1
|
Tetz G, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz V. Universal receptive system as a novel regulator of transcriptomic activity of Staphylococcus aureus. Microb Cell Fact 2025; 24:1. [PMID: 39754239 PMCID: PMC11697845 DOI: 10.1186/s12934-024-02637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025] Open
Abstract
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription. To this end, transcriptomic analysis of S. aureus MSSA VT209 was performed following the destruction of TezRs. Bacterial RNA samples were extracted from nuclease-treated and untreated S. aureus MSSA VT209. After destruction of the DNA-based-, RNA-, or combined DNA- and RNA-based TezRs of S. aureus, 103, 150, and 93 genes were significantly differently expressed, respectively. The analysis revealed differential clustering of gene expression following the loss of different TezRs, highlighting individual cellular responses following the loss of DNA- and RNA-based TezRs. KEGG pathway gene enrichment analysis revealed that the most upregulated pathways following TezR inactivation included those related to energy metabolism, cell wall metabolism, and secretion systems. Some of the genetic pathways were related to the inhibition of biofilm formation and increased antibiotic resistance, and we confirmed this at the phenotypic level using in vitro studies. The results of this study add another line of evidence that the Universal Receptive System plays an important role in cell regulation, including cell responses to the environmental factors of clinically important pathogens, and that nucleic acid-based TezRs are functionally active parts of the extrabiome.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, New York, NY, 10014, USA.
- Tetz Labs, New York, NY, 10014, USA.
| | | | | | | | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA
- Department of Medicine, Division of Precision Medicine, NYU School of Medicine, New York, NY, 10016, USA
| | - Victor Tetz
- Human Microbiology Institute, New York, NY, 10014, USA
- Tetz Labs, New York, NY, 10014, USA
| |
Collapse
|
2
|
Ma H, Ding Y, Peng J, Li Y, Pan R, Long Y, Zhao Y, Guo R, Ma Y. Identification and characterization of a novel bacteriocin PCM7-4 and its antimicrobial activity against Listeria monocytogenes. Microbiol Res 2025; 290:127980. [PMID: 39581173 DOI: 10.1016/j.micres.2024.127980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Listeria monocytogenes, a pathogenic bacterium causing zoonotic diseases, necessitates the urgent search for novel anti-Listeria monocytogenes drugs due to the continuous emergence of drug-resistant bacteria. In this study, we isolated and identified a bacteriocin-producing strain CM7-4 from seawater as Bacillus velezensis through 16S rRNA sequence analysis. Moreover, we successfully purified a novel bacteriocin named PCM7-4 from Bacillus velezensis CM7-4. The molecular weight of PCM7-4 was determined to be 40,228.99 Da. Notably, PCM7-4 exhibited broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria with a minimum inhibitory concentration (MIC) of 5.625 μg/mL against Listeria monocytogenes specifically. It demonstrated heat resistance and high stability within the pH range of 2-12 while being sensitive to proteinase K degradation without any observed hemolytic activity. Furthermore, SEM analysis revealed that PCM7-4 effectively inhibited biofilm formation and disrupted cell membranes in Listeria monocytogenes cells. Transcriptome analysis revealed that PCM7-4 exerts an impact on genes associated with crucial metabolic pathways, encompassing the biosynthesis of secondary metabolites, phosphotransferase systems (PTS), and starch/sucrose metabolism. These findings highlight the significant potential of bacteriocin PCM7-4 for the development of effective antimicrobial interventions targeting food-borne pathogenic bacteria.
Collapse
Affiliation(s)
- Haotian Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuexia Ding
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinju Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruixue Pan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuner Long
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yining Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rongxian Guo
- Laboratory of Functional Microbiology and Animal Health, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Yi Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
3
|
Tetz G, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz V. Universal Receptive System as a novel regulator of transcriptomic activity of Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612522. [PMID: 39386507 PMCID: PMC11463695 DOI: 10.1101/2024.09.11.612522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases.. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription. To this end, transcriptomic analysis of S. aureus MSSA VT209 was performed following the destruction of TezRs. Bacterial RNA samples were extracted from nuclease-treated and untreated S. aureus MSSA VT209. After destruction of the DNA-based-, RNA-, or combined DNA- and RNA-based TezRs of S. aureus , 103, 150, and 93 genes were significantly differently expressed, respectively. The analysis revealed differential clustering of gene expression following the loss of different TezRs, highlighting individual cellular responses following the loss of DNA- and RNA-based TezRs. KEGG pathway gene enrichment analysis revealed that the most upregulated pathways following TezR inactivation included those related to energy metabolism, cell wall metabolism, and secretion systems. Some of the genetic pathways were related to the inhibition of biofilm formation and increased antibiotic resistance, and we confirmed this at the phenotypic level using in vitro studies. The results of this study add another line of evidence that the Universal Receptive System plays an important role in cell regulation, including cell responses to the environmental factors of clinically important pathogens, and that nucleic acid-based TezRs are functionally active parts of the extrabiome.
Collapse
|
4
|
Han ML, Alsaadi Y, Zhao J, Zhu Y, Lu J, Jiang X, Ma W, Patil NA, Dunstan RA, Le Brun AP, Wickremasinghe H, Hu X, Wu Y, Yu HH, Wang J, Barlow CK, Bergen PJ, Shen HH, Lithgow T, Creek DJ, Velkov T, Li J. Arginine catabolism is essential to polymyxin dependence in Acinetobacter baumannii. Cell Rep 2024; 43:114410. [PMID: 38923457 PMCID: PMC11338987 DOI: 10.1016/j.celrep.2024.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Polymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by "undetectable" polymyxin-dependent A. baumannii.
Collapse
Affiliation(s)
- Mei-Ling Han
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| | - Yasser Alsaadi
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jinxin Zhao
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yan Zhu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jing Lu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xukai Jiang
- National Glycoengineering Research Centre, Shandong University, Qingdao 266237, China
| | - Wendong Ma
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Nitin A Patil
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Rhys A Dunstan
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hasini Wickremasinghe
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xiaohan Hu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yimin Wu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Heidi H Yu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jiping Wang
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Phillip J Bergen
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Trevor Lithgow
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Darren J Creek
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Tony Velkov
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Son Y, Kim B, Kim P, Min J, Park Y, Yang J, Kim W, Toyofuku M, Park W. Unexpected vulnerability of Enterococcus faecium to polymyxin B under anaerobic condition. Gut Microbes 2024; 16:2438465. [PMID: 39663231 DOI: 10.1080/19490976.2024.2438465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Gram-positive Enterococcus faecium exhibited higher susceptibility (>4-fold) to polymyxin B (PMB), the canonical antimicrobial peptide against Gram-negative bacteria, under anaerobic condition than aerobic condition. Anaerobically grown E. faecium exhibited high vulnerability to PMB, leading to alteration of cell surface and morphology, as observed based on their high dansyl-PMB affinity (>2.9-fold), a proportion (>8.5-fold) of propidium iodide-stained cells, and observation of scanning electron microscopy results. Interestingly, our transcriptomic and chemical analyses revealed that enterocin B, produced anaerobically, imposes a burden on the cellular envelope when cells are exposed to PMB. This scenario was also supported by PMB susceptibility tests and killing curves, which showed that ΔentB knockout mutant cells were more resistant to PMB (32 µg/mL) compared to wild-type cells (4 µg/mL) under anaerobic condition. Fluorescent D-amino acid and BOCILLIN™-fluorescent profiling of transpeptidase activities in ΔentB mutant cells under anaerobic condition revealed similar levels of activity to those observed in WT cells under aerobic condition. The high level of secreted bacteriocins in WT under anaerobic condition likely led to significant membrane depolarization and loosening of the peptidoglycan layer, making the cells more permeable to PMB. Overall, our findings suggest that anaerobically produced bacteriocins, in conjunction with PMB, contribute to the killing of E. faecium by destabilizing its cell envelope.
Collapse
Affiliation(s)
- Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Bitnara Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Pureun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Chiu S, Hancock AM, Schofner BW, Sniezek KJ, Soto-Echevarria N, Leon G, Sivaloganathan DM, Wan X, Brynildsen MP. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot (Tokyo) 2022; 75:593-609. [PMID: 36123537 DOI: 10.1038/s41429-022-00561-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.
Collapse
Affiliation(s)
- Selena Chiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna M Hancock
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Bob W Schofner
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
7
|
Hydrophobic modification Thr of polymyxin E: Effect on activity and toxicity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Jin B, Wang T, Chen JY, Liu XQ, Zhang YX, Zhang XY, Sheng ZL, Yang HL. Synthesis and Biological Evaluation of 3-(Pyridine-3-yl)-2-Oxazolidinone Derivatives as Antibacterial Agents. Front Chem 2022; 10:949813. [PMID: 35923260 PMCID: PMC9339906 DOI: 10.3389/fchem.2022.949813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, a series of 3-(pyridine-3-yl)-2-oxazolidinone derivatives was designed, synthesized, and evaluated for in vitro antibacterial activity, which included bacteriostatic, morphological, kinetic studies, and molecular docking. The results demonstrated that compounds 21b, 21d, 21e and 21f exhibited strong antibacterial activity similar to that of linezolid toward five Gram-positive bacteria. After observing the effect of the drug on the morphology and growth dynamics of the bacteria, the possible modes of action were predicted by molecular docking. Furthermore, the antibiofilm activity and the potential drug resistance assay was proceeded. These compounds exhibited universal antibiofilm activity and compound 21d showed significant concentration-dependent inhibition of biofilm formation. Compound 21d also showed a stable effect on S. pneumoniae (ATCC 49619) with less drug resistance growth for 15 days, which is much longer than that of linezolid. Overall, these results can be used to guide further exploration of novel antimicrobial agents.
Collapse
Affiliation(s)
- Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-yi Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-qing Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yi-xin Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiu-ying Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zun-lai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Hong-Liang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
- *Correspondence: Hong-Liang Yang,
| |
Collapse
|
9
|
Pipatthana M, Harnvoravongchai P, Pongchaikul P, Likhitrattanapisal S, Phanchana M, Chankhamhaengdecha S, Janvilisri T. The repertoire of ABC proteins in Clostridioides difficile. Comput Struct Biotechnol J 2021; 19:2905-2920. [PMID: 34094001 PMCID: PMC8144104 DOI: 10.1016/j.csbj.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 11/07/2022] Open
Abstract
ATP-binding cassette (ABC) transporters belong to one of the largest membrane protein superfamilies, which function in translocating substrates across biological membranes using energy from ATP hydrolysis. Currently, the classification of ABC transporters in Clostridioides difficile is not complete. Therefore, the sequence-function relationship of all ABC proteins encoded within the C. difficile genome was analyzed. Identification of protein domains associated with the ABC system in the C. difficile 630 reference genome revealed 226 domains: 97 nucleotide-binding domains (NBDs), 98 transmembrane domains (TMDs), 30 substrate-binding domains (SBDs), and one domain with features of an adaptor protein. Gene organization and transcriptional unit analyses indicated the presence of 78 ABC systems comprising 28 importers and 50 exporters. Based on NBD sequence similarity, ABC transporters were classified into 12 sub-families according to their substrates. Interestingly, all ABC exporters, accounting for 64% of the total ABC systems, are involved in antibiotic resistance. Based on analysis of ABC proteins from 49 C. difficile strains, the majority of core NBDs are predicted to be involved in multidrug resistance systems, consistent with the ability of this organism to survive exposure to an array of antibiotics. Our findings herein provide another step toward a better understanding of the function and evolutionary relationships of ABC proteins in this pathogen.
Collapse
Affiliation(s)
- Methinee Pipatthana
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Somsak Likhitrattanapisal
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
11
|
Activation of metabolic and stress responses during subtoxic expression of the type I toxin hok in Erwinia amylovora. BMC Genomics 2021; 22:74. [PMID: 33482720 PMCID: PMC7821729 DOI: 10.1186/s12864-021-07376-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Toxin-antitoxin (TA) systems, abundant in prokaryotes, are composed of a toxin gene and its cognate antitoxin. Several toxins are implied to affect the physiological state and stress tolerance of bacteria in a population. We previously identified a chromosomally encoded hok-sok type I TA system in Erwinia amylovora, the causative agent of fire blight disease on pome fruit trees. A high-level induction of the hok gene was lethal to E. amylovora cells through unknown mechanisms. The molecular targets or regulatory roles of Hok were unknown. Results Here, we examined the physiological and transcriptomic changes of Erwinia amylovora cells expressing hok at subtoxic levels that were confirmed to confer no cell death, and at toxic levels that resulted in killing of cells. In both conditions, hok caused membrane rupture and collapse of the proton motive force in a subpopulation of E. amylovora cells. We demonstrated that induction of hok resulted in upregulation of ATP biosynthesis genes, and caused leakage of ATP from cells only at toxic levels. We showed that overexpression of the phage shock protein gene pspA largely reversed the cell death phenotype caused by high levels of hok induction. We also showed that induction of hok at a subtoxic level rendered a greater proportion of stationary phase E. amylovora cells tolerant to the antibiotic streptomycin. Conclusions We characterized the molecular mechanism of toxicity by high-level of hok induction and demonstrated that low-level expression of hok primes the stress responses of E. amylovora against further membrane and antibiotic stressors. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07376-w.
Collapse
|
12
|
Ongwae GM, Morrison KR, Allen RA, Kim S, Im W, Wuest WM, Pires MM. Broadening Activity of Polymyxin by Quaternary Ammonium Grafting. ACS Infect Dis 2020; 6:1427-1435. [PMID: 32212668 DOI: 10.1021/acsinfecdis.0c00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens continue to impose a tremendous health burden across the globe. Here, we describe a novel series of polymyxin-based agents grafted with membrane-active quaternary ammonium warheads to combine two important classes of Gram-negative antimicrobial scaffolds. The goal was to deliver a targeted quaternary ammonium warhead onto the surface of bacterial pathogens using the outer membrane homing properties of polymyxin. The most potent agents resulted in new scaffolds that retained the ability to target Gram-negative bacteria and had limited toxicity toward mammalian cells. We showed, using a molecular dynamics approach, that the new agents retained their ability to engage in specific interactions with lipopolysaccharide molecules. Significantly, the combination of quaternary ammonium and polymyxin widens the activity to the pathogen Staphylococcus aureus. Our results serve as an example of how two membrane-active agents can be combined to produce a class of novel scaffolds with potent biological activity.
Collapse
Affiliation(s)
- George M. Ongwae
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly R. Morrison
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A. Allen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Seonghoon Kim
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
13
|
Zhang L, Hou L, Zhang S, Kou X, Li R, Wang S. Mechanism of S. aureus ATCC 25923 in response to heat stress under different water activity and heating rates. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Hua X, Yang Q, Zhang W, Dong Z, Yu S, Schwarz S, Liu S. Antibacterial Activity and Mechanism of Action of Aspidinol Against Multi-Drug-Resistant Methicillin-Resistant Staphylococcus aureus. Front Pharmacol 2018; 9:619. [PMID: 29950995 PMCID: PMC6008372 DOI: 10.3389/fphar.2018.00619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/23/2018] [Indexed: 12/03/2022] Open
Abstract
This study aimed at investigating the antibacterial activity of aspidinol, an extract from Dryopteris fragrans (L.) Schott, against methicillin-resistant Staphylococcus aureus (MRSA). MRSA isolates were treated with aspidinol to determine the differential expression of genes and associated pathways following the drug treatment. Aspidinol displayed significant anti-MRSA activity, both in vivo (minimum inhibitory concentration = 2 μg/mL) and in vitro, and achieved an antibacterial effect comparable to that of vancomycin. In the lethal septicemic mouse study, a dose of 50 mg/kg of either aspidinol or vancomycin provided significant protection from mortality. In the non-lethal septicemic mouse study, aspidinol and vancomycin produced a significant reduction in mean bacterial load in murine organs, including the spleen, lung, and liver. After treatment with aspidinol, we found through RNA-seq and RT-PCR experiments that the inhibition of the formation of ribosomes was the primary S. aureus cell-killing mechanism, and the inhibition of amino acid synthesis and the reduction of virulence factors might play a secondary role.
Collapse
Affiliation(s)
- Xin Hua
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qin Yang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhimin Dong
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, China
| | - Shenye Yu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
15
|
Mack SG, Turner RL, Dwyer DJ. Achieving a Predictive Understanding of Antimicrobial Stress Physiology through Systems Biology. Trends Microbiol 2018. [PMID: 29530606 DOI: 10.1016/j.tim.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dramatic spread and diversity of antibiotic-resistant pathogens has significantly reduced the efficacy of essentially all antibiotic classes, bringing us ever closer to a postantibiotic era. Exacerbating this issue, our understanding of the multiscale physiological impact of antimicrobial challenge on bacterial pathogens remains incomplete. Concerns over resistance and the need for new antibiotics have motivated the collection of omics measurements to provide systems-level insights into antimicrobial stress responses for nearly 20 years. Although technological advances have markedly improved the types and resolution of such measurements, continued development of mathematical frameworks aimed at providing a predictive understanding of complex antimicrobial-associated phenotypes is critical to maximize the utility of multiscale data. Here we highlight recent efforts utilizing systems biology to enhance our knowledge of antimicrobial stress physiology. We provide a brief historical perspective of antibiotic-focused omics measurements, highlight new measurement discoveries and trends, discuss examples and opportunities for integrating measurements with mathematical models, and describe future challenges for the field.
Collapse
Affiliation(s)
- Sean G Mack
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Randi L Turner
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel J Dwyer
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Sciences & Technology, University of Maryland, College Park, MD 20742, USA; Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
16
|
Sharma R, Patel S, Abboud C, Diep J, Ly NS, Pogue JM, Kaye KS, Li J, Rao GG. Polymyxin B in combination with meropenem against carbapenemase-producing Klebsiella pneumoniae: pharmacodynamics and morphological changes. Int J Antimicrob Agents 2016; 49:224-232. [PMID: 28040408 DOI: 10.1016/j.ijantimicag.2016.10.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/16/2016] [Indexed: 12/24/2022]
Abstract
Combination therapy provides a useful therapeutic approach to overcome resistance until new antibiotics become available. In this study, the pharmacodynamics, including the morphological effects, of polymyxin B (PMB) and meropenem alone and in combination against KPC-producing Klebsiella pneumoniae clinical isolates was examined. Ten clinical isolates were obtained from patients undergoing treatment for mediastinitis. KPCs were identified and MICs were measured using microbroth dilution. Time-kill studies were conducted over 24 h with PMB (0.5-16 mg/L) and meropenem (20-120 mg/L) alone or in combination against an initial inoculum of ca. 106 CFU/mL. Scanning electron microscopy (SEM) was employed to analyse changes in bacterial morphology after treatment, and the log change method was used to quantify the pharmacodynamic effect. All isolates harboured the blaKPC-2 gene and were resistant to meropenem (MICs ≥8 mg/L). Clinically relevant PMB concentrations (0.5, 1.0 and 2.0 mg/L) in combination with meropenem were synergistic against all isolates except BRKP28 (polymyxin- and meropenem-resistant, both MICs >128 mg/L). All PMB and meropenem concentrations in combination were bactericidal against polymyxin-susceptible isolates with meropenem MICs ≤16 mg/L. SEM revealed extensive morphological changes following treatment with PMB in combination with meropenem compared with the changes observed with each individual agent. Additionally, morphological changes decreased with increasing resistance profiles of the isolate, i.e. increasing meropenem MIC. These antimicrobial effects may not only be a summation of the effects due to each antibiotic but also a result of differential action that likely inhibits protective mechanisms in bacteria.
Collapse
Affiliation(s)
- Rajnikant Sharma
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Saloni Patel
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Cely Abboud
- Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil
| | - John Diep
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Neang S Ly
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Jason M Pogue
- Division of Infectious Diseases, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Keith S Kaye
- Division of Infectious Diseases, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Gauri G Rao
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.
| |
Collapse
|