are known to have evolved from non-catalytic proteins such as solute-binding proteins (SBPs). Although attention has been focused on how a binding site can evolve to become catalytic, an equally important question is: how do the structural dynamics of a binding protein change as it becomes an efficient enzyme? Here we performed a variety of experiments, including propargyl-DO3A-Gd(III) tagging and double electron-electron resonance (DEER) to study the rigid body protein dynamics of reconstructed evolutionary intermediates to determine how the conformational sampling of a protein changes along an evolutionary trajectory linking an arginine SBP to a cyclohexadienyl dehydratase (CDT). We observed that primitive dehydratases predominantly populate catalytically unproductive conformations that are vestiges of their ancestral SBP function. Non-productive conformational states, including a wide-open state, are frozen out of the conformational landscape via remote mutations, eventually leading to extant CDT that exclusively samples catalytically relevant compact states. These results show that remote mutations can reshape the global conformational landscape of an enzyme as a mechanism for increasing catalytic activity.
Collapse
Affiliation(s)
- Joe A Kaczmarski
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mithun C Mahawaththa
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ben E Clifton
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.,Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0412, Japan
| | - Luke A Adams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Gottfried Otting
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia.
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia. .,Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia.
| |
Collapse
|
49
|
Lee Y, Kim YS, Balaraju K, Seo YS, Park J, Ryu CM, Park SH, Kim JF, Kang S, Jeon Y. Molecular changes associated with spontaneous phenotypic variation of Paenibacillus polymyxa, a commonly used biocontrol agent, and temperature-dependent control of variation. Sci Rep 2020; 10:16586. [PMID: 33024195 PMCID: PMC7538429 DOI: 10.1038/s41598-020-73716-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
There has been a growing interest in deploying plant growth-promoting rhizobacteria (PGPR) as a biological control agent (BCA) to reduce the use of agrochemicals. Spontaneous phenotypic variation of PGPR, which causes the loss of traits crucial for biocontrol, presents a large obstacle in producing commercial biocontrol products. Here, we report molecular changes associated with phenotypic variation in Paenibacillus polymyxa, a PGPR widely used for biocontrol worldwide, and a simple cultural change that can prevent the variation. Compared to B-type (non-variant) cells of P. polymyxa strain E681, its phenotypic variant, termed as F-type, fails to form spores, does not confer plant growth-promoting effect, and displays altered colony and cell morphology, motility, antagonism against other microbes, and biofilm formation. This variation was observed in all tested strains of P. polymyxa, but the frequency varied among them. RNA-seq analysis revealed differential regulation of many genes involved in sporulation, flagella synthesis, carbohydrate metabolism, and antimicrobial production in F-type cells, consistent with their pleiotropic phenotypic changes. F-type cells's sporulation was arrested at stage 0, and the key sporulation gene spo0A was upregulated only in B-type cells. The phenotypic variation could be prevented by altering the temperature for growth. When E681 was cultured at 20 °C or lower, it exhibited no variation for 7 days and still reached ~ 108 cfu/mL, the level sufficient for commercial-scale production of biocontrol products.
Collapse
Affiliation(s)
- Younmi Lee
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea.,Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea
| | - Young Soo Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Kotnala Balaraju
- Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Pusan, 46241, Republic of Korea
| | - Choong-Min Ryu
- Infectious Disease Research Centre, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung-Hwan Park
- Infectious Disease Research Centre, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.,Strategic Initiative for Microbiomes in Agriculture and Food (iMAF), Yonsei University, Seoul, 03722, Republic of Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
50
|
Ayala-Muñoz D, Burgos WD, Sánchez-España J, Couradeau E, Falagán C, Macalady JL. Metagenomic and Metatranscriptomic Study of Microbial Metal Resistance in an Acidic Pit Lake. Microorganisms 2020; 8:microorganisms8091350. [PMID: 32899650 PMCID: PMC7563247 DOI: 10.3390/microorganisms8091350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Cueva de la Mora (CM) is an acidic, meromictic pit lake in the Iberian Pyrite Belt characterized by extremely high metal(loid) concentrations and strong gradients in oxygen, metal, and nutrient concentrations. We hypothesized that geochemical variations with depth would result in differences in community composition and in metal resistance strategies among active microbial populations. We also hypothesized that metal resistance gene (MRG) expression would correlate with toxicity levels for dissolved metal species in the lake. Water samples were collected in the upper oxic layer, chemocline, and deep anoxic layer of the lake for shotgun metagenomic and metatranscriptomic sequencing. Metagenomic analyses revealed dramatic differences in the composition of the microbial communities with depth, consistent with changing geochemistry. Based on relative abundance of taxa identified in each metagenome, Eukaryotes (predominantly Coccomyxa) dominated the upper layer, while Archaea (predominantly Thermoplasmatales) dominated the deep layer, and a combination of Bacteria and Eukaryotes were abundant at the chemocline. We compared metal resistance across communities using a curated list of protein-coding MRGs with KEGG Orthology identifiers (KOs) and found that there were broad differences in the metal resistance strategies (e.g., intracellular metal accumulation) expressed by Eukaryotes, Bacteria, and Archaea. Although normalized abundances of MRG and MRG expression were generally higher in the deep layer, expression of metal-specific genes was not strongly related to variations in specific metal concentrations, especially for Cu and As. We also compared MRG potential and expression in metagenome assembled genomes (MAGs) from the deep layer, where metal concentrations are highest. Consistent with previous work showing differences in metal resistance mechanisms even at the strain level, MRG expression patterns varied strongly among MAG populations from the same depth. Some MAG populations expressed very few MRG known to date, suggesting that novel metal resistance strategies remain to be discovered in uncultivated acidophiles.
Collapse
Affiliation(s)
- Diana Ayala-Muñoz
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA;
- Correspondence:
| | - William D. Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA;
| | - Javier Sánchez-España
- Geochemistry and Sustainable Mining Unit, Instituto Geológico y Minero de España (IGME), Calera 1, Tres Cantos, 28760 Madrid, Spain;
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, The Pennsylvania State University, 450 ASI, University Park, PA 16802, USA;
| | - Carmen Falagán
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK;
| | - Jennifer L. Macalady
- Department of Geosciences, The Pennsylvania State University, 211 Deike Building, University Park, PA 16802, USA;
| |
Collapse
|