1
|
Mbaoma OC, Thomas SM, Beierkuhnlein C. Significance of vertical transmission of arboviruses in mosquito-borne disease epidemiology. Parasit Vectors 2025; 18:137. [PMID: 40205559 PMCID: PMC11983947 DOI: 10.1186/s13071-025-06761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Mosquito-borne diseases (MBDs) are increasingly prevalent due to the resultant impact of global change with significant health and economic impacts worldwide. Dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), yellow fever virus (YFV), Japanese encephalitis (JEV), and West Nile virus (WNV) transmitted by Aedes and Culex species have been identified as arboviruses of public health interest. The vertical transmission (VT) refers to the process where infected mosquitoes transmit viruses to their offspring; this has been often overlooked in MBD epidemiology. We conducted a systematic review to evaluate the role of VT in the occurrence, prevalence, and spread of MBDs, focusing on study types, mosquito species, and virus genera. In total, 73 studies from 2005 to 2024 relating to VT in the mosquito population were reviewed. Findings revealed the occurrence of VT across multiple mosquito species in natural and experimental settings, with significant variation in VT rates depending on vector species, virus genus, and study location. Aedes aegypti, Aedes albopictus, Aedes vexans, Culex pipiens, Culex tarsalis, and Culex quinquefasciatus were identified as mosquito species that support VT, while pathogens identified to be transmitted vertically were DENV, ZIKV, WNV, CHIKV, YFV, Sindbis virus (SINV), Ross River virus (RRV), and Mayaro virus (MAYV). VT rates were reported as minimum, and infection rate (MIR) varied across species, study type and location. Also, a high VT rate may precede a mosquito-borne disease outbreak. These findings indicate that VT, though often overlooked, contributes to the dynamics of MBD transmission and could influence disease outbreaks and endemism, especially under changing climatic conditions, highlighting the need for incorporating VT in mathematical models, experimental studies, and control strategies to understand dynamics of MBDs, given its potential role in sustaining arbovirus transmission and influencing outbreak dynamics.
Collapse
Affiliation(s)
| | - Stephanie Margarete Thomas
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
- Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
- Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Farhan M, Akhtar S, Ahmad I, Maryam, Hussain H, Yasin M, Farooqi MA, Zhang S. Assessing the potential of nano-formulated chlorfenapyr and clothianidin insecticides-treated sugar baits against Anopheles funestus, Anopeles coluzzii and Culex quinquefasciatus mosquitoes. Acta Trop 2024; 256:107269. [PMID: 38821147 DOI: 10.1016/j.actatropica.2024.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Mosquitoes serve as vectors for various diseases like malaria, dengue fever, yellow fever, and lymphatic filarial diseases causing significant global health problems, highlighting the importance of vector control. The study was conducted to assess the effectiveness of nanoformulated clothianidin and chlorfenapyr insecticides treated with ATSB in controlling three mosquito strains. The development of a natural thiolated polymer-coated ATSB nano formulation involved incorporating nano-carriers to deliver insecticides. Field- collected mosquito strains were subjected to laboratory-based bioassays using 1 % and 1.5 % concentrations of each conventionally used and nanoformulated insecticide with ATSB solution. Adult mosquitoes were left overnight to contact with N-ATSB and efficacy was recorded after 36 and 72 h. The results showed that nanoformulated chlorfenapyr was significantly more effective as compared to clothianidin against An. funestus and Cx. quinquefasciatus but the results were not significantly different against An. coluzzii (100 %). An. coluzzii was found to be the most susceptible strain followed by An. funestus and showed 100 % and ∼ 98 % mortality against nanoformulated chlorfenapyr (1.5 %). Nanoformulated clothianidin induced more than 92 % and ∼ 100 % mortality against An. funestus and An. coluzzii respectively. However, Cx. quinquefasciatus significantly showed less mortality against nanoformulated clothianidin (88 %) and chlorfenapyr (>95 %) as compared to Anopheline strains. Furthermore, results indicate that nanoformulated insecticides significantly caused greater and prolonged fatality as compared to conventional form, suggesting effective and suitable strategies for vector management.
Collapse
Affiliation(s)
- Muhammad Farhan
- College of Plant Protection, Yangzhou University, 225009, China
| | - Sohail Akhtar
- Department of Entomology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Maryam
- Department of Botany, The Government Sadiq College Women University Bahawalpur, 63100, Pakistan
| | - Hammad Hussain
- School of Horticulture and Landscape Architecture, Yangzhou University, 225009, China
| | - Muhammad Yasin
- Department of Entomology, The Islamia University of Bahawalpur, 63100, Pakistan
| | | | - Shuai Zhang
- College of Plant Protection, Yangzhou University, 225009, China.
| |
Collapse
|
3
|
Figueiredo Prates LH, Fiebig J, Schlosser H, Liapi E, Rehling T, Lutrat C, Bouyer J, Sun Q, Wen H, Xi Z, Schetelig MF, Häcker I. Challenges of Robust RNAi-Mediated Gene Silencing in Aedes Mosquitoes. Int J Mol Sci 2024; 25:5218. [PMID: 38791257 PMCID: PMC11121262 DOI: 10.3390/ijms25105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we report the complexities and challenges associated with achieving robust RNA interference (RNAi)-mediated gene knockdown in the mosquitoes Aedes aegypti and Aedes albopictus, a pivotal approach for genetic analysis and vector control. Despite RNAi's potential for species-specific gene targeting, our independent efforts to establish oral delivery of RNAi for identifying genes critical for mosquito development and fitness encountered significant challenges, failing to reproduce previously reported potent RNAi effects. We independently evaluated a range of RNAi-inducing molecules (siRNAs, shRNAs, and dsRNAs) and administration methods (oral delivery, immersion, and microinjection) in three different laboratories. We also tested various mosquito strains and utilized microorganisms for RNA delivery. Our results reveal a pronounced inconsistency in RNAi efficacy, characterized by minimal effects on larval survival and gene expression levels in most instances despite strong published effects for the tested targets. One or multiple factors, including RNase activity in the gut, the cellular internalization and processing of RNA molecules, and the systemic dissemination of the RNAi signal, could be involved in this variability, all of which are barely understood in mosquitoes. The challenges identified in this study highlight the necessity for additional research into the underlying mechanisms of mosquito RNAi to develop more robust RNAi-based methodologies. Our findings emphasize the intricacies of RNAi application in mosquitoes, which present a substantial barrier to its utilization in genetic control strategies.
Collapse
Affiliation(s)
- Lucas Henrique Figueiredo Prates
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Jakob Fiebig
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Henrik Schlosser
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Eleni Liapi
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | | | - Jeremy Bouyer
- ASTRE, CIRAD, 34398 Montpellier, France (J.B.)
- ASTRE, CIRAD, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, 97491 Sainte-Clotilde, La Réunion, France
| | - Qiang Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (Q.S.); (H.W.); (Z.X.)
| | - Han Wen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (Q.S.); (H.W.); (Z.X.)
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (Q.S.); (H.W.); (Z.X.)
| | - Marc F. Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Irina Häcker
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| |
Collapse
|
4
|
Veronesi E, Paslaru A, Ettlin J, Ravasi D, Flacio E, Tanadini M, Guidi V. Estimating the Impact of Consecutive Blood Meals on Vector Competence of Aedes albopictus for Chikungunya Virus. Pathogens 2023; 12:849. [PMID: 37375539 DOI: 10.3390/pathogens12060849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
The continuous expansion of Aedes albopictus in Europe and the increases in autochthonous arboviruses transmissions in the region urge a better understanding of the virus transmission dynamic. Recent work described enhanced chikungunya virus (CHIKV) dissemination in Aedes aegypti mosquitoes exposed to a virus-free blood meal three days after their infection with CHIKV. Our study investigated the impact of a second blood meal on the vector competence of Ae. albopictus from southern Switzerland infected with CHIKV. Seven-day-old Ae. albopictus females were exposed to CHIKV-spiked blood and incubated at constant (27 °C) and fluctuating (14-28 °C) temperatures. Four days post-infection (dpi), some of these females were re-fed with a non-infectious blood meal. Virus infectivity, dissemination, transmission rate, and efficiency were investigated at seven and ten dpi. No enhanced dissemination rate was observed among females fed a second time; however, re-fed females have shown higher transmission efficiency than those fed only once after seven days post-infection and incubated under a fluctuating temperature regime. Vector competence for CHIKV was confirmed in Ae. albopictus from southern Switzerland. We did not observe an increase in dissemination rates among mosquitoes fed a second time (second blood meal), regardless of the temperature regime.
Collapse
Affiliation(s)
- Eva Veronesi
- Institute of Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland
| | - Anca Paslaru
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich (UZH), 5404 Zürich, Switzerland
| | - Julia Ettlin
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich (UZH), 5404 Zürich, Switzerland
| | - Damiana Ravasi
- Institute of Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland
| | - Eleonora Flacio
- Institute of Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland
| | - Matteo Tanadini
- Zurich Data Scientists GmbH, Sihlquai 131, 8005 Zurich, Switzerland
| | - Valeria Guidi
- Institute of Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland
| |
Collapse
|
5
|
Coatsworth H, Lippi CA, Vasquez C, Ayers JB, Stephenson CJ, Waits C, Florez M, Wilke AB, Unlu I, Medina J, Ryan SJ, Lednicky JA, Beier JC, Petrie W, Dinglasan RR. A molecular surveillance-guided vector control response to concurrent dengue and West Nile virus outbreaks in a COVID-19 hotspot of Florida. LANCET REGIONAL HEALTH. AMERICAS 2022; 11:100231. [PMID: 36778921 PMCID: PMC9903724 DOI: 10.1016/j.lana.2022.100231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background Simultaneous dengue virus (DENV) and West Nile virus (WNV) outbreaks in Florida, USA, in 2020 resulted in 71 dengue virus serotype 1 and 86 WNV human cases. We hypothesized that we would find a number of DENV-1 positive mosquito pools, and that the distribution of these arbovirus-positive mosquito pools would be associated with those neighborhoods for which imported DENV cases have been recently reported in 2019 and 2020. Methods We collected and screened Aedes aegypti, Ae. albopictus, Anopheles crucians, Culex coronator, Cx. nigripalpus, and Cx. quinquefasciatus mosquitoes from Miami-Dade County (Florida) for DENV and WNV by rRT-qPCR. Spatial statistical analyses were performed to capture positive mosquito pool distribution in relation to land use, human demography, environmental variables, mosquito trap placement and reported human travel associated DENV cases to guide future mosquito control outbreak responses. Findings A rapid screen of 7,668 mosquitoes detected four DENV serotype 2 (DENV-2), nine DENV-4 and nine WNV-positive mosquito pools, which enabled swift and targeted abatement of trap sites by mosquito control. As expected, DENV-positive pools were in urban areas; however, we found WNV-positive mosquito pools in agricultural and recreational areas with no historical reports of WNV transmission. Interpretation These findings demonstrate the importance of proactive arbovirus surveillance in mosquito populations to prevent and control outbreaks, particularly when other illnesses (e.g., COVID-19), which present with similar symptoms, are circulating concurrently. Growing evidence for substantial infection prevalence of dengue in mosquitoes in the absence of local index cases suggests a higher level of dengue endemicity in Florida than previously thought. Funding This research was supported in part by U.S. Centers for Disease Control and Prevention (CDC) grant 1U01CK000510-03, Southeastern Regional Center of Excellence in Vector Borne Diseases Gateway Program.
Collapse
Affiliation(s)
| | | | | | - Jasmine B. Ayers
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
| | | | - Christy Waits
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
- Navy Entomology Center of Excellence, Jacksonville, FL, USA
| | - Mary Florez
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
| | | | - Isik Unlu
- Miami-Dade Mosquito Control District, Miami, FL, USA
| | - Johana Medina
- Miami-Dade Mosquito Control District, Miami, FL, USA
| | - Sadie J. Ryan
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
| | - John A. Lednicky
- University of Florida, 2055 Mowry Rd, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
6
|
Liu Q, Wang J, Hou J, Wu Y, Zhang H, Xing D, Gao J, Li C, Guo X, Jiang Y, Gong Z, Zhao T. Entomological Investigation and Detection of Dengue Virus Type 1 in Aedes (Stegomyia) albopictus (Skuse) During the 2018–2020 Outbreak in Zhejiang Province, China. Front Cell Infect Microbiol 2022; 12:834766. [PMID: 35846756 PMCID: PMC9283783 DOI: 10.3389/fcimb.2022.834766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Mosquito-borne diseases are still threats to public health in the Zhejiang province of China. Surveillance of mosquitoes and the mosquito-borne pathogen is a vital approach for early warning, prevention, and control of the infectious disease. In this study, from 2018 to 2020, a total of 141607 female mosquitoes were caught by means of the light trap method. The main species were Culex pipiens quinquefasciatus/pallens (41.32%), Culex tritaeniorhynchus (47.6%), Aedes albopictus (2.5%), Anopheles sinensis (5.87%), Armigeres subalbatus (2.64%) and other mosquito species (0.07%). Cx. pipiens s.l. were the dominant species in two urban habitats and rural residential areas while Cx. tritaeniorhynchus was the main dominant species in the rural livestock sheds. In terms of seasonal fluctuation, Cx. pipiens s.l fluctuated at a high level from May to October. The peaks of Cx. tritaeniorhynchus, An. sinensis and Ar. subalbatus were in July. In addition, a total of 693 Ae. albopictus were collected with Biogents Mosquitaire CO2 traps in emergency surveillance of dengue fever (DF) and screened for dengue virus infection. There were three circumstances of collection: The first: the sampling time before mosquito control during the local outbreak of DF in Lucheng of Wenzhou, 2019; The second circumstance: the sampling time after mosquito control during the local outbreak of DF of other cities in 2018-2019; The third circumstance: past DF epidemic areas the sampling time before mosquito control during the local outbreak of DF in Lucheng, Wenzhou, Zhejiang, 2019. The pools formed by mosquitoes collected in these three circumstances were 3 (6.1%), 35 (71.5%), and 11 (22.4%) respectively. Of the 49 pools tested, only one in the first circumstance was positive. The full-length dengue virus sequence of ZJWZ/2019 was obtained by sequencing and uploaded to the NCBI as number OK448162. Full-length nucleotide and amino acid homology analyses showed that ZJWZ2019 and Wenzhou DF serum isolates ZJWZ-62/2019 (MW582816) and ZJWZ-18/2019 (MW582815) had the highest homology. The analysis of full genome and E gene phylogenetic trees showed that ZJWZ2019 belonged to serotype 1, genotype I, lineage II, which was evolutionarily related to OK159963/Cambodia/2019. It implies that ZJWZ2019 originated in Cambodia. This study showed the species composition, seasonal dynamics of mosquitoes in different habitats in Zhejiang province and confirmed the role of Ae. albopictus in the transmission cycle of in outbreak of DF in the Lucheng district of Wenzhou in 2019, suggesting the importance of monitoring of vector Aedes infected dengue virus in the prevention and control of DF.
Collapse
Affiliation(s)
- Qinmei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jinna Wang
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Juan Hou
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yuyan Wu
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hengduan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoxia Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuting Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhenyu Gong
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Zhenyu Gong, ; Tongyan Zhao,
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Zhenyu Gong, ; Tongyan Zhao,
| |
Collapse
|
7
|
Temperature-Mediated Effects on Mayaro Virus Vector Competency of Florida Aedes aegypti Mosquito Vectors. Viruses 2022; 14:v14050880. [PMID: 35632622 PMCID: PMC9144726 DOI: 10.3390/v14050880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging mosquito-borne arbovirus and public health concern. We evaluated the influence of temperature on Aedes aegypti responses to MAYV oral infection and transmission at two constant temperatures (20 °C and 30 °C). Infection of mosquito tissues (bodies and legs) and salivary secretions with MAYV was determined at 3, 9, 15, 21, and 27 days post ingestion. At both temperatures, we observed a trend of increase in progression of MAYV infection and replication kinetics over time, followed by a decline during later periods. Peaks of MAYV infection, titer, and dissemination from the midgut were detected at 15 and 21 days post ingestion at 30 °C and 20 °C, respectively. Mosquitoes were able to transmit MAYV as early as day 3 at 30 °C, but MAYV was not detectable in salivary secretions until day 15 at 20 °C. Low rates of MAYV in salivary secretions collected from infected mosquitoes provided evidence supporting the notion that a substantial salivary gland barrier(s) in Florida Ae. aegypti can limit the risk of MAYV transmission. Our results provide insights into the effects of temperature and time on the progression of infection and replication of MAYV in Ae. aegypti vectors.
Collapse
|
8
|
Stephenson CJ, Coatsworth H, Waits CM, Nazario-Maldonado NM, Mathias DK, Dinglasan RR, Lednicky JA. Geographic Partitioning of Dengue Virus Transmission Risk in Florida. Viruses 2021; 13:v13112232. [PMID: 34835038 PMCID: PMC8622774 DOI: 10.3390/v13112232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with low passage or laboratory DENV-1 through -4. Low passage DENVs were more infectious to and had higher transmission potential by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for low passage DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.
Collapse
Affiliation(s)
- Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32608, USA
| | - Heather Coatsworth
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Christy M. Waits
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL 32212, USA
| | - Nicole M. Nazario-Maldonado
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Derrick K. Mathias
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Rhoel R. Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
- Correspondence: (R.R.D.); (J.A.L.)
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32608, USA
- Correspondence: (R.R.D.); (J.A.L.)
| |
Collapse
|
9
|
Ayers JB, Xie X, Coatsworth H, Stephenson CJ, Waits CM, Shi PY, Dinglasan RR. Infection Kinetics and Transmissibility of a Reanimated Dengue Virus Serotype 4 Identified Originally in Wild Aedes aegypti From Florida. Front Microbiol 2021; 12:734903. [PMID: 34630357 PMCID: PMC8500192 DOI: 10.3389/fmicb.2021.734903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022] Open
Abstract
Dengue virus is the most prevalent mosquito-borne virus, causing approximately 390 million infections and 25,000 deaths per year. Aedes aegypti, the primary mosquito vector of dengue virus, is well-established throughout the state of Florida, United States. Autochthonous transmission of dengue virus to humans in Florida has been increasing since 2009, alongside consistent importation of dengue cases. However, most cases of first infection with dengue are asymptomatic and the virus can be maintained in mosquito populations, complicating surveillance and leading to an underestimation of disease risk. Metagenomic sequencing of A. aegypti mosquitoes in Manatee County, Florida revealed the presence of dengue virus serotype 4 (DENV-4) genomes in mosquitoes from multiple trapping sites over 2years, in the absence of a human DENV-4 index case, and even though a locally acquired case of DENV-4 has never been reported in Florida. This finding suggested that: (i) DENV-4 may circulate among humans undetected; (ii) the virus was being maintained in the mosquito population, or (iii) the detected complete genome sequence may not represent a viable virus. This study demonstrates that an infectious clone generated from the Manatee County DENV-4 (DENV-4M) sequence is capable of infecting mammalian and insect tissue culture systems, as well as adult female A. aegypti mosquitoes when fed in a blood meal. However, the virus is subject to a dose dependent infection barrier in mosquitoes, and has a kinetic delay compared to a phylogenetically related wild-type (WT) control virus from a symptomatic child, DENV-4H (strain Homo sapiens/Haiti-0075/2015, GenBank accession MK514144.1). DENV-4M disseminates from the midgut to the ovary and saliva at 14days post-infection. Viral RNA was also detectable in the adult female offspring of DENV-4M infected mosquitoes. These results demonstrate that the virus is capable of infecting vector mosquitoes, is transmissible by bite, and is vertically transmitted, indicating a mechanism for maintenance in the environment without human-mosquito transmission. These findings suggest undetected human-mosquito transmission and/or long-term maintenance of the virus in the mosquito population is occurring in Florida, and underscore the importance of proactive surveillance for viruses in mosquitoes. GRAPHICAL ABSTRACTIn order to better assess the public health risk posed by a detection of DENV-4 RNA in Manatee County, FL Aedes aegypti, we produced an infectious clone using the sequence from the wild-caught mosquitoes and characterized it via laboratory infections of mosquitoes and mosquito tissues.
Collapse
Affiliation(s)
- Jasmine B. Ayers
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Heather Coatsworth
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Christy M. Waits
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL, United States
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rhoel R. Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|