1
|
Yao XQ, Bao H, La NT, Jiang GS, Zhai PH, Liu CB, Yu L. Gut microbiota contribute to cold adaptation in mammals-primates and ungulates. iScience 2025; 28:112245. [PMID: 40241768 PMCID: PMC12002624 DOI: 10.1016/j.isci.2025.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/04/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Gut microbiota play an influential role in how animals adapt to extreme environments. Two phylogenetically distant mammals, Yunnan snub-nosed monkey and reindeer both adapted to frigid environments. Metagenomic analyses revealed they developed similar cold adaptation strategies in response to food scarcity (enhanced fiber degradation and nitrogen balance maintenance), energy shortages (increased short-chain fatty acid [SCFA] synthesis), and a constant body temperature sustainment (stimulation of non-shivering thermogenesis [NST]). Moreover, they evolved distinct adaptation strategies to cope with different cold ecosystems. Yunnan snub-nosed monkey adapt to high-altitude hypoxia environment through enhancing ability to synthesize lactate and metabolize purine, while reindeer adapt to extreme cold environment through increasing blood flow, strengthening urea cycling, and enriching fat storage associated bacteria. Notably, reindeer microbiota uniquely enriched cholesterol-degrading bacteria, potentially mitigating cardiovascular risks from lipid storage. Our study expands the knowledge of how gut microbiome promotes cold adaptation through shared and specialized mechanisms shaped by different phylogenetic and ecological contexts.
Collapse
Affiliation(s)
- Xue-Qin Yao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Heng Bao
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Areas, Northeast Forestry University, Harbin 150040, China
| | - Nhat-Tan La
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Guang-Shun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Areas, Northeast Forestry University, Harbin 150040, China
| | - Peng-Hui Zhai
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Areas, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bing Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
2
|
Li Y, Wang R, Zhai C, Cao D, Sun Z, Zhang Y, Ma B. Dynamic Impacts of Stock Enhancement on Kaluga Sturgeon ( Huso dauricus): Novel Conservation Strategy Insights from the Gut Microbe Composition and Gene Expression Mode. Int J Mol Sci 2025; 26:1480. [PMID: 40003945 PMCID: PMC11855664 DOI: 10.3390/ijms26041480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The sturgeon population has experienced strict threats due to inordinate human activities in the last decade and has been classified into the Red List of Threatened Species in recent years. Stock enhancement is one effective practice for the conservation of wild sturgeons. However, the survival conditions for sturgeon were not satisfactory after they were directly restocked into their natural habitat. Huso dauricus is an important protected sturgeon species, and finding an appropriate conservation strategy for the wild population is urgent. To clarify the dynamic adaptability of Huso dauricus to its wild environment, 1000 individuals were released into a natural river. On the 0th, 7th, 14th, and 30th days, five recaptured individuals were used to evaluate the dynamic trends in biochemical biomarkers, intestinal histomorphology, gut microbe taxon composition, and transcription profile over 30 days of stock enhancement. Our results indicated that Huso dauricus individuals still had a physiological stress status on the seventh day and then gradually adapted to the wild habitat 14 days after reintroduction based on the serum cortisol level. Meanwhile, the feeding habitat, organ function indicators, and growth performance showed similar dynamic changes within 30 days. Interestingly, their gut bacterial diversity and taxon structure also fluctuated over the 30 days after restocking, and they were accompanied by dynamic changes in intestinal pathological injury and tight junction protein expression in this period. The transcriptome analysis revealed the dynamic adaptability of Huso dauricus to wild habitats associated with the expression modes of genes related to the FoxO family, immune system, cytochrome family, and ATP metabolism. Taken together, the findings of the present research demonstrated that artificial reintroduction had dynamic impacts on the health condition of Huso dauricus and that 14 days of wilderness training might be essential for sturgeon restocking practices. Our study revealed the adaption mechanism of Huso dauricus at the molecular level during the restocking period and shed light on the theoretical guidelines for wild sturgeon conservation.
Collapse
Affiliation(s)
- Yutao Li
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (Y.L.); (R.W.); (D.C.)
| | - Ruoyu Wang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (Y.L.); (R.W.); (D.C.)
| | - Cunhua Zhai
- Heilongjiang River Basin Fishery Resources and Environment Scientific Observation Experimental Station, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.Z.); (Z.S.)
| | - Dingchen Cao
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (Y.L.); (R.W.); (D.C.)
| | - Zhipeng Sun
- Heilongjiang River Basin Fishery Resources and Environment Scientific Observation Experimental Station, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.Z.); (Z.S.)
| | - Ying Zhang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (Y.L.); (R.W.); (D.C.)
| | - Bo Ma
- Heilongjiang River Basin Fishery Resources and Environment Scientific Observation Experimental Station, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.Z.); (Z.S.)
| |
Collapse
|
3
|
Mwamburi SM, Kawato S, Furukawa M, Konishi K, Nozaki R, Hirono I, Kondo H. De Novo Assembly and Annotation of the Siganus fuscescens (Houttuyn, 1782) Genome: Marking a Pioneering Advance for the Siganidae Family. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:902-916. [PMID: 38850360 DOI: 10.1007/s10126-024-10325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
This study presents the first draft genome of Siganus fuscescens, and thereby establishes the first whole-genome sequence for a species in the Siganidae family. Leveraging both long and short read sequencing technologies, i.e., Oxford Nanopore and Illumina sequencing, we successfully assembled a mitogenome spanning 16.494 Kb and a first haploid genome encompassing 498 Mb. The assembled genome accounted for a 99.6% of the estimated genome size and was organized into 164 contigs with an N50 of 7.2 Mb. This genome assembly showed a GC content of 42.9% and a high Benchmarking Universal Single-Copy Orthologue (BUSCO) completeness score of 99.5% using actinopterygii_odb10 lineage, thereby meeting stringent quality standards. In addition to its structural aspects, our study also examined the functional genomics of this species, including the intricate capacity to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFAs) and secrete venom. Notably, our analyses revealed various repeats elements, which collectively constituted 17.43% of the genome. Moreover, annotation of 28,351 genes uncovered both shared genetic signatures and those that are unique to S. fuscescens. Our assembled genome also displayed a moderate prevalence of gene duplication compared to other fish species, which suggests that this species has a distinctive evolutionary trajectory and potentially unique functional constraints. Taken altogether, this genomic resource establishes a robust foundation for future research on the biology, evolution, and the aquaculture potential of S. fuscescens.
Collapse
Affiliation(s)
- Samuel Mwakisha Mwamburi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
- Department of Fisheries, Kenya Marine and Fisheries Research Institute, P.O BOX 81651-80100, Mombasa, Kenya
| | - Satoshi Kawato
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Miho Furukawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Kayo Konishi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Reiko Nozaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan.
| |
Collapse
|
4
|
Shang Z, Chen K, Han T, Bu F, Sun S, Zhu N, Man D, Yang K, Yuan S, Fu H. Natural Foraging Selection and Gut Microecology of Two Subterranean Rodents from the Eurasian Steppe in China. Animals (Basel) 2024; 14:2334. [PMID: 39199868 PMCID: PMC11350848 DOI: 10.3390/ani14162334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
As the most abundant group of mammals, rodents possess a very rich ecotype, which makes them ideal for studying the relationship between diet and host gut microecology. Zokors are specialized herbivorous rodents adapted to living underground. Unlike more generalized herbivorous rodents, they feed on the underground parts of grassland plants. There are two species of the genus Myospalax in the Eurasian steppes in China: one is Myospalax psilurus, which inhabits meadow grasslands and forest edge areas, and the other is M. aspalax, which inhabits typical grassland areas. How are the dietary choices of the two species adapted to long-term subterranean life, and what is the relationship of this diet with gut microbes? Are there unique indicator genera for their gut microbial communities? Relevant factors, such as the ability of both species to degrade cellulose, are not yet clear. In this study, we analyzed the gut bacterial communities and diet compositions of two species of zokors using 16S amplicon technology combined with macro-barcoding technology. We found that the diversity of gut microbial bacterial communities in M. psilurus was significantly higher than that in M. aspalax, and that the two species of zokors possessed different gut bacterial indicator genera. Differences in the feeding habits of the two species of zokors stem from food composition rather than diversity. Based on the results of Mantel analyses, the gut bacterial community of M. aspalax showed a significant positive correlation with the creeping-rooted type food, and there was a complementary relationship between the axis root-type-food- and the rhizome-type-food-dominated (containing bulb types and tuberous root types) food groups. Functional prediction based on KEGG found that M. psilurus possessed a stronger degradation ability in the same cellulose degradation pathway. Neutral modeling results show that the gut flora of the M. psilurus has a wider ecological niche compared to that of the M. aspalax. This provides a new perspective for understanding how rodents living underground in grassland areas respond to changes in food conditions.
Collapse
Affiliation(s)
- Zhenghaoni Shang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Kai Chen
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Tingting Han
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Fan Bu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Shanshan Sun
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Na Zhu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Duhu Man
- College of Agriculture, Hulunbuir University, Hulunbuir 021000, China;
| | - Ke Yang
- Alxa League Meteorological Bureau, Alxa 750300, China;
| | - Shuai Yuan
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Heping Fu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| |
Collapse
|
5
|
Chen L, Ma J, Xu W, Shen F, Yang Z, Sonne C, Dietz R, Li L, Jie X, Li L, Yan G, Zhang X. Comparative transcriptome and methylome of polar bears, giant and red pandas reveal diet-driven adaptive evolution. Evol Appl 2024; 17:e13731. [PMID: 38894980 PMCID: PMC11183199 DOI: 10.1111/eva.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Epigenetic regulation plays an important role in the evolution of species adaptations, yet little information is available on the epigenetic mechanisms underlying the adaptive evolution of bamboo-eating in both giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens). To investigate the potential contribution of epigenetic to the adaptive evolution of bamboo-eating in giant and red pandas, we performed hepatic comparative transcriptome and methylome analyses between bamboo-eating pandas and carnivorous polar bears (Ursus maritimus). We found that genes involved in carbohydrate, lipid, amino acid, and protein metabolism showed significant differences in methylation and expression levels between the two panda species and polar bears. Clustering analysis of gene expression revealed that giant pandas did not form a sister group with the more closely related polar bears, suggesting that the expression pattern of genes in livers of giant pandas and red pandas have evolved convergently driven by their similar diets. Compared to polar bears, some key genes involved in carbohydrate metabolism and biological oxidation and cholesterol synthesis showed hypomethylation and higher expression in giant and red pandas, while genes involved in fat digestion and absorption, fatty acid metabolism, lysine degradation, resistance to lipid peroxidation and detoxification showed hypermethylation and low expression. Our study elucidates the special nutrient utilization mechanism of giant pandas and red pandas and provides some insights into the molecular mechanism of their adaptive evolution of bamboo feeding. This has important implications for the breeding and conservation of giant pandas and red pandas.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Jinnan Ma
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- College of Continuing EducationYunnan Normal UniversityKunmingChina
| | - Wencai Xu
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered WildlifeChengdu Research Base of Giant Panda BreedingChengduChina
| | | | - Christian Sonne
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Rune Dietz
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Linzhu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiaodie Jie
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Lu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Guoqiang Yan
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiuyue Zhang
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
6
|
Kondo K, Suzuki M, Amadaira M, Araki C, Watanabe R, Murakami K, Ochiai S, Ogura T, Hayakawa T. Association of maternal genetics with the gut microbiome and eucalypt diet selection in captive koalas. PeerJ 2024; 12:e17385. [PMID: 38818452 PMCID: PMC11138522 DOI: 10.7717/peerj.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Background Koalas, an Australian arboreal marsupial, depend on eucalypt tree leaves for their diet. They selectively consume only a few of the hundreds of available eucalypt species. Since the koala gut microbiome is essential for the digestion and detoxification of eucalypts, their individual differences in the gut microbiome may lead to variations in their eucalypt selection and eucalypt metabolic capacity. However, research focusing on the relationship between the gut microbiome and differences in food preferences is very limited. We aimed to determine whether individual and regional differences exist in the gut microbiome of koalas as well as the mechanism by which these differences influence eucalypt selection. Methods Foraging data were collected from six koalas and a total of 62 feces were collected from 15 koalas of two zoos in Japan. The mitochondrial phylogenetic analysis was conducted to estimate the mitochondrial maternal origin of each koala. In addition, the 16S-based gut microbiome of 15 koalas was analyzed to determine the composition and diversity of each koala's gut microbiome. We used these data to investigate the relationship among mitochondrial maternal origin, gut microbiome and eucalypt diet selection. Results and Discussion This research revealed that diversity and composition of the gut microbiome and that eucalypt diet selection of koalas differs among regions. We also revealed that the gut microbiome alpha diversity was correlated with foraging diversity in koalas. These individual and regional differences would result from vertical (maternal) transmission of the gut microbiome and represent an intraspecific variation in koala foraging strategies. Further, we demonstrated that certain gut bacteria were strongly correlated with both mitochondrial maternal origin and eucalypt foraging patterns. Bacteria found to be associated with mitochondrial maternal origin included bacteria involved in fiber digestion and degradation of secondary metabolites, such as the families Rikenellaceae and Synergistaceae. These bacteria may cause differences in metabolic capacity between individual and regional koalas and influence their eucalypt selection. Conclusion We showed that the characteristics (composition and diversity) of the gut microbiome and eucalypt diet selection of koalas differ by individuals and regional origins as we expected. In addition, some gut bacteria that could influence eucalypt foraging of koalas showed the relationships with both mitochondrial maternal origin and eucalypt foraging pattern. These differences in the gut microbiome between regional origins may make a difference in eucalypt selection. Given the importance of the gut microbiome to koalas foraging on eucalypts and their strong symbiotic relationship, future studies should focus on the symbiotic relationship and coevolution between koalas and the gut microbiome to understand individual and regional differences in eucalypt diet selection by koalas.
Collapse
Affiliation(s)
- Kotaro Kondo
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mirei Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mana Amadaira
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Chiharu Araki
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Rie Watanabe
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | | | | | - Tadatoshi Ogura
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Zhang M, Zhou Y, Cui X, Zhu L. The Potential of Co-Evolution and Interactions of Gut Bacteria-Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis. Microorganisms 2024; 12:713. [PMID: 38674657 PMCID: PMC11051890 DOI: 10.3390/microorganisms12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.
Collapse
Affiliation(s)
| | | | | | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210098, China; (M.Z.); (Y.Z.); (X.C.)
| |
Collapse
|
8
|
Li L, Jing S, Tang Y, Li D, Qin M. The effects of food provisioning on the gut microbiota community and antibiotic resistance genes of Yunnan snub-nosed monkey. Front Microbiol 2024; 15:1361218. [PMID: 38567076 PMCID: PMC10985317 DOI: 10.3389/fmicb.2024.1361218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Yunnan snub-nosed monkeys (Rhinopithecus bieti) are the highest elevation lived non-human primate, and their survival has been threatened for decades. To promote their population growth, a reserve provides a typical monkey population with supplemental food. However, the influences of this food provisioning on their gut microbiota and antibiotic resistance genes (ARGs) were unknown. Therefore, we investigated the gut microbiota and ARGs of the food-provisioned monkey population compared with another wild foraging population. We found that food provisioning significantly increased the gut microbiota diversity and changed the community composition, particularly increased both the Firmicutes abundance and Firmicutes/Bacteroidetes ratio. Meanwhile, the food provisioning decreased the complex and stable gut microbiota network. KEGG functions were also influenced by food provisioning, with wild foraging monkeys showing higher functions of metabolism and genetic information processing, especially the carbohydrate metabolism, while food-provisioned monkeys exhibited increased environmental information processing, cellular processes, and organismal systems, including valine, leucine, and isoleucine degradation. In addition, food provisioning increased the abundance of ARGs in the gut microbiota, with most increasing the abundance of bacA gene and changing the correlations between specific ARGs and bacterial phyla in each population. Our study highlights that even food provisioning could promote wildlife nutrient intake, and it is necessary to pay attention to the increased ARGs and potential effects on gut microbiota stability and functions for this human conservation measure.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Shan Jing
- School of Electrical Information Engineering, Chengdu Textile College, Chengdu, China
| | - Yun Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Mingsen Qin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
9
|
Ning R, Li C, Xia M, Zhang Y, Gan Y, Huang Y, Zhang T, Song H, Zhang S, Guo W. Pseudomonas-associated bacteria play a key role in obtaining nutrition from bamboo for the giant panda ( Ailuropoda melanoleuca). Microbiol Spectr 2024; 12:e0381923. [PMID: 38305171 PMCID: PMC10913395 DOI: 10.1128/spectrum.03819-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Gut microbiota plays a vital role in obtaining nutrition from bamboo for giant pandas. However, low cellulase activity has been observed in the panda's gut. Besides, no specific pathway has been implicated in lignin digestion by gut microbiota of pandas. Therefore, the mechanism by which they obtain nutrients is still controversial. It is necessary to elucidate the precise pathways employed by gut microbiota of pandas to degrade lignin. Here, the metabolic pathways for lignin degradation in pandas were explored by comparing 209 metagenomic sequencing data from wild species with different feeding habits. Lignin degradation central pathways, including beta-ketoadipate and homogentisate pathway, were enriched in the gut of wild bamboo-eating pandas. The gut microbiome of wild bamboo-eating specialists was enriched with genes from pathways implicated in degrading ferulate and p-coumarate into acetyl-CoA and succinyl-CoA, which can potentially provide the raw materials for metabolism in pandas. Specifically, Pseudomonas, as the most dominant gut bacteria genus, was found to be the main bacteria to provide genes involved in lignin or lignin derivative degradation. Herein, three Pseudomonas-associated strains isolated from the feces of wild pandas showed the laccase, lignin peroxidase, and manganese peroxidase activity and extracellular lignin degradation ability in vitro. A potential mechanism for pandas to obtain nutrition from bamboo was proposed based on the results. This study provides novel insights into the adaptive evolution of pandas from the perspective of lignin metabolism. IMPORTANCE Although giant pandas only feed on bamboo, the mechanism of lignin digestion in pandas is unclear. Here, the metabolic pathways for lignin degradation in wild pandas were explored by comparing gut metagenomic from species with different feeding habits. Results showed that lignin degradation central pathways, including beta-ketoadipate and homogentisate pathway, were enriched in the gut of wild bamboo-eating pandas. Genes from pathways involved in degrading ferulate and p-coumarate via beta-ketoadipate pathway were also enriched in bamboo-eating pandas. The final products of the above process, such as acetyl-CoA, can potentially provide the raw materials for metabolism in pandas. Specifically, Pseudomonas, as the most dominant gut bacteria genus, mainly provides genes involved in lignin degradation. Herein, Pseudomonas-associated strains isolated from the feces of pandas could degrade extracellular lignin. These findings suggest that gut microbiome of pandas is crucial in obtaining nutrition from lignin via Pseudomonas, as the main lignin-degrading bacteria.
Collapse
Affiliation(s)
- Ruihong Ning
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Maohua Xia
- Beijing Key Laboratory of Captive Wildlife Technology, Beijing Zoo, Beijing, P.R. China
| | - Yu Zhang
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yunong Gan
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Tianyou Zhang
- Chimelong Safari Park in Guangdong Province, Guangzhou, China
| | - Haitao Song
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Siyuan Zhang
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Wei Guo
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
10
|
Hu Y, Hu Y, Zhou W, Wei F. Conservation Genomics and Metagenomics of Giant and Red Pandas in the Wild. Annu Rev Anim Biosci 2024; 12:69-89. [PMID: 37863091 DOI: 10.1146/annurev-animal-021022-054730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Giant pandas and red pandas are endangered species with similar specialized bamboo diet and partial sympatric distribution in China. Over the last two decades, the rapid development of genomics and metagenomics research on these species has enriched our knowledge of their biology, ecology, physiology, genetics, and evolution, which is crucial and useful for their conservation. We describe the evolutionary history, endangerment processes, genetic diversity, and population structure of wild giant pandas and two species of red pandas (Chinese and Himalayan red pandas). In addition, we explore how genomics and metagenomics studies have provided insight into the convergent adaptation of pandas to the specialized bamboo diet. Finally, we discuss how these findings are applied to effective conservation management of giant and red pandas in the wild and in captivity to promote the long-term persistence of these species.
Collapse
Affiliation(s)
- Yisi Hu
- College of Forestry, Jiangxi Agricultural University, Nanchang, China;
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fuwen Wei
- College of Forestry, Jiangxi Agricultural University, Nanchang, China;
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Zhang NN, Chen XX, Liang J, Zhao C, Xiang J, Luo L, Wang ET, Shi F. Rhizocompartmental microbiomes of arrow bamboo ( Fargesia nitida) and their relation to soil properties in Subalpine Coniferous Forests. PeerJ 2023; 11:e16488. [PMID: 38047031 PMCID: PMC10693234 DOI: 10.7717/peerj.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Arrow bamboo (Fargesia nitida) is a pioneer plant in secondary forest succession in the Sichuan Province mountains. To comprehensively investigate the microbial communities and their functional variations in different rhizocompartments (root endosphere, rhizosphere, and root zone) of arrow bamboo (Fargesia nitida), a high-throughput metagenomic study was conducted in the present study. The results showed that the abundances of the dominant bacterial phyla Proteobacteria and Actinobacteria in the bamboo root endosphere were significantly lower than those in the rhizosphere and root zones. In contrast, the dominant fungal phyla, Ascomycota and Basidiomycota, showed the opposite tendency. Lower microbial diversity, different taxonomic composition and functional profiles, and a greater abundance of genes involved in nitrogen fixation (nifB), cellulose degradation (beta-glucosidase), and cellobiose transport (cellulose 1, 4-beta-cellobiosidase) were found in the bamboo root endosphere than in the other rhizocompartments. Greater soil total carbon, total nitrogen, NH4+-N, microbial biomass carbon, and greater activities of invertase and urease were found in the bamboo root zone than in the adjacent soil (spruce root zone). In contrast, the soil microbial community and functional profiles were similar. At the phylum level, invertase was significantly related to 31 microbial taxa, and the effect of NH4+-N on the microbial community composition was greater than that of NO3--N. The soil physicochemical properties and enzyme activities were significantly correlated with microbial function. These results indicate that the root endosphere microbiomes of arrow bamboo were strongly selected by the host plant, which caused changes in the soil nutrient properties in the subalpine coniferous forest.
Collapse
Affiliation(s)
- Nan Nan Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiao Xia Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | - Jun Xiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - En Tao Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Fusun Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
12
|
Huang G, Shi W, Wang L, Qu Q, Zuo Z, Wang J, Zhao F, Wei F. PandaGUT provides new insights into bacterial diversity, function, and resistome landscapes with implications for conservation. MICROBIOME 2023; 11:221. [PMID: 37805557 PMCID: PMC10559513 DOI: 10.1186/s40168-023-01657-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/23/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND The gut microbiota play important roles in host adaptation and evolution, but are understudied in natural population of wild mammals. To address host adaptive evolution and improve conservation efforts of threatened mammals from a metagenomic perspective, we established a high-quality gut microbiome catalog of the giant panda (pandaGUT) to resolve the microbiome diversity, functional, and resistome landscapes using approximately 7 Tbp of long- and short-read sequencing data from 439 stool samples. RESULTS The pandaGUT catalog comprises 820 metagenome-assembled genomes, including 40 complete closed genomes, and 64.5% of which belong to species that have not been previously reported, greatly expanding the coverage of most prokaryotic lineages. The catalog contains 2.37 million unique genes, with 74.8% possessing complete open read frames, facilitating future mining of microbial functional potential. We identified three microbial enterotypes across wild and captive panda populations characterized by Clostridium, Pseudomonas, and Escherichia, respectively. We found that wild pandas exhibited host genetic-specific microbial structures and functions, suggesting host-gut microbiota phylosymbiosis, while the captive cohorts encoded more multi-drug resistance genes. CONCLUSIONS Our study provides largely untapped resources for biochemical and biotechnological applications as well as potential intervention avenues via the rational manipulation of microbial diversity and reducing antibiotic usage for future conservation management of wildlife. Video Abstract.
Collapse
Affiliation(s)
- Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenyu Shi
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingyue Qu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenqiang Zuo
- Laboratory for Computational Genomics, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Wang
- Laboratory for Computational Genomics, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangqing Zhao
- Laboratory for Computational Genomics, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Wang B, Qi M, Ma Y, Zhang B, Hu Y. Microbiome Diversity and Cellulose Decomposition Processes by Microorganisms on the Ancient Wooden Seawall of Qiantang River of Hangzhou, China. MICROBIAL ECOLOGY 2023; 86:2109-2119. [PMID: 37099155 DOI: 10.1007/s00248-023-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Archaeological wood, also known as wooden cultural relics, refers to ancient wood that has been worked by humans. Further insights into the decomposition mechanism of archaeological wood are needed for its preventive conservation. In this study, we assessed the microbiome diversity and cellulose decomposition processes on a 200-year-old ancient wooden seawall - the Qiantang River of Hangzhou, China. We used high-throughput sequencing (HTS) to deduce the metagenomic functions, particularly the cellulose-decomposing pathway of the microbial communities, through bioinformatical approaches. The predominant cellulose-decomposing microorganisms were then verified with traditional isolation, culture, and identification method. The results showed that the excavation of archaeological wood significantly altered the environment, accelerating the deterioration process of the archaeological wood through the carbohydrate metabolism and the xenobiotic biodegradation and metabolism pathways, under the comprehensive metabolism of complex ecosystem formed by bacteria, archaea, fungi, microfauna, plants, and algae. Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria were found to be the predominant source of bacterial cellulose-decomposing enzymes. Accordingly, we suggest relocating the wooden seawall to an indoor environment with controllable conditions to better preserve it. In addition, these results provide further evidence for our viewpoints that HTS techniques, combined with rational bioinformatical data interpretation approaches, can serve as powerful tools for the preventive protection of cultural heritage.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Archaeology, Cultural Heritage and Museology, Zhejiang University, Hangzhou, 310028, China
| | - Miaoyi Qi
- Department of Archaeology, Cultural Heritage and Museology, Zhejiang University, Hangzhou, 310028, China
| | - Yonghua Ma
- The Traditional Architecture Design and Research Institute of Zhejiang Province, Hangzhou, 310030, China
| | - Bingjian Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China.
| | - Yulan Hu
- Department of Archaeology, Cultural Heritage and Museology, Zhejiang University, Hangzhou, 310028, China.
| |
Collapse
|
14
|
Liu PY, Xia D, McGonigle K, Carroll AB, Chiango J, Scavello H, Martins R, Mehta S, Krespan E, Lunde E, LeVine D, Fellman CL, Goggs R, Beiting DP, Garden OA. Immune-mediated hematological disease in dogs is associated with alterations of the fecal microbiota: a pilot study. Anim Microbiome 2023; 5:46. [PMID: 37770990 PMCID: PMC10540429 DOI: 10.1186/s42523-023-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The dog is the most popular companion animal and is a valuable large animal model for several human diseases. Canine immune-mediated hematological diseases, including immune-mediated hemolytic anemia (IMHA) and immune thrombocytopenia (ITP), share many features in common with autoimmune hematological diseases of humans. The gut microbiome has been linked to systemic illness, but few studies have evaluated its association with immune-mediated hematological disease. To address this knowledge gap, 16S rRNA gene sequencing was used to profile the fecal microbiota of dogs with spontaneous IMHA and ITP at presentation and following successful treatment. In total, 21 affected and 13 healthy control dogs were included in the study. RESULTS IMHA/ITP is associated with remodeling of fecal microbiota, marked by decreased relative abundance of the spirochete Treponema spp., increased relative abundance of the pathobionts Clostridium septicum and Escherichia coli, and increased overall microbial diversity. Logistic regression analysis demonstrated that Treponema spp. were associated with decreased risk of IMHA/ITP (odds ratio [OR] 0.24-0.34), while Ruminococcaceae UCG-009 and Christensenellaceae R-7 group were associated with increased risk of disease (OR = 6.84 [95% CI 2-32.74] and 8.36 [95% CI 1.85-71.88] respectively). CONCLUSIONS This study demonstrates an association of immune-mediated hematological diseases in dogs with fecal dysbiosis, and points to specific bacterial genera as biomarkers of disease. Microbes identified as positive or negative risk factors for IMHA/ITP represent an area for future research as potential targets for new diagnostic assays and/or therapeutic applications.
Collapse
Affiliation(s)
- P-Y Liu
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| | - D Xia
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - K McGonigle
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - A B Carroll
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - J Chiango
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - H Scavello
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - R Martins
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA
| | - S Mehta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - E Lunde
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
| | - D LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA, 50011, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1220 Wire Road, Auburn, AL, 36849, USA
| | - C L Fellman
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - R Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Box 31, Ithaca, NY, 14853, USA
| | - D P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104, USA
| | - O A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce Street, Philadelphia, PA, 19104, USA.
- Dean's Office, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
15
|
Zhao M, Li Y, Wei W, Zhang Z, Zhou H. The distribution variation of pathogens and virulence factors in different geographical populations of giant pandas. Front Microbiol 2023; 14:1264786. [PMID: 37789855 PMCID: PMC10543425 DOI: 10.3389/fmicb.2023.1264786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Intestinal diseases caused by opportunistic pathogens seriously threaten the health and survival of giant pandas. However, our understanding of gut pathogens in different populations of giant pandas, especially in the wild populations, is still limited. Here, we conducted a study based on 52 giant panda metagenomes to investigate the composition and distribution of gut pathogens and virulence factors (VFs) in five geographic populations (captive: GPCD and GPYA; wild: GPQIN, GPQIO, and GPXXL). The results of the beta-diversity analyzes revealed a close relationship and high similarity in pathogen and VF compositions within the two captive groups. Among all groups, Proteobacteria, Firmicutes, and Bacteroidetes emerged as the top three abundant phyla. By using the linear discriminant analysis effect size method, we identified pathogenic bacteria unique to different populations, such as Klebsiella in GPCD, Salmonella in GPYA, Hafnia in GPQIO, Pedobacter in GPXXL, and Lactococcus in GPQIN. In addition, we identified 12 VFs that play a role in the intestinal diseases of giant pandas, including flagella, CsrA, enterobactin, type IV pili, alginate, AcrAB, capsule, T6SS, urease, type 1 fimbriae, polar flagella, allantoin utilization, and ClpP. These VFs influence pathogen motility, adhesion, iron uptake, acid resistance, and protein regulation, thereby contributing to pathogen infection and pathogenicity. Notably, we also found a difference in virulence of Pseudomonas aeruginosa between GPQIN and non-GPQIN wild populations, in which the relative abundance of VFs (0.42%) of P. aeruginosa was the lowest in GPQIN and the highest in non-GPQIN wild populations (GPXXL: 23.55% and GPQIO: 10.47%). In addition to enhancing our understanding of gut pathogens and VFs in different geographic populations of giant pandas, the results of this study provide a specific theoretical basis and data support for the development of effective conservation measures for giant pandas.
Collapse
Affiliation(s)
- Mengyu Zhao
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| | - Yuxia Li
- Shimian Agricultural and Rural Bureau, Shimian, Sichuan, China
| | - Wei Wei
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| | - Zejun Zhang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| | - Hong Zhou
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Nanchong, Sichuan, China
| |
Collapse
|
16
|
Deng F, Wang C, Li D, Peng Y, Deng L, Zhao Y, Zhang Z, Wei M, Wu K, Zhao J, Li Y. The unique gut microbiome of giant pandas involved in protein metabolism contributes to the host's dietary adaption to bamboo. MICROBIOME 2023; 11:180. [PMID: 37580828 PMCID: PMC10424351 DOI: 10.1186/s40168-023-01603-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND The gut microbiota of the giant panda (Ailuropoda melanoleuca), a global symbol of conservation, are believed to be involved in the host's dietary switch to a fibrous bamboo diet. However, their exact roles are still largely unknown. RESULTS In this study, we first comprehensively analyzed a large number of gut metagenomes giant pandas (n = 322), including 98 pandas sequenced in this study with deep sequencing (Illumina) and third-generation sequencing (nanopore). We reconstructed 408 metagenome-assembled genomes (MAGs), and 148 of which (36.27%) were near complete. The most abundant MAG was classified as Streptococcus alactolyticus. A pairwise comparison of the metagenomes and meta-transcriptomes in 14 feces revealed genes involved in carbohydrate metabolism were lower, but those involved in protein metabolism were greater in abundance and expression in giant pandas compared to those in herbivores and omnivores. Of note, S. alactolyticus was positively correlated to the KEGG modules of essential amino-acid biosynthesis. After being isolated from pandas and gavaged to mice, S. alactolyticus significantly increased the relative abundance of essential amino acids in mice jejunum. CONCLUSIONS The study highlights the unique protein metabolic profiles in the giant panda's gut microbiome. The findings suggest that S. alactolyticus is an important player in the gut microbiota that contributes to the giant panda's dietary adaptation by more involvement in protein rather than carbohydrate metabolism. Video Abstract.
Collapse
Affiliation(s)
- Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Chengdong Wang
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Desheng Li
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Yunjuan Peng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Linhua Deng
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Yunxiang Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Zhihao Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Ming Wei
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Kai Wu
- China Conservation and Research Center of Giant Panda, Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park (CCRCGP), Sichuan, 611830, Dujiangyan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, AR, Fayetteville, USA.
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China.
- School of Life Science and Engineering, Foshan University, Guangdong, China.
| |
Collapse
|
17
|
Yizhen Z, Chen L, Jie X, Shen F, Zhang L, Hou Y, Li L, Yan G, Zhang X, Yang Z. Comparative study of the digestion and metabolism related genes' expression changes during the postnatal food change in different dietary mammals. Front Genet 2023; 14:1198977. [PMID: 37470038 PMCID: PMC10352678 DOI: 10.3389/fgene.2023.1198977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
The changes in the expression of genes related to digestion and metabolism may be various in different dietary mammals from juvenile to adult, especially, the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens), which were once carnivores but have shifted to being specialized bamboo eaters, are unique features of their changes are more unclear. To elucidate the changing patterns of gene expression related to digestion and metabolism from juvenile to adult in different dietary mammals, we performed transcriptome analysis of the liver or pancreas in giant and red pandas, herbivorous rabbits (Oryctolagus cuniculus) and macaques (Macaca mulatta), carnivorous ferrets (Mustela putorius furo), and omnivorous mice (Mus musculus) from juvenile to adult. During the transition from juvenile to adulthood, giant and red pandas, as well as rabbits and macaques, show significant upregulation of key genes for carbohydrate metabolism, such as starch hydrolysis and sucrose metabolism, and unsaturated fatty acid metabolism, such as linoleic acid, while there is no significant difference in the expression of key genes for fatty acid β-oxidation. A large number of amino acid metabolism related genes were upregulated in adult rabbits and macaques compared to juveniles. While adult giant and red pandas mainly showed upregulation of key genes for arginine synthesis and downregulation of key genes for arginine and lysine degradation. In adult stages, mouse had significantly higher expression patterns in key genes for starch hydrolysis and sucrose metabolism, as well as lipid and protein metabolism. In contrast to general expectations, genes related to lipid, amino acid and protein metabolism were significantly higher expressed in adult group of ferrets, which may be related to their high metabolic levels. Our study elucidates the pattern of changes in the expression of genes related to digestion and metabolism from juvenile to adult in different dietary mammals, with giant and red pandas showing adaptations associated with specific nutritional limitations of bamboo.
Collapse
Affiliation(s)
| | - Lei Chen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaodie Jie
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Yusen Hou
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guoqiang Yan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | | |
Collapse
|
18
|
Animal Age Affects the Gut Microbiota and Immune System in Captive Koalas ( Phascolarctos cinereus). Microbiol Spectr 2023; 11:e0410122. [PMID: 36602319 PMCID: PMC9927321 DOI: 10.1128/spectrum.04101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gut microbiota is one of the major elements in the control of host health. However, the composition of gut microbiota in koalas has rarely been investigated. Here, we performed 16S rRNA gene sequencing to determine the individual and environmental determinants of gut microbiota diversity and function in 35 fecal samples collected from captive koalas. Meanwhile, blood immune-related cytokine levels were examined by quantitative reverse transcription-PCR to initially explore the relationship between the gut microbiota and the immune system in koalas. The relative abundance of many bacteria, such as Lonepinella koalarum, varies at different ages in koalas and decreases with age. Conversely, Ruminococcus flavefaciens increases with age. Moreover, bacterial pathways involved in lipid metabolism, the biosynthesis of other secondary metabolites, and infectious disease show a significant correlation with age. Age affects the relationship between the microbiota and the host immune system. Among them, the gut microbiota of subadult and aged koalas was closely correlated with CD8β and CD4, whereas adult koalas were correlated with CLEC4E. We also found that sex, reproductive status, and living environment have little impact on the koala gut microbiota and immune system. These results shed suggest age is a key factor affecting gut microbiota and immunity in captive koalas and thus provide new insight into its role in host development and the host immune system. IMPORTANCE Although we have a preliminary understanding of the gut microbiota of koalas, we lack insight into which factors potentially impact captive koalas. This study creates the largest koala gut microbiota data set in China to date and describes several factors that may affect gut microbiota and the immune system in captive koalas, highlighting that age may be a key factor affecting captive koalas. Moreover, this study is the first to characterize the correlation between gut microbiota and cytokines in koalas. Better treatment strategies for infectious disorders may be possible if we can better understand the interactions between the immune system and the microbiota.
Collapse
|
19
|
Dai Q, Ding J, Cui X, Zhu Y, Chen H, Zhu L. Beyond bacteria: Reconstructing microorganism connections and deciphering the predicted mutualisms in mammalian gut metagenomes. Ecol Evol 2023; 13:e9829. [PMID: 36844675 PMCID: PMC9944162 DOI: 10.1002/ece3.9829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Numerous gut microbial studies have focused on bacteria. However, archaea, viruses, fungi, protists, and nematodes are also regular residents of the gut ecosystem. Little is known about the composition and potential interactions among these six kingdoms in the same samples. Here, we unraveled the complex connection among them using approximately 123 gut metagenomes from 42 mammalian species (including carnivores, omnivores, and herbivores). We observed high variation in bacterial and fungal families and relatively low variation in archaea, viruses, protists, and nematodes. We found that some fungi in the mammalian intestine might come from environmental sources (e.g., soil and dietary plants), and some might be native to the intestine (e.g., the occurrence of Neocallimastigomycetes). The Methanobacteriaceae and Plasmodiidae families (archaea and protozoa, respectively) were predominant in these metagenomes, whereas Onchocercidae and Trichuridae were the two most common nematodes, and Siphoviridae and Myoviridae the two most common virus families in these mammalian gut metagenomes. Interestingly, most of the pairwise co-occurrence patterns were significantly positive among these six kingdoms, and significantly negative networks mainly occurred between fungi and prokaryotes (both bacteria and archaea). Our study revealed some inconvenient characteristics in the mammalian gut microorganism ecosystem: (1) the community formed by members of the analyzed kingdoms reflects the life history of the host and the potential threat posed by pathogenic protists and nematodes in mammals; and (2) the networks suggest the existence of predicted mutualism among members of these six kingdoms and of the predicted competition, mainly among fungi and other kingdoms.
Collapse
Affiliation(s)
- Qinlong Dai
- Sichuan Liziping National Natural ReserveShimianChina
| | | | - Xinyuan Cui
- College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yudong Zhu
- Sichuan Liziping National Natural ReserveShimianChina
| | - Hua Chen
- Mingke Biotechnology (Hangzhou) Co., Ltd.HangzhouChina
| | - Lifeng Zhu
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
20
|
Li H, Xia W, Liu X, Wang X, Liu G, Chen H, Zhu L, Li D. Food provisioning results in functional, but not compositional, convergence of the gut microbiomes of two wild Rhinopithecus species: Evidence of functional redundancy in the gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159957. [PMID: 36343820 DOI: 10.1016/j.scitotenv.2022.159957] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The consumption of similar diets has led to the convergence of gut microbial compositions and functions across phylogenetically distinct animals. However, given the functional redundancy in gut microbiomes, it remains unclear whether synchrony occurs in their functions only and not in their composition, even within phylogenetically close animals consuming a similar diet. In this study, we collected fresh fecal samples from a Rhinopithecus roxellana population in April 2021 (before food provisioning) and June and December 2021 (after food provisioning) and used high-throughput sequencing methods (full-length 16S rRNA gene sequencing and metagenomes) to investigate changes in the gut microbiome due to food provisioning. Combining the results from our previous studies on a wild Rhinopithecus bieti population, we found that the artificial food provisions (e.g., apples, carrots, and peanuts) affected the gut microbiome, and synchrony occurred only in its functions and antibiotic resistance gene community in both Rhinopithecus species, reflecting its ecological functional redundancy. Given the current findings (e.g., depletion in probiotic microbes, dysbiosis in the gut microbial community, and changes in the antibiotic resistance gene profile), anthropogenic disturbances (e.g., food provisioning) would have potential negative effects on host health. Therefore, human activity in animal conservation should be rethought from the standpoint of gut microbial diversity.
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China; Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Xingyu Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Xueyu Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou, China
| | - Hua Chen
- Mingke Biotechnology, Hangzhou, China
| | - Lifeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.
| |
Collapse
|
21
|
Nielsen DP, Harrison JG, Byer NW, Faske TM, Parchman TL, Simison WB, Matocq MD. The gut microbiome reflects ancestry despite dietary shifts across a hybrid zone. Ecol Lett 2023; 26:63-75. [PMID: 36331164 DOI: 10.1111/ele.14135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The microbiome is critical to an organism's phenotype, and its composition is shaped by, and a driver of, eco-evolutionary interactions. We investigated how host ancestry, habitat and diet shape gut microbial composition in a mammalian hybrid zone between Neotoma lepida and N. bryanti that occurs across an ecotone between distinct vegetation communities. We found that habitat is the primary determinant of diet, while host genotype is the primary determinant of the gut microbiome-a finding further supported by intermediate microbiome composition in first-generation hybrids. Despite these distinct primary drivers, microbial richness was correlated with diet richness, and individuals that maintained higher dietary richness had greater gut microbial community stability. Both relationships were stronger in the relative dietary generalist of the two parental species. Our findings show that host ancestry interacts with dietary habits to shape the microbiome, ultimately resulting in the phenotypic plasticity that host-microbial interactions allow.
Collapse
Affiliation(s)
- Danny P Nielsen
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA.,Program in Ecology, Evolution and Conservation Biology, Reno, Nevada, USA
| | | | - Nathan W Byer
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| | - Trevor M Faske
- Program in Ecology, Evolution and Conservation Biology, Reno, Nevada, USA.,Department of Biology, University of Nevada, Reno, Nevada, USA
| | - Thomas L Parchman
- Program in Ecology, Evolution and Conservation Biology, Reno, Nevada, USA.,Department of Biology, University of Nevada, Reno, Nevada, USA
| | - W Brian Simison
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA.,Program in Ecology, Evolution and Conservation Biology, Reno, Nevada, USA
| |
Collapse
|
22
|
Zhang W, Xie J, Xia S, Fan X, Schmitz-Esser S, Zeng B, Zheng L, Huang H, Wang H, Zhong J, Zhang Z, Zhang L, Jiang M, Hou R. Evaluating a potential model to analyze the function of the gut microbiota of the giant panda. Front Microbiol 2022; 13:1086058. [PMID: 36605506 PMCID: PMC9808404 DOI: 10.3389/fmicb.2022.1086058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
To contribute to the conservation of endangered animals, the utilization of model systems is critical to analyze the function of their gut microbiota. In this study, the results of a fecal microbial transplantation (FMT) experiment with germ-free (GF) mice receiving giant panda or horse fecal microbiota showed a clear clustering by donor microbial communities in GF mice, which was consistent with the results of blood metabolites from these mice. At the genus level, FMT re-established approximately 9% of the giant panda donor microbiota in GF mice compared to about 32% for the horse donor microbiota. In line with this, the difference between the panda donor microbiota and panda-mice microbiota on whole-community level was significantly larger than that between the horse donor microbiota and the horse-mice microbiota. These results were consistent with source tracking analysis that found a significantly higher retention rate of the horse donor microbiota (30.9%) than the giant panda donor microbiota (4.0%) in GF mice where the microbiota remained stable after FMT. Further analyzes indicated that the possible reason for the low retention rate of the panda donor microbiota in GF mice was a low relative abundance of Clostridiaceae in the panda donor microbiota. Our results indicate that the donor microbiota has a large effect on GF mice microbiota after FMT.
Collapse
Affiliation(s)
- Wenping Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Junjin Xie
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
- Qinghai-Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shan Xia
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, Sichuan, China
| | - Xueyang Fan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | | | - Benhua Zeng
- Department of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lijun Zheng
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - He Huang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Jincheng Zhong
- Qinghai-Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhihe Zhang
- Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Liang Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| | - Mingfeng Jiang
- Qinghai-Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, Sichuan, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Wen Q, Yu S, Wang S, Qin Y, Xia Q, Wang S, Chen G, Shen C, Song S. Impact of intestinal microbiota on metabolic toxicity and potential detoxification of amygdalin. Front Microbiol 2022; 13:1030516. [PMID: 36504787 PMCID: PMC9730245 DOI: 10.3389/fmicb.2022.1030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Amygdalin (Amy) is metabolized into cyanide in vivo, which may lead to fatal poisoning after oral administration. The defense mechanisms against toxic cyanide have not yet been adequately studied. In this study, comparative toxicokinetics study of Amy was performed in normal and pseudo germ-free rats. The efficiency of cyanide release was significant higher in normal group when given a single oral dose of 440 mg/kg (50% median lethal dose). Thiocyanate, the detoxification metabolite, was firstly detected in feces, caecum, and intestinal microbiota incubation enzymic system. The results suggest intestinal microbiota is involved in bidirectional regulation of toxicity and detoxification of Amy. We further identified the species related to cyanogenesis of Amy with metagenomic sequencing, such as Bifidobacterium pseudolongum, Marvinbryantia formatexigens, and Bacteroides fragilis. Functional analysis of microbiota reveals the detoxification potential of intestinal microbiota for cyanide. Sulfurtransferase superfamily, such as rhodanese, considered as main detoxification enzymes for cyanide, are largely found in Coriobacteriaceae bacterium, Butyricicoccus porcorum, Akkermansia muciniphila, etc. Besides, cyanoamino acid metabolism pathway dominated by Escherichia coli may contribute to the detoxification metabolism of cyanide. In summary, intestinal microbiota may be the first line of defense against the toxicity induced by Amy.
Collapse
Affiliation(s)
- Qiuyu Wen
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Shen Yu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Shanshan Wang
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Yan Qin
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Quan Xia
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Guanjun Chen
- Center for Scientific Research of Anhui Medical University, Hefei, China
| | - Chenlin Shen
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shuai Song
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
24
|
Zhan M, Wang A, Yao Y, Zhou Y, Zhang S, Fu X, Zhou J, Pei E, Wang L. An amateur gut microbial configuration formed in giant panda for striving to digest cellulose in bamboo: Systematic evidence from intestinal digestive enzymes, functional genes and microbial structures. Front Microbiol 2022; 13:926515. [PMID: 35958139 PMCID: PMC9363027 DOI: 10.3389/fmicb.2022.926515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/04/2022] [Indexed: 11/14/2022] Open
Abstract
The giant panda has been considered to maximize nutritional intake including protein and soluble carbohydrates in bamboo, but it has spent almost entire life with the high-cellulose diet. Whether giant panda is still helpless about digesting bamboo cellulose or not is always contentious among many researchers around the world. The work has systematically clarified this issue from the perspectives of digestive enzymes, functional genes, and microbial structures in giant panda gut. The intestinal cellulase activities of panda increase with bamboo consumption, performing that the endoglucanase activity of adults reaches 10-fold that of pandas first consuming bamboo. More abundance and types of microbial endoglucanase genes occur in bamboo-diet giant panda gut, and the corresponding GH5 gene cluster is still efficiently transcribed. Gut microbes possessing cellulose-degrading genes, belong to the phylum Firmicutes and some Bacteroidetes, but their structural and functional configurations are insufficient to completely degrade cellulose. Therefore, giant panda is striving to digest cellulose in bamboo, but this adaptation is incomplete. This is probably related to the short straight carnivore-like gut structure of the giant panda, preventing the colonization of some efficient functional but anaerobic-preferred flora.
Collapse
Affiliation(s)
- Mingye Zhan
- College of Environmental Science and Engineering, Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai, China
| | | | | | - Yingmin Zhou
- China Conservation and Research Center for the Giant Panda, Dujiangyan, China
| | | | - Xiaohua Fu
- College of Environmental Science and Engineering, Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai, China
| | | | | | - Lei Wang
- College of Environmental Science and Engineering, Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai, China
- *Correspondence: Lei Wang,
| |
Collapse
|
25
|
Dietary Utilization Drives the Differentiation of Gut Bacterial Communities between Specialist and Generalist Drosophilid Flies. Microbiol Spectr 2022; 10:e0141822. [PMID: 35863034 PMCID: PMC9431182 DOI: 10.1128/spectrum.01418-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gut bacteria play vital roles in the dietary detoxification, digestion, and nutrient supplementation of hosts during dietary specialization. The roles of gut bacteria in the host can be unveiled by comparing communities of specialist and generalist bacterial species. However, these species usually have a long evolutionary history, making it difficult to determine whether bacterial community differentiation is due to host dietary adaptation or phylogenetic divergence. In this regard, we investigated the bacterial communities from two Araceae-feeding Colocasiomyia species and further performed a meta-analysis by incorporating the published data from Drosophila bacterial community studies. The compositional and functional differentiation of bacterial communities was uncovered by comparing three (Araceae-feeding, mycophagous, and cactophilic) specialists with generalist flies. The compositional differentiation showed that Bacteroidetes and Firmicutes inhabited specialists, while more Proteobacteria lived in generalists. The functional prediction based on the bacterial community compositions suggested that amino acid metabolism and energy metabolism are overrepresented pathways in specialists and generalists, respectively. The differences were mainly associated with the higher utilization of structural complex carbohydrates, protein utilization, vitamin B12 acquisition, and demand for detoxification in specialists than in generalists. The complementary roles of bacteria reveal a connection between gut bacterial communities and fly dietary specialization. IMPORTANCE Gut bacteria may play roles in the dietary utilization of hosts, especially in specialist animals, during long-term host-microbe interaction. By comparing the gut bacterial communities between specialist and generalist drosophilid flies, we found that specialists harbor more bacteria linked to complex carbohydrate degradation, amino acid metabolism, vitamin B12 formation, and detoxification than do generalists. This study reveals the roles of gut bacteria in drosophilid species in dietary utilization.
Collapse
|
26
|
Abstract
The longstanding interactions between mammals and their symbionts enable thousands of mammal species to consume herbivorous diets. The microbial communities in mammals degrade both plant fiber and toxins. Microbial toxin degradation has been repeatedly documented in domestic ruminants, but similar work in wild mammals is more limited due to constraints on sampling and manipulating the microbial communities in these species. In this review, we briefly describe the toxins commonly encountered in mammalian diets, major classes of biotransformation enzymes in microbes and mammals, and the gut chambers that house symbiotic microbes. We next examine evidence for microbial detoxification in domestic ruminants before providing case studies on microbial toxin degradation in both foregut- and hindgut-fermenting wild mammals. We end by discussing species that may be promising for future investigations, and the advantages and limitations of approaches currently available for studying degradation of toxins by mammalian gut microbes. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA;
| | - Sara B Weinstein
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
27
|
Xia W, Liu G, Wang D, Chen H, Zhu L, Li D. Functional convergence of Yunnan snub-nosed monkey and bamboo-eating panda gut microbiomes revealing the driving by dietary flexibility on mammal gut microbiome. Comput Struct Biotechnol J 2022; 20:685-699. [PMID: 35140888 PMCID: PMC8814018 DOI: 10.1016/j.csbj.2022.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 12/28/2022] Open
Abstract
The gut microbiomes of non-human primates have received a great deal of attention due to their close relationship to humans. In recent years, these studies have mainly focused on the gut microbiome of wild primates, which will be helpful to understanding the evolution of primates and their gut microbiomes (e.g., gut microbiome plasticity and diet flexibility). However, there is still a lack of basic information on the gut microbiomes from wild populations. Here, we investigated the gut microbial composition (16S rRNA gene) and function (metagenome and metagenome-assembled genomes (MAGs)) of Yunnan snub-nosed monkey populations in Weixi County, Yunnan Province, China, that had diets either completely based on wild-foraging or were regularly supplemented with human provisioned food. We found a significant difference in the gut microbiome between these two populations: the gut microbiome of the wild-foraging (no food provision) population was enriched genes involved in the detoxification of bamboo cyanide (high proportion of bamboo shoot intake) and chitin (from insect diet) digestion, while the gut microbiome of the food provisioned (e.g., fruits) wild populations were enriched genes involved in carbohydrate metabolism. Moreover, the gut microbiome of the wild-foraging population shared a putatively functional convergence with the gut microbiome of wild bamboo-eating pandas: such as microbes and genes involved in the cyanide detoxification. Therefore, the gut microbiome of the Yunnan snub-nosed monkey displayed the potential plasticity in response to diet flexibility. Long-term food-provisioning of the wild population has led to dramatic changes in gut microbial composition, function, and even antibiotic resistance. The antibiotic resistance profile for the wild Yunnan snub-nosed monkey population could be considered the baseline and an important piece of information for conservation.
Collapse
Affiliation(s)
- Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Institute of Rare Animals and Plants, China West Normal University, Nanchong, Sichuan, China
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou, China
| | - Dali Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Institute of Rare Animals and Plants, China West Normal University, Nanchong, Sichuan, China
| | - Hua Chen
- Mingke Biotechnology, Hangzhou, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Corresponding authors at: College of Life Science, Nanjing Normal University, Nanjing, China (L. Zhu); Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, China West Normal University, China (D. Li).
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Institute of Rare Animals and Plants, China West Normal University, Nanchong, Sichuan, China
- Corresponding authors at: College of Life Science, Nanjing Normal University, Nanjing, China (L. Zhu); Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, China West Normal University, China (D. Li).
| |
Collapse
|
28
|
Mundula T, Russo E, Curini L, Giudici F, Piccioni A, Franceschi F, Amedei A. Chronic Systemic Low-Grade Inflammation and Modern Lifestyle: The Dark Role of Gut Microbiota on Related Diseases with a Focus on COVID-19 Pandemic. Curr Med Chem 2022; 29:5370-5396. [PMID: 35524667 DOI: 10.2174/0929867329666220430131018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Inflammation is a physiological, beneficial, and auto-limiting response of the host to alarming stimuli. Conversely, a chronic systemic low-grade inflammation (CSLGI), known as a long-time persisting condition, causes damage to the organs and host tissues, representing a major risk for chronic diseases. Currently, a high global incidence of chronic inflammatory diseases is observed, often linked to the lifestyle-related changes that occurred in the last decade. The main lifestyle-related factors are proinflammatory diet, psychological stress, tobacco smoking, alcohol abuse, physical inactivity, and indoor living and working with its related consequences such as indoor pollution, artificial light exposure, and low vitamin D production. Recent scientific evidence found that gut microbiota (GM) has a main role in shaping the host's health, particularly as CSLGI mediator. Based on the lastest discoveries regarding the remarkable GM activity, in this manuscript we focus on the elements of actual lifestyle that influence the composition and function of the intestinal microbial community in order to elicit the CSLGI and its correlated pathologies. In this scenario, we provide a broad review of the interplay between modern lifestyle, GM, and CSLGI with a special focus on the COVID symptoms and emerging long-COVID syndrome.
Collapse
Affiliation(s)
- Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, University of Florence
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Piccioni
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
29
|
Fujimori S. Humans have intestinal bacteria that degrade the plant cell walls in herbivores. World J Gastroenterol 2021; 27:7784-7791. [PMID: 34963741 PMCID: PMC8661373 DOI: 10.3748/wjg.v27.i45.7784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
The cell walls of plants are mainly made of cellulose and contain a large number of calories. However, the main component, cellulose, is an indigestible plant fiber that is thought to be difficult for humans to use as energy. Herbivores acquire energy through the degradation of cell wall-derived dietary fiber by microorganisms in the digestive tract. Herbivores, especially horses, have a highly developed cecum and large intestine, and plants are fermented for their efficient use with the help of microorganisms. Humans also have an intestinal tract with a wide lumen on the proximal side of the large intestine, in which fermentation occurs. The digestive process of horses is similar to that of humans, and many of the intestinal bacteria found in horses that degrade plants are also found in humans. Therefore, it is thought that humans also obtain a certain amount of energy from cell wall-derived dietary fiber. However, the intake of dietary fiber by modern humans is low; thus, the amount of calories derived from indigestible plant fiber is considered to be very low. Cellulose in the plant cell wall is often accompanied by hemicellulose, pectin, lignin, suberin, and other materials. These materials are hard to degrade, and cellulose is therefore difficult for animals to utilize. If the cell wall can be degraded to some extent by cooking, it is thought that humans can obtain calories from cell wall-derived dietary fiber. If humans can use the calories from the cell wall for their diet, it may compensate for human food shortages.
Collapse
Affiliation(s)
- Shunji Fujimori
- Department of Gastroenterology, Chiba Hokusoh Hospital, Nippon Medical School, Chiba 270-1694, Japan
| |
Collapse
|
30
|
Ingala MR, Albert L, Addesso A, Watkins MJ, Knutie SA. Differential effects of elevated nest temperature and parasitism on the gut microbiota of wild avian hosts. Anim Microbiome 2021; 3:67. [PMID: 34600588 PMCID: PMC8487522 DOI: 10.1186/s42523-021-00130-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Changes in wild animal gut microbiotas may influence host health and fitness. While many studies have shown correlations between gut microbiota structure and external factors, few studies demonstrate causal links between environmental variables and microbiota shifts. Here, we use a fully factorial experiment to test the effects of elevated ambient temperature and natural nest parasitism by nest flies (Protocalliphora sialia) on the gut microbiotas of two species of wild birds, the eastern bluebird (Sialia sialis) and the tree swallow (Tachycineta bicolor). RESULTS We find that bacterial communities from the nestlings of each host species show idiosyncratic responses to both heat and parasitism, with gut microbiotas of eastern bluebirds more disrupted by heat and parasitism than those of tree swallows. Thus, we find that eastern bluebirds are unable to maintain stable associations with their gut bacteria in the face of both elevated temperature and parasitism. In contrast, tree swallow gut microbiotas are not significantly impacted by either heat or nest parasitism. CONCLUSIONS Our results suggest that excess heat (e.g., as a result of climate change) may destabilize natural host-parasite-microbiota systems, with the potential to affect host fitness and survival in the Anthropocene.
Collapse
Affiliation(s)
- Melissa R Ingala
- Department of Vertebrate Zoology, National Museum of Natural History, Washington, D.C., USA.
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Alyssa Addesso
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Mackenzie J Watkins
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
31
|
Wang L, Huang G, Hou R, Qi D, Wu Q, Nie Y, Zuo Z, Ma R, Zhou W, Ma Y, Hu Y, Yang Z, Yan L, Wei F. Multi-omics reveals the positive leverage of plant secondary metabolites on the gut microbiota in a non-model mammal. MICROBIOME 2021; 9:192. [PMID: 34548111 PMCID: PMC8456708 DOI: 10.1186/s40168-021-01142-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/10/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Flavonoids are important plant secondary metabolites (PSMs) that have been widely used for their health-promoting effects. However, little is known about overall flavonoid metabolism and the interactive effects between flavonoids and the gut microbiota. The flavonoid-rich bamboo and the giant panda provide an ideal system to bridge this gap. RESULTS Here, integrating metabolomic and metagenomic approaches, and in vitro culture experiment, we identified 97 flavonoids in bamboo and most of them have not been identified previously; the utilization of more than 70% flavonoid monomers was attributed to gut microbiota; the variation of flavonoid in bamboo leaves and shoots shaped the seasonal microbial fluctuation. The greater the flavonoid content in the diet was, the lower microbial diversity and virulence factor, but the more cellulose-degrading species. CONCLUSIONS Our study shows an unprecedented landscape of beneficial PSMs in a non-model mammal and reveals that PSMs remodel the gut microbiota conferring host adaptation to diet transition in an ecological context, providing a novel insight into host-microbe interaction. Video abstract.
Collapse
Affiliation(s)
- Le Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangping Huang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
| | - Dunwu Qi
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
| | - Qi Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonggang Nie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenqiang Zuo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangzhou, China
| | - Rui Ma
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
| | - Wenliang Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yingjie Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Li Yan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuwen Wei
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangzhou, China.
| |
Collapse
|
32
|
Yao R, Dai Q, Wu T, Yang Z, Chen H, Liu G, Zhu Y, Qi D, Yang X, Luo W, Gu X, Yang X, Zhu L. Fly-over phylogeny across invertebrate to vertebrate: The giant panda and insects share a highly similar gut microbiota. Comput Struct Biotechnol J 2021; 19:4676-4683. [PMID: 34504662 PMCID: PMC8390952 DOI: 10.1016/j.csbj.2021.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/30/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023] Open
Abstract
Many studies highlight that host phylogeny and diet are the two main factors influencing the animal gut microbiota. However, the internal mechanisms driving the evolution of animal gut microbiota may be more complex and complicated than we previously realized. Here, based on a large-scale meta-analysis of animal gut microbiota (16 s RNA gene data from approximately 1,800 samples; 108 metagenomes) across a wide taxonomic range of hosts, from invertebrate to vertebrate, we found high similarity in the gut microbial community (high proportion of Gammaproteobacteria (Pseudomonas)) of invertebrate insects and vertebrate bamboo-eating pandas (giant panda and red panda), which might be associated their plant-eating behavior and the presence of oxygen in the intestinal tract. A Pseudomonas strain-level analysis using 108 metagenomes further revealed that the response to either host niches or selection by the host might further lead to host-specific strains (or sub-strains) among the different hosts congruent with their evolutionary history. In this study, we uncovered new insights into the current understanding of the evolution of animals and their gut microbiota.
Collapse
Affiliation(s)
- Ran Yao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qinlong Dai
- Sichuan Liziping National Nature Reserve, Shimian, China
- Shimian Research Center of Giant Panda Small Population Conservation and Rejuvenation, Shimian, China
| | - Tonggui Wu
- East China Coastal Forest Ecosystem Long-term Research Station, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou Zhejiang, China
| | | | - Hua Chen
- Mingke Biotechnology Co., Ltd., Hangzhou, China
| | - Guoqi Liu
- Mingke Biotechnology Co., Ltd., Hangzhou, China
| | - Yudong Zhu
- Sichuan Liziping National Nature Reserve, Shimian, China
- Shimian Research Center of Giant Panda Small Population Conservation and Rejuvenation, Shimian, China
| | - Dunwu Qi
- Chengdu Giant Panda Breeding Center, Chengdu, China
| | - Xu Yang
- Chengdu Xinagai Information Technology Co., Ltd., Chengdu, China
| | - Wei Luo
- Sichuan Liziping National Nature Reserve, Shimian, China
- Shimian Research Center of Giant Panda Small Population Conservation and Rejuvenation, Shimian, China
| | - Xiaodong Gu
- Sichuan Station of Wildlife Survey and Management, Chengdu, China
| | - Xuyu Yang
- Sichuan Station of Wildlife Survey and Management, Chengdu, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Corresponding author.
| |
Collapse
|
33
|
Bramble MS, Vashist N, Ko A, Priya S, Musasa C, Mathieu A, Spencer DA, Lupamba Kasendue M, Mamona Dilufwasayo P, Karume K, Nsibu J, Manya H, Uy MNA, Colwell B, Boivin M, Mayambu JPB, Okitundu D, Droit A, Mumba Ngoyi D, Blekhman R, Tshala-Katumbay D, Vilain E. The gut microbiome in konzo. Nat Commun 2021; 12:5371. [PMID: 34508085 PMCID: PMC8433213 DOI: 10.1038/s41467-021-25694-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Konzo, a distinct upper motor neuron disease associated with a cyanogenic diet and chronic malnutrition, predominately affects children and women of childbearing age in sub-Saharan Africa. While the exact biological mechanisms that cause this disease have largely remained elusive, host-genetics and environmental components such as the gut microbiome have been implicated. Using a large study population of 180 individuals from the Democratic Republic of the Congo, where konzo is most frequent, we investigate how the structure of the gut microbiome varied across geographical contexts, as well as provide the first insight into the gut flora of children affected with this debilitating disease using shotgun metagenomic sequencing. Our findings indicate that the gut microbiome structure is highly variable depending on region of sampling, but most interestingly, we identify unique enrichments of bacterial species and functional pathways that potentially modulate the susceptibility of konzo in prone regions of the Congo.
Collapse
Affiliation(s)
- Matthew S Bramble
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Neerja Vashist
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Arthur Ko
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sambhawa Priya
- Departments of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Céleste Musasa
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Alban Mathieu
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - D' Andre Spencer
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | | | - Patrick Mamona Dilufwasayo
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Institut National de Recherche Biomédicale (INRB), Kinshasa, DR, Congo
| | - Kevin Karume
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Institut National de Recherche Biomédicale (INRB), Kinshasa, DR, Congo
| | - Joanna Nsibu
- Institut National de Recherche Biomédicale (INRB), Kinshasa, DR, Congo
| | - Hans Manya
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Institut National de Recherche Biomédicale (INRB), Kinshasa, DR, Congo
| | - Mary N A Uy
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- College of Medicine, University of the Philippines, Manila, Manila, Philippines
| | - Brian Colwell
- School of Public Health, Texas A&M University, College Station, TX, USA
| | - Michael Boivin
- Department of Psychiatry and Neurology & Ophthalmology, Michigan State University, East Lansing, MI, USA
| | - J P Banae Mayambu
- Ministry of Health National Program on Nutrition (PRONANUT), Kinshasa, DR, Congo
| | - Daniel Okitundu
- Centre Neuro-Psychopathologique (CNPP), University of Kinshasa, Kinshasa, Congo
| | - Arnaud Droit
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Dieudonné Mumba Ngoyi
- Institut National de Recherche Biomédicale (INRB), Kinshasa, DR, Congo
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, DR, Congo
| | - Ran Blekhman
- Departments of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Desire Tshala-Katumbay
- Institut National de Recherche Biomédicale (INRB), Kinshasa, DR, Congo.
- Department of Neurology and School of Public Health, Oregon Health & Science University, Portland, OR, USA.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- International Research Laboratory of Epigenetics, Data, Politics, Centre National de la Recherche Scientifique, Washington, DC, USA.
| |
Collapse
|
34
|
Zhu L, Zhang Y, Cui X, Zhu Y, Dai Q, Chen H, Liu G, Yao R, Yang Z. Host Bias in Diet-Source Microbiome Transmission in Wild Cohabitating Herbivores: New Knowledge for the Evolution of Herbivory and Plant Defense. Microbiol Spectr 2021; 9:e0075621. [PMID: 34406815 PMCID: PMC8552726 DOI: 10.1128/spectrum.00756-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly understood that dietary nutrition will influence the composition and function of the animal gut microbiome. However, the transmission of organisms from the diet-source microbiome to the animal gut microbiome in the natural environment remains poorly understood, and elucidating this process may help in understanding the evolution of herbivores and plant defenses. Here, we investigated diet-source microbiome transmission across a range of herbivores (insects and mammals) living in both captive and wild environments. We discovered a host bias among cohabitating herbivores (leaf-eating insects and deer), where a significant portion of the herbivorous insect gut microbiome may originate from the diet, while in deer, only a tiny fraction of the gut microbiome is of dietary origin. We speculated that the putative difference in the oxygenation level in the host digestion systems would lead to these host biases in plant-source (diet) microbiome transmission due to the oxygenation living condition of the dietary plant's symbiotic microbiome. IMPORTANCE We discovered a host bias among cohabitating herbivores (leaf-eating insects and deer), where a significant portion of the herbivorous insect gut microbiome may originate from the diet, while in deer, only a tiny fraction of the gut microbiome is of dietary origin. We speculated that the putative difference in the oxygenation level in the host digestion systems would lead to these host biases in plant-source (diet) microbiome transmission due to the oxygenation living condition of the dietary plant's symbiotic microbiome. This study shed new light on the coevolution of herbivory and plant defense.
Collapse
Affiliation(s)
- Lifeng Zhu
- College of Life Sciences, Nanjing Norma University, Nanjing, China
| | - Yongyong Zhang
- College of Life Sciences, Nanjing Norma University, Nanjing, China
| | - Xinyuan Cui
- College of Life Sciences, Nanjing Norma University, Nanjing, China
| | - Yudong Zhu
- Sichuan Liziping National Nature Reserve, Shimian, China
- Shimian Research Center of Giant Panda Small Population Conservation and Rejuvenation, Shimian, China
| | - Qinlong Dai
- Sichuan Liziping National Nature Reserve, Shimian, China
- Shimian Research Center of Giant Panda Small Population Conservation and Rejuvenation, Shimian, China
| | - Hua Chen
- Mingke Biotechnology Co., Ltd., Hangzhou, China
| | - Guoqi Liu
- Mingke Biotechnology Co., Ltd., Hangzhou, China
| | - Ran Yao
- College of Life Sciences, Nanjing Norma University, Nanjing, China
| | | |
Collapse
|
35
|
Yao Y, Xu Q, He X, Wang H, Yan H, Gao J, Hou R, Li X, Wang H. Preliminary investigation on iodine nutrition in captive giant pandas. J Trace Elem Med Biol 2021; 67:126780. [PMID: 34023729 DOI: 10.1016/j.jtemb.2021.126780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVE The giant panda belongs to the family Ursidae and, as a species of bear, still retains the simple digestive system of a Carnivoran. However, under the pressure of a specific habitat they had to adapt to a plant mono-diet consisting of bamboo with different species and growth stages around the year. A plant-based diet has relatively low iodine content with risk of iodine deficiency. Furthermore, bamboo contains cyanogenic glycosides releasing cyanide whose detoxification metabolite the thiocyanate acts as antagonist against iodine uptake and storage in the thyroid. To date very little is known about the iodine nutritional status of the giant panda, thus this study was conducted to receive the first information about the iodine nutrition of captive giant panda. SUBJECTS/METHODS Here we investigated the iodine content of bamboo with different plant parts/vegetation stage and species and further compounds of the captive giant panda diet. Next, the urinary iodine (UI) and urinary thiocyanate (UT) levels of infant, sub-adult, adult and geriatric captive giant pandas was measured during the periods when the pandas consume both bamboo leaves- and culm (bamboo leaf-culm stage). Afterwards, the UI of 19 adult giant pandas was measured again for the different iodine intake during bamboo shoot stage. Finally, in this study part also the fecal iodine concentration was analyzed for calculation of total iodine excretion in relation to the iodine intake. RESULTS Bamboo leaves had the highest iodine content (453 μg/kg dry matter (DM)), followed by the shoots (84 μg/kg DM, p < 0.05), while bamboo culm had the lowest value (12 μg/kg DM, p < 0.05). During bamboo leaf-culm stage, giant pandas of different age groups had different UI and UT levels (p < 0.05). Furthermore, UI and UT were positively correlated among sub-adult, adult and geriatric giant pandas (p < 0.05). In adult giant pandas during bamboo shoot stage, the iodine excretion in feces was not different from that in urine while their total iodine excretion was less than their iodine intake (p < 0.05). Moreover, during bamboo shoot stage, the UI level of adult giant pandas was much lower than noted during bamboo leaf-culm stage (p < 0.05). CONCLUSIONS Our results indicate that UI of captive giant pandas was related to their age as well as to the vegetation stage/part of bamboo they consumed reflecting a different periodic iodine supply. Thiocyanate and fecal excretion should be emphasized when considering the iodine nutrition of giant pandas.
Collapse
Affiliation(s)
- Ying Yao
- Chengdu Research Base of Giant Panda Breeding, 610081, Chengdu, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 610081, Chengdu, China; Sichuan Academy of Giant Panda, 610081, Chengdu, China
| | - Qin Xu
- Chengdu Research Base of Giant Panda Breeding, 610081, Chengdu, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 610081, Chengdu, China; Sichuan Academy of Giant Panda, 610081, Chengdu, China
| | - Xin He
- Chengdu Research Base of Giant Panda Breeding, 610081, Chengdu, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 610081, Chengdu, China; Sichuan Academy of Giant Panda, 610081, Chengdu, China
| | - Haiyan Wang
- Key Laboratory of Trace Element Nutrition of National Health Commission of the People's Republic of China, Department of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 100050, Beijing, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Jie Gao
- Chengdu Research Base of Giant Panda Breeding, 610081, Chengdu, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 610081, Chengdu, China; Sichuan Academy of Giant Panda, 610081, Chengdu, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, 610081, Chengdu, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 610081, Chengdu, China; Sichuan Academy of Giant Panda, 610081, Chengdu, China
| | - Xiuwei Li
- Key Laboratory of Trace Element Nutrition of National Health Commission of the People's Republic of China, Department of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 100050, Beijing, China.
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, 610081, Chengdu, China; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 610081, Chengdu, China; Sichuan Academy of Giant Panda, 610081, Chengdu, China.
| |
Collapse
|
36
|
De Cuyper A, Winkler DE, Tütken T, Bosch G, Hummel J, Kreuzer M, Muñoz Saravia A, Janssens GPJ, Clauss M. Digestion of bamboo compared to grass and lucerne in a small hindgut fermenting herbivore, the guinea pig (Cavia porcellus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:128-140. [PMID: 34411456 DOI: 10.1002/jez.2538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022]
Abstract
Bamboo is an enigmatic forage, representing a niche food for pandas and bamboo lemurs. Bamboo might not represent a suitable forage for herbivores relying on fermentative digestion, potentially due to its low fermentability. To test this hypothesis, guinea pigs (n = 36) were used as model species and fed ad libitum with one of three forages (bamboo, lucerne, or timothy grass) in a fresh or dried state, with six individuals per group, for 3 weeks. The nutrient composition and in vitro fermentation profile of bamboo displayed low fermentation potential, i.e. high lignin and silica levels together with a gas production (Hohenheim gas test) at 12 h of only 36% of that of lucerne and grass. Although silica levels were more abundant in the leftovers of (almost) all groups, guinea pigs did not select against lignin on bamboo. Dry matter (DM) intake was highest and DM digestibility lowest on the bamboo forage. Total short-chain fatty acid levels in caecal content were highest for lucerne and lowest for grass and bamboo. Bamboo-fed guinea pigs had a lower body weight gain than the grass and lucerne group. The forage hydration state did not substantially affect digestion, but dry forage led to a numerically higher total wet gut fill. Although guinea pigs increased DM intake on the bamboo diet, the negative effects on fermentation of lignin and silica in bamboo seemed overriding. For herbivores that did not evolutionary adapt, bamboo as an exclusive food resource can be considered as inadequate.
Collapse
Affiliation(s)
- Annelies De Cuyper
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daniela E Winkler
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany.,Department of Natural Environmental Studies, Graduate School of 12 Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Thomas Tütken
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
| | - Guido Bosch
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, AH Wageningen, The Netherlands
| | - Jürgen Hummel
- Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Arturo Muñoz Saravia
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert P J Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Vallittu PK, Varrela J, Salo J, Rengui L, Shanshan L, Shan H, Zhang H, Niemelä P. Temporomandibular joint and Giant Panda's (Ailuropoda melanoleuca) adaptation to bamboo diet. Sci Rep 2021; 11:14252. [PMID: 34244613 PMCID: PMC8271028 DOI: 10.1038/s41598-021-93808-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/28/2021] [Indexed: 11/09/2022] Open
Abstract
Here, we present new evidence that evolutionary adaptation of the Ailuripodinae lineage to bamboo diet has taken place by morphological adaptations in the masticatory system. The giant panda in the wild and in captivity removes without an exception the outer skin of all bamboo shoots, rich in abrasive and toxic compounds, by the highly adapted premolars P3 and P4. The temporomandibular joint (TMJ) allows sidewise movement of the jaw and the premolars can, in a cusp-to-cusp position, remove the poorly digestible outer skin of the bamboo before crushing the bamboo with molars. Based on the evidence presented here, we suggest that adaptation of TMJ to lateral movement for enabling cusp-to-cusp contact of premolars is the crucial evolutionary factor as which we consider the key to understand the Ailuropodinae lineage adaptive pathway to utilize the bamboo resource.
Collapse
Affiliation(s)
- Pekka K Vallittu
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland. .,City of Turku Welfare Division, Turku, Finland.
| | - Juha Varrela
- City of Turku Welfare Division, Turku, Finland.,Department of Oral Development and Orthodontics, Institute of Dentistry, University of Turku, Turku, Finland
| | - Jukka Salo
- Biodiversity Unit, University of Turku, Turku, Finland
| | - Li Rengui
- China Conservation and Research Center for Giant Panda, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Dujiangyan, Sichuan, China.,Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, Sichuan, China
| | - Ling Shanshan
- China Conservation and Research Center for Giant Panda, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Dujiangyan, Sichuan, China.,Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, Sichuan, China
| | - Huang Shan
- China Conservation and Research Center for Giant Panda, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Dujiangyan, Sichuan, China.,Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, Sichuan, China
| | - Hemin Zhang
- China Conservation and Research Center for Giant Panda, Dujiangyan, Sichuan, China.,Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, Dujiangyan, Sichuan, China.,Qionglai Mountains Conservation Biology of Endangered Wild Animals and Plants National Permanent Scientific Research Base, Dujiangyan, Sichuan, China
| | - Pekka Niemelä
- Biodiversity Unit, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Martínez‐Romero E, Aguirre‐Noyola JL, Bustamante‐Brito R, González‐Román P, Hernández‐Oaxaca D, Higareda‐Alvear V, Montes‐Carreto LM, Martínez‐Romero JC, Rosenblueth M, Servín‐Garcidueñas LE. We and herbivores eat endophytes. Microb Biotechnol 2021; 14:1282-1299. [PMID: 33320440 PMCID: PMC8313258 DOI: 10.1111/1751-7915.13688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.
Collapse
Affiliation(s)
| | | | | | - Pilar González‐Román
- Programa de Ecología GenómicaCentro de Ciencias GenómicasUNAMCuernavacaMorelosMexico
| | | | | | | | | | - Mónica Rosenblueth
- Programa de Ecología GenómicaCentro de Ciencias GenómicasUNAMCuernavacaMorelosMexico
| | | |
Collapse
|
39
|
Yan Z, Xu Q, Hsu WH, Esser SS, Ayala J, Hou R, Yao Y, Jiang D, Yuan S, Wang H. Consuming Different Structural Parts of Bamboo Induce Gut Microbiome Changes in Captive Giant Pandas. Curr Microbiol 2021; 78:2998-3009. [PMID: 34109451 PMCID: PMC8289812 DOI: 10.1007/s00284-021-02503-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/19/2021] [Indexed: 01/05/2023]
Abstract
Giant pandas consume different structural parts of bamboo (shoots, leaves and culms) during different seasons. Previous research showed different bamboo parts have varying nutritional content and that a long-term diet consisting of a single part of bamboo resulted in remarkable metabolic changes within captive giant pandas. However, the effects on the gut microbiome of giant pandas, as a result of a single bamboo part diet, have not been investigated. Here, we evaluated the changes in gut microbial communities based on single bamboo part diets and their potential implications by using 16S rRNA gene-based amplicon sequencing and metagenome shotgun sequencing. We found that the composition and function of the gut microbiome from captive giant pandas fed exclusively culms were significantly different from that of individuals fed shoots or leaves. During the culm feeding period, the gut microbiome showed strongest digestive capabilities for cellulose, hemicellulose and starch, and had the highest potential abilities for the biosynthesis of bile acids, fatty acids and amino acids. This suggests the microbiome aids in breaking down culm, which is more difficult for giant pandas to digest, as a means to compensate for the nutrient poor content of the culm. Genes related to fatty acid metabolism and tricarboxylic acid cycle enzymes were more abundant during the leaf stage diet than that in the shoot and culm stages. Thus, the microbiome may help giant pandas, which typically have low lipase levels, with fat digestion. These results illustrate that adaptive changes in the gut microbiome community and function may be an important mechanism to aid giant panda digestion when consuming different structural parts of bamboo.
Collapse
Affiliation(s)
- Zheng Yan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, Nanchong, 637009, China
| | - Qin Xu
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Walter H Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | | | - James Ayala
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Ying Yao
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Dandan Jiang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Shibin Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, Nanchong, 637009, China.
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China.
- Sichuan Academy of Giant Panda, Chengdu, 610081, China.
| |
Collapse
|
40
|
Jin L, Huang Y, Yang S, Wu D, Li C, Deng W, Zhao K, He Y, Li B, Zhang G, Xiong Y, Wei R, Li G, Wu H, Zhang H, Zou L. Diet, habitat environment and lifestyle conversion affect the gut microbiomes of giant pandas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145316. [PMID: 33517011 DOI: 10.1016/j.scitotenv.2021.145316] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Gut microbiota (GM) are important for the health of giant pandas (GPs), in addition to the utilization of bamboo in their diets. However, it is not fully understood how diet, habitat environment and lifestyle contribute to the composition of GM in GP. Consequently, we evaluated how dietary changes, habitat environment conversions and lifestyle shifts influence the GM of GPs using high-throughput sequencing and genome-resolved metagenomics. The GM of GPs were more similar when their hosts exhibited the same diet. High fiber diets significantly increased the diversity and decreased the richness of gut bacterial communities alone or interacted with the age factor (p < 0.05). The abundances of Streptococcus, Pseudomonas, Enterococcus, Lactococcus, Acinetobacter, and Clostridium significantly increased during diet conversion process (Non-parametric factorial Kruskal-Wallis sum-rank test, LDA > 4). Reconstruction of 60 metagenome-assembled-genomes (MAGs) indicated that these bacteria were likely responsible for bamboo digestion via gene complements involved in cellulose, hemicellulose, and lignin degradation. While habitat environment may play a more important role in shaping the GM of GP, lifestyle can also greatly affect bacterial communities. The GM structure in reintroduced GPs notably converged to that of wild pandas. Importantly, the main bacterial genera of wild GPs could aid in lignin degradation, while those of reintroduced GPs were related to cellulose and hemicellulose digestion. Streptococcus, Pseudomonas, Enterococcus, Lactococcus, Acinetobacter, and Clostridium may contribute to lignocellulose digestion in GP. The results revealed that diet conversion, habitat environment and lifestyle could remarkably influence the GM of GP. In addition, results suggested that increasing the ability of lignin degradation with GM may aid to change the GM of reintroduced pandas to resemble those of wild pandas.
Collapse
Affiliation(s)
- Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Shengzhi Yang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Daifu Wu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Wenwen Deng
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongguo He
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Bei Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Guiquan Zhang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Yaowu Xiong
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Rongping Wei
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Guo Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Hongning Wu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, the China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
41
|
Itoigawa A, Fierro F, Chaney ME, Lauterbur ME, Hayakawa T, Tosi AJ, Niv MY, Imai H. Lowered sensitivity of bitter taste receptors to β-glucosides in bamboo lemurs: an instance of parallel and adaptive functional decline in TAS2R16? Proc Biol Sci 2021; 288:20210346. [PMID: 33849315 PMCID: PMC8059561 DOI: 10.1098/rspb.2021.0346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bitter taste facilitates the detection of potentially harmful substances and is perceived via bitter taste receptors (TAS2Rs) expressed on the tongue and oral cavity in vertebrates. In primates, TAS2R16 specifically recognizes β-glucosides, which are important in cyanogenic plants' use of cyanide as a feeding deterrent. In this study, we performed cell-based functional assays for investigating the sensitivity of TAS2R16 to β-glucosides in three species of bamboo lemurs (Prolemur simus, Hapalemur aureus and H. griseus), which primarily consume high-cyanide bamboo. TAS2R16 receptors from bamboo lemurs had lower sensitivity to β-glucosides, including cyanogenic glucosides, than that of the closely related ring-tailed lemur (Lemur catta). Ancestral reconstructions of TAS2R16 for the bamboo-lemur last common ancestor (LCA) and that of the Hapalemur LCA showed an intermediate sensitivity to β-glucosides between that of the ring-tailed lemurs and bamboo lemurs. Mutagenetic analyses revealed that P. simus and H. griseus had separate species-specific substitutions that led to reduced sensitivity. These results indicate that low sensitivity to β-glucosides at the cellular level—a potentially adaptive trait for feeding on cyanogenic bamboo—evolved independently after the Prolemur–Hapalemur split in each species.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan.,Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Fabrizio Fierro
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Morgan E Chaney
- Department of Anthropology, Kent State University, Kent, OH 44242, USA
| | - M Elise Lauterbur
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Japan Monkey Centre, 26 Inuyamakanrin, Inuyama, Aichi 484-0081, Japan
| | - Anthony J Tosi
- Department of Anthropology, Kent State University, Kent, OH 44242, USA
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| |
Collapse
|
42
|
Goodrich-Blair H. Interactions of host-associated multispecies bacterial communities. Periodontol 2000 2021; 86:14-31. [PMID: 33690897 DOI: 10.1111/prd.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.
Collapse
Affiliation(s)
- Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
43
|
Hu T, Dai Q, Chen H, Zhang Z, Dai Q, Gu X, Yang X, Yang Z, Zhu L. Geographic pattern of antibiotic resistance genes in the metagenomes of the giant panda. Microb Biotechnol 2021; 14:186-197. [PMID: 32812361 PMCID: PMC7888472 DOI: 10.1111/1751-7915.13655] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/01/2020] [Indexed: 12/17/2022] Open
Abstract
The rise in infections by antibiotic-resistant bacteria poses a serious public health problem worldwide. The gut microbiome of animals is a reservoir for antibiotic resistance genes (ARGs). However, the correlation between the gut microbiome of wild animals and ARGs remains controversial. Here, based on the metagenomes of giant pandas (including three wild populations from the Qinling, Qionglai and Xiaoxiangling Mountains, and two major captive populations from Yaan and Chengdu), we investigated the potential correlation between the constitution of the gut microbiome and the composition of ARGs across the different geographic locations and living environments. We found that the types of ARGs were correlated with gut microbiome composition. The NMDS cluster analysis using Jaccard distance of the ARGs composition of the gut microbiome of wild giant pandas displayed a difference based on geographic location. Captivity also had an effect on the differences in ARGs composition. Furthermore, we found that the Qinling population exhibited profound dissimilarities of both gut microbiome composition and ARGs (the highest proportion of Clostridium and vancomycin resistance genes) when compared to the other wild and captive populations studies, which was supported by previous giant panda whole-genome sequencing analysis. In this study, we provide an example of a potential consensus pattern regarding host population genetics, symbiotic gut microbiome and ARGs. We revealed that habitat isolation impacts the ARG structure in the gut microbiome of mammals. Therefore, the difference in ARG composition between giant panda populations will provide some basic information for their conservation and management, especially for captive populations.
Collapse
Affiliation(s)
- Ting Hu
- College of Life SciencesNanjing Normal UniversityNanjing210046China
| | - Qinlong Dai
- Sichan Liziping National Nature ReserveShimianChina
- Shimian Research Center of Giant Panda Small Population Conservation and RejuvenationShimianChina
| | - Hua Chen
- Mingke Biotechnology Co., Ltd.HangzhouChina
| | - Zheng Zhang
- College of Life SciencesNanjing Normal UniversityNanjing210046China
| | - Qiang Dai
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Xiaodong Gu
- Sichuan Station of Wildlife Survey and ManagementChengdu610082China
| | - Xuyu Yang
- Sichuan Station of Wildlife Survey and ManagementChengdu610082China
| | - Zhisong Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchong637002China
| | - Lifeng Zhu
- College of Life SciencesNanjing Normal UniversityNanjing210046China
| |
Collapse
|
44
|
Zhan M, Wang L, Xie C, Fu X, Zhang S, Wang A, Zhou Y, Xu C, Zhang H. Succession of Gut Microbial Structure in Twin Giant Pandas During the Dietary Change Stage and Its Role in Polysaccharide Metabolism. Front Microbiol 2020; 11:551038. [PMID: 33072012 PMCID: PMC7537565 DOI: 10.3389/fmicb.2020.551038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
Adaptation to a bamboo diet is an essential process for giant panda growth, and gut microbes play an important role in the digestion of the polysaccharides in bamboo. The dietary transition in giant panda cubs is particularly complex, but it is an ideal period in which to study the effects of gut microbes on polysaccharide use because their main food changes from milk to bamboo (together with some bamboo shoot and coarse pastry). Here, we used 16S rDNA and internal transcribed spacer 1 (ITS1) DNA sequencing and metagenomic sequencing analysis to investigate the succession of the gut microbial structure in feces sampled from twin giant panda cubs during the completely dietary transition and determine the abundances of polysaccharide-metabolizing genes and their corresponding microbes to better understand the degradation of bamboo polysaccharides. Successive changes in the gut microbial diversity and structure were apparent in the growth of pandas during dietary shift process. Microbial diversity increased after the introduction of supplementary foods and then varied in a complex way for 1.5–2 years as bamboo and complex food components were introduced. They then stabilized after 2 years, when the cubs consumed a specialized bamboo diet. The microbes had more potential to metabolize the cellulose in bamboo than the hemicellulose, providing genes encoding cellulase systems corresponding to glycoside hydrolases (GHs; such as GH1, GH3, GH5, GH8, GH9, GH74, and GH94). The cellulose-metabolizing species (or genes) of gut bacteria was more abundant than that of gut fungi. Although cellulose-metabolizing species did not predominate in the gut bacterial community, microbial interactions allowed the giant pandas to achieve the necessary dietary shift and ultimately adapt to a bamboo diet.
Collapse
Affiliation(s)
- Mingye Zhan
- College of Environmental Science and Engineering, Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai, China
| | - Lei Wang
- College of Environmental Science and Engineering, Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai, China
| | - Chunyu Xie
- Shanghai Wild Animal Park Development Co., Ltd., Shanghai, China
| | - Xiaohua Fu
- College of Environmental Science and Engineering, Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai, China
| | | | | | - Yingmin Zhou
- China Conservation and Research Centre for the Giant Panda, Dujiangyan, China
| | - Chunzhong Xu
- Shanghai Wild Animal Park Development Co., Ltd., Shanghai, China
| | - Hemin Zhang
- China Conservation and Research Centre for the Giant Panda, Dujiangyan, China
| |
Collapse
|
45
|
Fan C, Zhang L, Fu H, Liu C, Li W, Cheng Q, Zhang H, Jia S, Zhang Y. Enterotypes of the Gut Microbial Community and Their Response to Plant Secondary Compounds in Plateau Pikas. Microorganisms 2020; 8:microorganisms8091311. [PMID: 32872148 PMCID: PMC7563992 DOI: 10.3390/microorganisms8091311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Animal gut microbiomes can be clustered into “enterotypes” characterized by an abundance of signature genera. The characteristic determinants, stability, and resilience of these community clusters remain poorly understood. We used plateau pika (Ochotona curzoniae) as a model and identified three enterotypes by 16S rDNA sequencing. Among the top 15 genera, 13 showed significantly different levels of abundance between the enterotypes combined with different microbial functions and distinct fecal short-chain fatty acids. We monitored changes in the microbial community associated with the transfer of plateau pikas from field to laboratory and observed that feeding them a single diet reduced microbial diversity, resulting in a single enterotype with an altered composition of the dominant bacteria. However, microbial diversity, an abundance of some changed dominant genera, and enterotypes were partially restored after adding swainsonine (a plant secondary compound found in the natural diet of plateau pikas) to the feed. These results provide strong evidence that gut microbial diversity and enterotypes are directly related to specific diet, thereby indicating that the formation of different enterotypes can help animals adapt to complex food conditions. Additionally, natural plant secondary compounds can maintain dominant bacteria and inter-individual differences of gut microbiota and promote the resilience of enterotypes in small herbivorous mammals.
Collapse
Affiliation(s)
- Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.J.); (Y.Z.)
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (C.F.); (L.Z.); (H.F.); (C.L.); (W.L.); (Q.C.); (H.Z.)
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- Correspondence: (S.J.); (Y.Z.)
| |
Collapse
|
46
|
Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Sci Rep 2020; 10:12384. [PMID: 32709946 PMCID: PMC7381635 DOI: 10.1038/s41598-020-68448-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Some lineages of ants, termites, and beetles independently evolved a symbiotic association with lignocellulolytic fungi cultivated for food, in a lifestyle known as fungiculture. Fungus-growing insects' symbiosis also hosts a bacterial community thought to integrate their physiology. Similarities in taxonomic composition support the microbiota of fungus-growing insects as convergent, despite differences in fungus-rearing by these insects. Here, by comparing fungus-growing insects to several hosts ranging diverse dietary patterns, we investigate whether the microbiota taxonomic and functional profiles are characteristic of the fungiculture environment. Compared to other hosts, the microbiota associated with fungus-growing insects presents a distinctive taxonomic profile, dominated by Gammaproteobacteria at class level and by Pseudomonas at genera level. Even with a functional profile presenting similarities with the gut microbiota of herbivorous and omnivorous hosts, some differentially abundant features codified by the microbiota of fungus-growing insects suggest these communities occupying microhabitats that are characteristic of fungiculture. These features include metabolic pathways involved in lignocellulose breakdown, detoxification of plant secondary metabolites, metabolism of simple sugars, fungal cell wall deconstruction, biofilm formation, antimicrobials biosynthesis, and metabolism of diverse nutrients. Our results suggest that the microbiota could be functionally adapted to the fungiculture environment, codifying metabolic pathways potentially relevant to the fungus-growing insects' ecosystems functioning.
Collapse
|
47
|
Greene LK, Williams CV, Junge RE, Mahefarisoa KL, Rajaonarivelo T, Rakotondrainibe H, O'Connell TM, Drea CM. A role for gut microbiota in host niche differentiation. THE ISME JOURNAL 2020; 14:1675-1687. [PMID: 32238913 PMCID: PMC7305313 DOI: 10.1038/s41396-020-0640-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
If gut microbes influence host behavioral ecology in the short term, over evolutionary time, they could drive host niche differentiation. We explored this possibility by comparing the gut microbiota of Madagascar's folivorous lemurs from Indriidae and Lepilemuridae. Occurring sympatrically in the eastern rainforest, our four, target species have different dietary specializations, including frugo-folivory (sifakas), young-leaf folivory (indri and woolly lemurs), and mature-leaf folivory (sportive lemurs). We collected fecal samples, from 2013 to 2017, and used amplicon sequencing, metagenomic sequencing, and nuclear magnetic resonance spectroscopy, respectively, to integrate analyses of gut microbiome structure and function with analysis of the colonic metabolome. The lemurs harbored species-specific microbiomes, metagenomes, and metabolomes that were tuned to their dietary specializations: Frugo-folivores had greater microbial and metagenomic diversity, and harbored generalist taxa. Mature-leaf folivores had greater individual microbiome variation, and taxa and metabolites putatively involved in cellulolysis. The consortia even differed between related, young-leaf specialists, with indri prioritizing metabolism of fiber and plant secondary compounds, and woolly lemurs prioritizing amino-acid cycling. Specialized gut microbiota and associated gastrointestinal morphologies enable folivores to variably tolerate resource fluctuation and support nutrient extraction from challenging resources (e.g., by metabolizing plant secondary compounds or recalcitrant fibers), perhaps ultimately facilitating host species' diversity and specialized feeding ecologies.
Collapse
Affiliation(s)
- Lydia K Greene
- University Program in Ecology, Duke University, Durham, NC, 27708, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA.
- Primate Microbiome Project, Minneapolis, MN, USA.
| | - Cathy V Williams
- Duke Lemur Center, Durham, NC, 27705, USA
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
| | - Randall E Junge
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
- Columbus Zoo and Aquarium, 9990 Riverside Drive, Columbus, OH, 43065, USA
| | - Karine L Mahefarisoa
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
- Vet Care Clinic Madagascar, IVC II Ambatomitsangana, 101, Antananarivo, Madagascar
| | - Tsiky Rajaonarivelo
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
- Vetclinic, Ampandrianomby, Antananarivo, Madagascar
| | | | - Thomas M O'Connell
- Department of Otolaryngology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
48
|
Dong J, Liu S, Zhang Y, Dai Y, Wu Q. A New Alignment-Free Whole Metagenome Comparison Tool and Its Application on Gut Microbiomes of Wild Giant Pandas. Front Microbiol 2020; 11:1061. [PMID: 32612579 PMCID: PMC7309450 DOI: 10.3389/fmicb.2020.01061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
The comparison of metagenomes is crucial for studying the relationship between microbial communities and environmental factors. One recently published alignment-free whole metagenome comparison method based on k-mer frequencies, Libra, showed higher resolutions than the present fastest method, Mash, on whole metagenomic sequencing reads, but it did not perform as well on the assembled contigs. Here, we developed a new alignment-free tool, KmerFreqCalc, for the comparison of the whole metagenomic data, which first calculated the frequencies of both forward and reverse complementary sequences of k-mers like Mash and then computed the cosine distance between the samples based on k-mer frequency vectors like Libra. We applied KmerFreqCalc on the assembled contigs of the gut microbiomes of wild giant pandas and compared the results to Libra and Mash. The results indicated that KmerFreqCalc was able to detect the subtle difference between giant panda samples caused by seasonal diet change, showing better clustering than Libra and Mash. Therefore, KmerFreqCalc has high resolution and accuracy for assembled contigs, being very suitable for comparison of samples with low dissimilarity.
Collapse
Affiliation(s)
- Jiuhong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuai Liu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yaran Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Zhang Z, Hu T, Lu G, Zhu L. Lessons from bamboo-eating pandas and their gut microbiome: Gut microbiome flow and applications. Evol Appl 2020; 13:615-619. [PMID: 32211055 PMCID: PMC7086052 DOI: 10.1111/eva.12915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
The giant panda is one of the most endangered mammals in the world, and many studies have revealed their evolutionary adaptation to the local environment (e.g., dietary cellulose and cyanide) on the evidences from population genetics and their gut microbiome. Here, based on the results of our analysis of the giant panda gut microbiome, we concluded that instability and resilience are the two primary characteristics of the giant panda gut microbiome. This basic information may have an impact on giant panda conservation, as well the management of other animal species.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Life Sciences Nanjing Normal University Nanjing China
| | - Ting Hu
- College of Life Sciences Nanjing Normal University Nanjing China
| | - Guoqing Lu
- Department of Biology University of Nebraska Omaha Omaha NE USA
| | - Lifeng Zhu
- College of Life Sciences Nanjing Normal University Nanjing China
| |
Collapse
|
50
|
Abstract
Giant pandas are specialized herbivores that digest little of the bamboo they consume. A new study argues that pandas, like carnivores, get most of their energy from protein, explaining their carnivore-like guts and poor digestion. This may have facilitated their ancestors' transition to herbivory.
Collapse
Affiliation(s)
- Matt Sponheimer
- Nutritional and Isotopic Ecology Lab, Department of Anthropology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Daryl Codron
- Department of Zoology and Entomology, University of the Free State, PO BOX 339, Bloemfontein, South Africa
| |
Collapse
|