1
|
Huang X, Johnson AE, Brehm JN, Do TVT, Auchtung TA, McCullough HC, Lerma AI, Haidacher SJ, Hoch KM, Horvath TD, Sorg JA, Haag AM, Auchtung JM. Clostridioides difficile colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an in vitro model. mSphere 2025; 10:e0104924. [PMID: 39817755 PMCID: PMC11852769 DOI: 10.1128/msphere.01049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025] Open
Abstract
Treatment with antibiotics is a major risk factor for Clostridioides difficile infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit C. difficile colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to C. difficile growth and competition between the microbiota and C. difficile for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to C. difficile infection in 12 different microbial communities cultivated from healthy individuals. Antibiotic treatment reduced microbial richness; disruption varied by antibiotic class and microbiota composition, but did not correlate with C. difficile susceptibility. Antibiotic treatment also disrupted microbial bile salt metabolism, increasing levels of the primary bile salt, cholate. However, changes in bile salt did not correlate with increased C. difficile susceptibility. Furthermore, bile salts were not required to inhibit C. difficile colonization. We tested whether amino acid fermentation contributed to the persistence of C. difficile in antibiotic-treated communities. C. difficile mutants unable to use proline as an electron acceptor in Stickland fermentation due to disruption of proline reductase (prdB-) had significantly lower levels of colonization than wild-type strains in four of six antibiotic-treated communities tested. The inability to ferment glycine or leucine as electron acceptors, however, was not sufficient to limit colonization in any communities. The data provide further support for the importance of bile salt-independent mechanisms in regulating the colonization of C. difficile.IMPORTANCEClostridioides difficile is one of the leading causes of hospital-acquired infections and antibiotic-associated diarrhea. Several potential mechanisms through which the microbiota can limit C. difficile infection have been identified and are potential targets for new therapeutics. However, it is unclear which mechanisms of C. difficile inhibition represent the best targets for the development of new therapeutics. These studies demonstrate that in a complex in vitro model of C. difficile infection, colonization resistance is independent of microbial bile salt metabolism. Instead, the ability of C. difficile to colonize is dependent upon its ability to metabolize proline, although proline-dependent colonization is context dependent and is not observed in all disrupted communities. Altogether, these studies support the need for further work to understand how bile-independent mechanisms regulate C. difficile colonization.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - April E. Johnson
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Thomas A. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hugh C. McCullough
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Armando I. Lerma
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pharmacy Practice & Translational Research, University of Houston, Houston, Texas, USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
2
|
Beebe MA, Paredes-Sabja D, Kociolek LK, Rodríguez C, Sorg JA. Phenotypic analysis of various Clostridioides difficile ribotypes reveals consistency among core processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632434. [PMID: 39829883 PMCID: PMC11741275 DOI: 10.1101/2025.01.10.632434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Clostridioides difficile infections (CDI) cause almost 300,000 hospitalizations per year of which ~15-30% are the result of recurring infections. The prevalence and persistence of CDI in hospital settings has resulted in an extensive collection of C. difficile clinical isolates and their classification, typically by ribotype. While much of the current literature focuses on one or two prominent ribotypes (e.g., RT027), recent years have seen several other ribotypes dominate the clinical landscape (e.g., RT106 and RT078). Some ribotypes are associated with severe disease and / or increased recurrence rates, but why are certain ribotypes more prominent or harmful than others remains unknown. Because C. difficile has a large, open pan-genome, this observed relationship between ribotype and clinical outcome could be a result of the genetic diversity of C. difficile. Thus, we hypothesize that core biological processes of C. difficile are conserved across ribotypes / clades. We tested this hypothesis by observing the growth kinetics, sporulation, germination, bile acid sensitivity, bile salt hydrolase activity, and surface motility of fifteen strains belonging to various ribotypes spanning each known C. difficile clade. In viewing these phenotypes across each strain, we see that core phenotypes (growth, germination, sporulation, and resistance to bile salt toxicity) are remarkably consistent across clades / ribotypes. This suggests that variations observed in the clinical setting may be due to unidentified factors in the accessory genome or due to unknown host-factors. Importance C. difficile infections impact thousands of individuals every year many of whom experience recurring infections. Clinical studies have reported an unexplained correlation between some clades / ribotypes of C. difficile and disease severity / recurrence. Here, we demonstrate that C. difficile strains across the major clades / ribotypes are consistent in their core phenotypes. This suggests that such phenotypes are not responsible for variations in disease severity / recurrence and are ideal targets for the development of therapeutics meant to treat C. difficile related infections.
Collapse
Affiliation(s)
- Merilyn A. Beebe
- Department of Biology, Texas A&M University, College Station, TX 77845
| | | | - Larry K. Kociolek
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611
| | - César Rodríguez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845
| |
Collapse
|
3
|
Huang X, Johnson AE, Brehm JN, Thanh Do TV, Auchtung TA, McCullough HC, Lerma AI, Haidacher SJ, Hoch KM, Horvath TD, Sorg JA, Haag AM, Auchtung JM. Clostridioides difficile colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an in vitro model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603937. [PMID: 39071387 PMCID: PMC11275744 DOI: 10.1101/2024.07.17.603937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Treatment with antibiotics is a major risk factor for Clostridioides difficile infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit C. difficile colonization include conversion of conjugated primary bile salts into secondary bile salts toxic to C. difficile growth, and competition between the microbiota and C. difficile for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with six clinically-used antibiotics influenced susceptibility to C. difficile infection in 12 different microbial communities cultivated from healthy individuals. Antibiotic treatment reduced microbial richness; disruption varied by antibiotic class and microbiota composition, but did not correlate with C. difficile susceptibility. Antibiotic treatment also disrupted microbial bile salt metabolism, increasing levels of the primary bile salt, cholate. However, changes in bile salt did not correlate with increased C. difficile susceptibility. Further, bile salts were not required to inhibit C. difficile colonization. We tested whether amino acid fermentation contributed to persistence of C. difficile in antibiotic-treated communities. C. difficile mutants unable to use proline as an electron acceptor in Stickland fermentation due to disruption of proline reductase (prdB-) had significantly lower levels of colonization than wild-type strains in four of six antibiotic-treated communities tested. Inability to ferment glycine or leucine as electron acceptors, however, was not sufficient to limit colonization in any communities. This data provides further support for the importance of bile salt-independent mechanisms in regulating colonization of C. difficile.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - April E. Johnson
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Thomas A. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Hugh C. McCullough
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Armando I. Lerma
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
- Department of Pharmacy Practice & Translational Research, University of Houston, Houston, TX USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
4
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
5
|
Marini E, Olivença C, Ramalhete S, Aguirre AM, Ingle P, Melo MN, Antunes W, Minton NP, Hernandez G, Cordeiro TN, Sorg JA, Serrano M, Henriques AO. A sporulation signature protease is required for assembly of the spore surface layers, germination and host colonization in Clostridioides difficile. PLoS Pathog 2023; 19:e1011741. [PMID: 37956166 PMCID: PMC10681294 DOI: 10.1371/journal.ppat.1011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/27/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.
Collapse
Affiliation(s)
- Eleonora Marini
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Andrea Martinez Aguirre
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Patrick Ingle
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Wilson Antunes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Joseph A Sorg
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| |
Collapse
|
6
|
Moore JH, Salahi A, Honrado C, Warburton C, Tate S, Warren CA, Swami NS. Correlating Antibiotic-Induced Dysbiosis to Clostridioides difficile Spore Germination and Host Susceptibility to Infection Using an Ex Vivo Assay. ACS Infect Dis 2023; 9:1878-1888. [PMID: 37756389 PMCID: PMC10581205 DOI: 10.1021/acsinfecdis.3c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 09/29/2023]
Abstract
Antibiotic-induced microbiota disruption and its persistence create conditions for dysbiosis and colonization by opportunistic pathogens, such as those causing Clostridioides difficile (C. difficile) infection (CDI), which is the most severe hospital-acquired intestinal infection. Given the wide differences in microbiota across hosts and in their recovery after antibiotic treatments, there is a need for assays to assess the influence of dysbiosis and its recovery dynamics on the susceptibility of the host to CDI. Germination of C. difficile spores is a key virulence trait for the onset of CDI, which is influenced by the level of primary vs secondary bile acids in the intestinal milieu that is regulated by the microbiota composition. Herein, the germination of C. difficile spores in fecal supernatant from mice that are subject to varying degrees of antibiotic treatment is utilized as an ex vivo assay to predict intestinal dysbiosis in the host based on their susceptibility to CDI, as determined by in vivo CDI metrics in the same mouse model. Quantification of spore germination down to lower detection limits than the colony-forming assay is achieved by using impedance cytometry to count single vegetative bacteria that are identified based on their characteristic electrical physiology for distinction vs aggregated spores and cell debris in the media. As a result, germination can be quantified at earlier time points and with fewer spores for correlation to CDI outcomes. This sets the groundwork for a point-of-care tool to gauge the susceptibility of human microbiota to CDI after antibiotic treatments.
Collapse
Affiliation(s)
- John H. Moore
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Armita Salahi
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Carlos Honrado
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Christopher Warburton
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Steven Tate
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Cirle A. Warren
- Infectious
Diseases, School of Medicine, University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Nathan S. Swami
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
- Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Chen Y, Quirk NF, Tan S. Shining a light on bacterial environmental cue integration and its relation to metabolism. Mol Microbiol 2023; 120:71-74. [PMID: 37433048 PMCID: PMC10348474 DOI: 10.1111/mmi.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 07/13/2023]
Abstract
The ability of a bacterium to successfully colonize its host is dependent on proper adaptation to its local environment. Environmental cues are diverse in nature, ranging from ions to bacterial-produced signals, and to host immune responses that can also be exploited by the bacteria as cues. Simultaneously, bacterial metabolism must be matched to the carbon and nitrogen sources available at a given time and location. While initial characterization of a bacterium's response to a given environmental cue or its ability to utilize a particular carbon/nitrogen source requires study of the signal in question in isolation, actual infection poses a situation where multiple signals are present concurrently. This perspective focuses on the untapped potential in uncovering and understanding how bacteria integrate their response to multiple concurrent environmental cues, and in elucidating the possible intrinsic coordination of bacterial environmental response with its metabolism.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Natalia F. Quirk
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Budi ND, Godfrey JJ, Safdar N, Shukla SK, Rose WE. Efficacy of Omadacycline or Vancomycin Combined With Germinants for Preventing Clostridioides difficile Relapse in a Murine Model. J Infect Dis 2023; 227:622-630. [PMID: 35904942 PMCID: PMC9978312 DOI: 10.1093/infdis/jiac324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Clostridioides difficile infections (CDI) and recurrence (rCDI) are major health care burdens. Recurrence is likely caused by spores in the gastrointestinal tract that germinate after antibiotic therapy. This murine study explores germinant-antibiotic combinations for CDI. METHODS Previously described murine models were evaluated using C. difficile VPI 10463. The severe model compared omadacycline versus vancomycin in survival, weight loss, clinical scoring, and C. difficile toxin production. The nonsevere model compared these antibiotics with and without germinants (solution of sodium taurocholate, taurine, sodium docusate, calcium gluconate). Additionally, colon histopathology, bile acid analysis, environmental/spore shedding, and 16S sequencing was evaluated. RESULTS In the severe model, omadacycline-treated mice had 60% survival versus 13.3% with vancomycin (hazard ratio [HR], 0.327; 95% confidence interval [CI],.126-.848; P = .015) along with decreased weight loss, and disease severity. In the nonsevere model, all mice survived with antibiotic-germinant treatment versus 60% antibiotics alone (HR, 0.109; 95% CI, .02-.410; P = .001). Omadacycline resulted in less changes in bile acids and microbiota composition. Germinant-treated mice showed no signs of rCDI, spore shedding, or significant toxin production at 15 days. CONCLUSIONS In murine models of CDI, omadacycline improved survival versus vancomycin. Germinant-antibiotic combinations were more effective at preventing rCDI compared to antibiotics alone without inducing toxin production.
Collapse
Affiliation(s)
- Noah D Budi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jared J Godfrey
- Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Nasia Safdar
- Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Soldavini Pelichotti PC, Cejas D, Fernández-Caniggia L, Trejo FM, Pérez PF. Characterization of a Clostridioides difficile ST-293 isolate from a recurrent infection in Argentina. Rev Argent Microbiol 2023:S0325-7541(22)00102-X. [PMID: 36599754 DOI: 10.1016/j.ram.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/30/2022] [Accepted: 09/27/2022] [Indexed: 01/03/2023] Open
Abstract
Clostridioides difficile is an opportunistic spore-forming pathogen responsible for antibiotic-associated diarrhea in humans. C. difficile produces two main toxins: TcdA and TcdB as well as a third toxin named binary toxin (CDT) that is also involved in virulence. The present study aimed at characterizing the C. difficile isolate ALCD3 involved in a relapse episode of nosocomial infection. Molecular characterization showed that isolate ALCD3 belongs to toxinotype 0/v and the MLST analysis demonstrated allelic profile adk:91, atpA:1, dxr:2, glyA: 1, recA:27, sodA: 1 and tpi:1 which corresponds to ST293 (MLST clade: 1). During growth, isolate ALCD3 showed an early increase in the sporulation ratio as well as maximal values of heat resistant forms after 2 days of incubation. Both sporulation kinetics and production of heat resistant forms were faster for isolate ALCD3 than for the reference strain VPI 10463. Germination in the presence of the natural germinant taurocholate was faster for isolate ALCD3 than for strain VPI 10463, which indicates that isolate ALCD3 starts cortex hydrolysis earlier than strain VPI 10463. Furthermore, the co-germinant glycine, induces rapid release of dipicolinic acid (DPA) in isolate ALCD3. These findings indicate that isolate ALCD3 is particularly efficient in both sporulation and germination. The present work represents the first report of the circulation of C. difficile ST293 in Argentina. The ability of isolate ALCD3 to produce toxins and its high sporulation/germination capacity are key features compatible with a microorganism with high dissemination potential and the possibility of inducing recurrent infections.
Collapse
Affiliation(s)
- P Cecilia Soldavini Pelichotti
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata B1900AJI, Argentina
| | - Daniela Cejas
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Liliana Fernández-Caniggia
- Laboratorio de Microbiología, Hospital Alemán, Av. Pueyrredón 1640, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando M Trejo
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina
| | - Pablo F Pérez
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, CCT La Plata, CONICET-UNLP, 47 y 116 (s/n), La Plata B1900AJI, Argentina.
| |
Collapse
|
10
|
Martinez E, Rodriguez C, Crèvecoeur S, Lebrun S, Delcenserie V, Taminiau B, Daube G. Impact of environmental conditions and gut microbiota on the in vitro germination and growth of Clostridioides difficile. FEMS Microbiol Lett 2022; 369:6692865. [PMID: 36066913 DOI: 10.1093/femsle/fnac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile is a spore-forming anaerobic Gram-positive bacterium responsible for a broad spectrum of intestinal symptoms and healthcare-associated diarrhoea. The hypothesis of this work was that different in vitro conditions, notably pH and human faecal microbiota composition, impact the germination and/or the growth of C. difficile. This study aimed to correlate growth kinetics of the bacterium with these two physiochemical parameters by using a static in vitro model. To better understand the initial gut colonisation, several growth curve assays were carried out to monitor the behaviour of the spores and vegetative forms of C. difficile strain 078 under different conditions mimicking the gut environment. When the faeces were added, no spore germination or growth was observed, but C. difficile spores germinated in vitro when the pH was maintained between 6.6 and 6.9 for four different faeces donors. The evolution of microbiota studied by 16S rDNA profiling showed high proportions of Enterobacteriaceae and E. coli/Shigella when C. difficile grew, regardless of the inoculated faeces. This model helped us to understand that the germination and growth of C. difficile are strongly pH dependent, and further research is needed to evaluate the potential impact of the gut microbiota composition on C. difficile.
Collapse
Affiliation(s)
- Elisa Martinez
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgique
| | - Cristina Rodriguez
- Instituto de Investigación Biomédica de Málaga-IBIMA. Málaga, Spain. Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, 29590, Spain
| | - Sébastien Crèvecoeur
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgique
| | - Sarah Lebrun
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgique
| | - Véronique Delcenserie
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgique
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgique
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Faculté de Médecine Vétérinaire, Département des Sciences des Denrées alimentaires, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgique
| |
Collapse
|
11
|
Calatayud M, Duysburgh C, Van den Abbeele P, Franckenstein D, Kuchina-Koch A, Marzorati M. Long-Term Lactulose Administration Improves Dysbiosis Induced by Antibiotic and C. difficile in the PathoGut TM SHIME Model. Antibiotics (Basel) 2022; 11:1464. [PMID: 36358119 PMCID: PMC9686563 DOI: 10.3390/antibiotics11111464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 09/28/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea and an important nosocomial infection with different severity degrees. Disruption of the gut microbiota by broad-spectrum antibiotics creates a proper environment for C. difficile colonization, proliferation, and clinical disease onset. Restoration of the gut microbial ecosystem through prebiotic interventions can constitute an effective complementary treatment of CDI. Using an adapted simulator of the human gut microbial ecosystem, the PathoGutTM SHIME, the effect of different long-term and repeated dose lactulose treatments was tested on C. difficile germination and growth in antibiotic-induced dysbiotic gut microbiota environments. The results showed that lactulose reduced the growth of viable C. difficile cells following clindamycin treatment, shifted the antibiotic-induced dysbiotic microbial community, and stimulated the production of health-promoting metabolites (especially butyrate). Recovery of the gut microenvironment by long-term lactulose administration following CDI was also linked to lactate production, decrease in pH and modulation of bile salt metabolism. At a structural level, lactulose showed a significant bifidogenic potential and restored key commensal members of the gut ecosystem such as Lactobacillaceae, Veillonellaceae and Lachnospiraceae. These results support further human intervention studies aiming to validate the in vitro beneficial effects of lactulose on gut microbiome recovery during antibiotic exposure and CDI.
Collapse
Affiliation(s)
- Marta Calatayud
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Towards Development of a Non-Toxigenic Clostridioides difficile Oral Spore Vaccine against Toxigenic C. difficile. Pharmaceutics 2022; 14:pharmaceutics14051086. [PMID: 35631671 PMCID: PMC9146386 DOI: 10.3390/pharmaceutics14051086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Clostridioides difficile is an opportunistic gut pathogen which causes severe colitis, leading to significant morbidity and mortality due to its toxins, TcdA and TcdB. Two intra-muscular toxoid vaccines entered Phase III trials and strongly induced toxin-neutralising antibodies systemically but failed to provide local protection in the colon from primary C. difficile infection (CDI). Alternatively, by immunising orally, the ileum (main immune inductive site) can be directly targeted to confer protection in the large intestine. The gut commensal, non-toxigenic C. difficile (NTCD) was previously tested in animal models as an oral vaccine for natural delivery of an engineered toxin chimera to the small intestine and successfully induced toxin-neutralising antibodies. We investigated whether NTCD could be further exploited to induce antibodies that block the adherence of C. difficile to epithelial cells to target the first stage of pathogenesis. In NTCD strain T7, the colonisation factor, CD0873, and a domain of TcdB were overexpressed. Following oral immunisation of hamsters with spores of recombinant strain, T7-0873 or T7-TcdB, intestinal and systemic responses were investigated. Vaccination with T7-0873 successfully induced intestinal antibodies that significantly reduced adhesion of toxigenic C. difficile to Caco-2 cells, and these responses were mirrored in sera. Additional engineering of NTCD is now warranted to further develop this vaccine.
Collapse
|
14
|
Baloh M, Sorg JA. Clostridioides difficile spore germination: initiation to DPA release. Curr Opin Microbiol 2022; 65:101-107. [PMID: 34808546 PMCID: PMC8792321 DOI: 10.1016/j.mib.2021.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Germination by Clostridioides difficile spores is an essential step in pathogenesis. Spores are metabolically dormant forms of bacteria that resist severe conditions. Work over the last 10 years has elucidated that C. difficile spores germinate thorough a novel pathway. This review summarizes our understanding of C. difficile spore germination and the factors involved in germinant recognition, cortex degradation and DPA release.
Collapse
Affiliation(s)
- Marko Baloh
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77843,Corresponding author: ph: 979-845-6299,
| |
Collapse
|
15
|
Halsey CR, Glover RC, Thomason MK, Reniere ML. The redox-responsive transcriptional regulator Rex represses fermentative metabolism and is required for Listeria monocytogenes pathogenesis. PLoS Pathog 2021; 17:e1009379. [PMID: 34398937 PMCID: PMC8389512 DOI: 10.1371/journal.ppat.1009379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is the causative agent of the foodborne disease listeriosis, one of the deadliest bacterial infections known. In order to cause disease, L. monocytogenes must properly coordinate its metabolic and virulence programs in response to rapidly changing environments within the host. However, the mechanisms by which L. monocytogenes senses and adapts to the many stressors encountered as it transits through the gastrointestinal (GI) tract and disseminates to peripheral organs are not well understood. In this study, we investigated the role of the redox-responsive transcriptional regulator Rex in L. monocytogenes growth and pathogenesis. Rex is a conserved canonical transcriptional repressor that monitors the intracellular redox state of the cell by sensing the ratio of reduced and oxidized nicotinamide adenine dinucleotides (NADH and NAD+, respectively). Here, we demonstrated that L. monocytogenes Rex represses fermentative metabolism and is therefore required for optimal growth in the presence of oxygen. We also show that in vitro, Rex represses the production of virulence factors required for survival and invasion of the GI tract, as a strain lacking rex was more resistant to acidified bile and invaded host cells better than wild type. Consistent with these results, Rex was dispensable for colonizing the GI tract and disseminating to peripheral organs in an oral listeriosis model of infection. However, Rex-dependent regulation was required for colonizing the spleen and liver, and L. monocytogenes lacking the Rex repressor were nearly sterilized from the gallbladder. Taken together, these results demonstrated that Rex functions as a repressor of fermentative metabolism and suggests a role for Rex-dependent regulation in L. monocytogenes pathogenesis. Importantly, the gallbladder is the bacterial reservoir during listeriosis, and our data suggest redox sensing and Rex-dependent regulation are necessary for bacterial survival and replication in this organ. Listeriosis is a foodborne illness caused by Listeria monocytogenes and is one of the deadliest bacterial infections known, with a mortality rate of up to 30%. Following ingestion of contaminated food, L. monocytogenes disseminates from the gastrointestinal (GI) tract to peripheral organs, including the spleen, liver, and gallbladder. In this work, we investigated the role of the redox-responsive regulator Rex in L. monocytogenes growth and pathogenesis. We demonstrated that alleviation of Rex repression coordinates expression of genes necessary in the GI tract during infection, including fermentative metabolism, bile resistance, and invasion of host cells. Accordingly, Rex was dispensable for colonizing the GI tract of mice during an oral listeriosis infection. Interestingly, Rex-dependent regulation was required for bacterial replication in the spleen, liver, and gallbladder. Taken together, our results demonstrate that Rex-mediated redox sensing and transcriptional regulation are important for L. monocytogenes metabolic adaptation and virulence.
Collapse
Affiliation(s)
- Cortney R. Halsey
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Opportunities for Nanomedicine in Clostridioides difficile Infection. Antibiotics (Basel) 2021; 10:antibiotics10080948. [PMID: 34438998 PMCID: PMC8388953 DOI: 10.3390/antibiotics10080948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Clostridioides difficile, a spore-forming bacterium, is a nosocomial infectious pathogen which can be found in animals as well. Although various antibiotics and disinfectants were developed, C. difficile infection (CDI) remains a serious health problem. C. difficile spores have complex structures and dormant characteristics that contribute to their resistance to harsh environments, successful transmission and recurrence. C. difficile spores can germinate quickly after being exposed to bile acid and co-germinant in a suitable environment. The vegetative cells produce endospores, and the mature spores are released from the hosts for dissemination of the pathogen. Therefore, concurrent elimination of C. difficile vegetative cells and inhibition of spore germination is essential for effective control of CDI. This review focused on the molecular pathogenesis of CDI and new trends in targeting both spores and vegetative cells of this pathogen, as well as the potential contribution of nanotechnologies for the effective management of CDI.
Collapse
|
17
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
18
|
Shah T, Baloch Z, Shah Z, Cui X, Xia X. The Intestinal Microbiota: Impacts of Antibiotics Therapy, Colonization Resistance, and Diseases. Int J Mol Sci 2021; 22:6597. [PMID: 34202945 PMCID: PMC8235228 DOI: 10.3390/ijms22126597] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes exist in the human body, particularly the gastrointestinal tract, coevolved with the host in a mutually beneficial relationship. The main role of the intestinal microbiome is the fermentation of non-digestible substrates and increased growth of beneficial microbes that produce key antimicrobial metabolites such as short-chain fatty acids, etc., to inhibit the growth of pathogenic microbes besides other functions. Intestinal microbiota can prevent pathogen colonization through the mechanism of colonization resistance. A wide range of resistomes are present in both beneficial and pathogenic microbes. Giving antibiotic exposure to the intestinal microbiome (both beneficial and hostile) can trigger a resistome response, affecting colonization resistance. The following review provides a mechanistic overview of the intestinal microbiome and the impacts of antibiotic therapy on pathogen colonization and diseases. Further, we also discuss the epidemiology of immunocompromised patients who are at high risk for nosocomial infections, colonization and decolonization of multi-drug resistant organisms in the intestine, and the direct and indirect mechanisms that govern colonization resistance to the pathogens.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Zahir Shah
- Faculty of Animal Husbandry and Veterinary Sciences, College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar 25120, Pakistan;
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Sustainable Utilization of Panax Notoginseng, Kunming 650500, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| |
Collapse
|
19
|
Faden H. Review and Commentary on the Importance of Bile Acids in the Life Cycle of Clostridioides difficile in Children and Adults. J Pediatric Infect Dis Soc 2021; 10:659-664. [PMID: 33626138 DOI: 10.1093/jpids/piaa150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Clostridioides difficile, a spore-forming anaerobe, resides in the intestine. The life cycle of C. difficile illustrates an interdependent relationship between bile acids, commensal microbiota, and C. difficile. Primary bile acids are critical for the germination of C. difficile spores in the small intestine, while secondary bile acids serve as a counterbalance to inhibit the growth of the organism in the colon. Many commensal bacteria especially Clostridium spp. are responsible for transforming primary bile acids into secondary bile acids. Antibiotics eliminate bacteria that convert primary bile acids into secondary bile acids and, thus, allow C. difficile to flourish and cause diarrhea. In children younger than 2 years of age, who normally only produce primary bile acids, colonization with toxin-producing C. difficile is exceedingly common. The reason for the absence of C. difficile diarrhea in the children remains unexplained.
Collapse
Affiliation(s)
- Howard Faden
- Department of Pediatrics, Division of Infectious Diseases, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| |
Collapse
|
20
|
Li J, Sun Y, Chen F, Hu X, Dong L. Pressure and Temperature Combined With Microbial Supernatant Effectively Inactivate Bacillus subtilis Spores. Front Microbiol 2021; 12:642501. [PMID: 34093462 PMCID: PMC8169991 DOI: 10.3389/fmicb.2021.642501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Spores from the Bacillus species pose a challenge to the food industry because of their ubiquitous nature and extreme resistance. Accumulated evidence indicates that it is effective to induce spore germination homogenously before killing them. However, it is difficult to obtain and apply exogenous germination factors, which will affect food composition. Therefore, this study screened endogenous germinants from microorganisms by assessing the effect of Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Lactiplantibacillus plantarum, and Streptococcus thermophilus cultures (cell-free) on B. subtilis spore germination. The results showed that the supernatants from these five microorganisms induced spore germination instead of sediments. Moreover, the supernatants of E. coli, B. subtilis, and S. cerevisiae exhibited higher germination rates than L. plantarum and S. thermophilus, and the induction effects were concentration-dependent. Furthermore, plate counting confirmed that the microbial supernatants induced the lowest spore germination ratio on strains B. subtilis FB85 [germination receptors (GRs) mutant] but not strains B. subtilis PB705 (PrkC mutant). In addition, B. subtilis and S. cerevisiae supernatants, combined with pressure and temperature, were effective in spore inactivation. The findings suggested that microbial supernatants may include agents that induce spore germination and may be used for spore inactivation.
Collapse
Affiliation(s)
- Jingyu Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yaxin Sun
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Omadacycline compared to vancomycin when combined with germinants to disrupt the life cycle of Clostridioides difficile. Antimicrob Agents Chemother 2021; 65:AAC.01431-20. [PMID: 33649111 PMCID: PMC8092874 DOI: 10.1128/aac.01431-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Clostridioides difficile (C. difficile) infections (CDI) are commonly treated with antibiotics that do not impact the dormant spore form of the pathogen. CDI-directed antibiotics, such as vancomycin and metronidazole, can destroy the vegetative form of C. difficile and protective microbiota. After treatment, spores can germinate into vegetative cells causing clinical disease relapse and further spore shedding. This in vitro study compares the combination of germinants with vancomycin or omadacycline to antibiotics alone in eradicating C. difficile spores and vegetative cells. Among the four strains in this study, omadacycline minimum inhibitory concentrations (0.031-0.125 mg/L) were lower than vancomycin (1-4 mg/L). Omadacycline nor vancomycin in media alone reduced spore counts. In three of the four strains, including the epidemic ribotype 027, spore eradication with germinants was 94.8-97.4% with vancomycin and 99.4-99.8% with omadacycline (p<0.005). In ribotype 012, either antibiotic combined with germinants resulted in 100% spore eradication at 24 hours. The addition of germinants with either antibiotic did not result in significant toxin A or B production, which were below the limit of detection (<1.25 ng/mL) by 48 hours. Limiting the number of spores present in patient GI tracts at the end of therapy may be effective at preventing recurrent CDI and limiting spore shedding in the healthcare environment. These results with germinants warrant safety and efficacy evaluations in animal models.
Collapse
|
22
|
Lawler AJ, Lambert PA, Worthington T. A Revised Understanding of Clostridioides difficile Spore Germination. Trends Microbiol 2020; 28:744-752. [DOI: 10.1016/j.tim.2020.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
|
23
|
Moore JH, Salahi A, Honrado C, Warburton C, Warren CA, Swami NS. Quantifying bacterial spore germination by single-cell impedance cytometry for assessment of host microbiota susceptibility to Clostridioides difficile infection. Biosens Bioelectron 2020; 166:112440. [PMID: 32745926 DOI: 10.1016/j.bios.2020.112440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
The germination of ingested spores is often a necessary first step required for enabling bacterial outgrowth and host colonization, as in the case of Clostridioides difficile (C. difficile) infection. Spore germination rate in the colon depends on microbiota composition and its level of disruption by antibiotic treatment since secretions by commensal bacteria modulate primary to secondary bile salt levels to control germination. Assessment of C. difficile spore germination typically requires measurement of colony-forming units, which is labor intensive and takes at least 24 h to perform but is regularly required due to the high recurrence rates of nosocomial antibiotic-associated diarrhea. We present a rapid method to assess spore germination by using high throughput single-cell impedance cytometry (>300 events/s) to quantify live bacterial cells, by gating for their characteristic electrophysiology versus spores, so that germination can be assessed after just 4 h of culture at a detection limit of ~100 live cells per 50 μL sample. To detect the phenotype of germinated C. difficile bacteria, we utilize its characteristically higher net conductivity versus that of spore aggregates and non-viable C. difficile forms, which causes a distinctive high-frequency (10 MHz) impedance phase dispersion within moderately conductive media (0.8 S/m). In this manner, we can detect significant differences in spore germination rates within just 4 h, with increasing primary bile salt levels in vitro and using ex vivo microbiota samples from an antibiotic-treated mouse model to assess susceptibility to C. difficile infection. We envision a rapid diagnostic tool for assessing host microbiota susceptibility to bacterial colonization after key antibiotic treatments.
Collapse
Affiliation(s)
- John H Moore
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Armita Salahi
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Carlos Honrado
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Cirle A Warren
- Infectious Diseases, School of Medicine, University of Virginia, VA, 22904, USA
| | - Nathan S Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
24
|
Affiliation(s)
- Robert W. P. Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
25
|
Shen A. Clostridioides difficile Spores: Bile Acid Sensors and Trojan Horses of Transmission. Clin Colon Rectal Surg 2020; 33:58-66. [PMID: 32104157 DOI: 10.1055/s-0040-1701230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Gram-positive, spore-forming bacterium, Clostridioides difficile is the leading cause of healthcare-associated infections in the United States, although it also causes a significant number of community-acquired infections. C. difficile infections, which range in severity from mild diarrhea to toxic megacolon, cost more to treat than matched infections, with an annual treatment cost of approximately $6 billion for almost half-a-million infections. These high-treatment costs are due to the high rates of C. difficile disease recurrence (>20%) and necessity for special disinfection measures. These complications arise in part because C. difficile makes metabolically dormant spores, which are the major infectious particle of this obligate anaerobe. These seemingly inanimate life forms are inert to antibiotics, resistant to commonly used disinfectants, readily disseminated, and capable of surviving in the environment for a long period of time. However, upon sensing specific bile salts in the vertebrate gut, C. difficile spores transform back into the vegetative cells that are responsible for causing disease. This review discusses how spores are ideal vectors for disease transmission and how antibiotics modulate this process. We also describe the resistance properties of spores and how they create challenges eradicating spores, as well as promote their spread. Lastly, environmental reservoirs of C. difficile spores and strategies for destroying them particularly in health care environments will be discussed.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
26
|
The Impact of pH on Clostridioides difficile Sporulation and Physiology. Appl Environ Microbiol 2020; 86:AEM.02706-19. [PMID: 31811041 DOI: 10.1128/aem.02706-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a pathogenic bacterium that infects the human colon to cause diarrheal disease. Growth of the bacterium is known to be dependent on certain bile acids, oxygen levels, and nutrient availability in the intestine, but how the environmental pH can influence C. difficile is mostly unknown. Previous studies indicated that C. difficile modulates the intestinal pH, and prospective cohort studies have found a strong association between a more alkaline fecal pH and C. difficile infection. Based on these data, we hypothesized that C. difficile physiology can be affected by various pH conditions. In this study, we investigated the impact of a range of pH conditions on C. difficile to assess potential effects on growth, sporulation, motility, and toxin production in the strains 630Δerm and R20291. We observed pH-dependent differences in sporulation rate, spore morphology, and viability. Sporulation frequency was lowest under acidic conditions, and differences in cell morphology were apparent at low pH. In alkaline environments, C. difficile sporulation was greater for strain 630Δerm, whereas R20291 produced relatively high levels of spores in a broad range of pH conditions. Rapid changes in pH during exponential growth impacted sporulation similarly among the strains. Furthermore, we observed an increase in C. difficile motility with increases in pH, and strain-dependent differences in toxin production under acidic conditions. The data demonstrate that pH is an important parameter that affects C. difficile physiology and may reveal relevant insights into the growth and dissemination of this pathogen.IMPORTANCE Clostridioides difficile is an anaerobic bacterium that causes gastrointestinal disease. C. difficile forms dormant spores which can survive harsh environmental conditions, allowing their spread to new hosts. In this study, we determine how intestinally relevant pH conditions impact C. difficile physiology in the two divergent strains, 630Δerm and R20291. Our data demonstrate that low pH conditions reduce C. difficile growth, sporulation, and motility. However, toxin production and spore morphology were differentially impacted in the two strains at low pH. In addition, we observed that alkaline environments reduce C. difficile growth, but increase cell motility. When pH was adjusted rapidly during growth, we observed similar impacts on both strains. This study provides new insights into the phenotypic diversity of C. difficile grown under diverse pH conditions present in the intestinal tract, and demonstrates similarities and differences in the pH responses of different C. difficile isolates.
Collapse
|
27
|
Yuille S, Mackay WG, Morrison DJ, Tedford MC. Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro. Clin Microbiol Infect 2019; 26:941.e1-941.e7. [PMID: 31715298 DOI: 10.1016/j.cmi.2019.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/18/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) is a considerable healthcare and economic burden worldwide. Faecal microbial transplant remains the most effective treatment for CDI, but is not at the present time the recommended standard of care. We hereby investigate which factors derived from a healthy gut microbiome might constitute the colonization resistance barrier (CRB) in the gut, inhibiting CDI. METHODS CRB drivers pH, short chain fatty acid (SCFA), and oxidation-reduction potential (ORP) were investigated in vitro using C. difficile NAP1/BI/027. Readouts for inhibitory mechanisms included germination, growth, toxin production and virulence gene expression. pH ranges (3-7.6), SCFA concentrations (25-200 mM) and ORP (-300 to 200 mV) were manipulated in brain heart infusion broth cultures under anaerobic conditions to assess the inhibitory action of these mechanisms. RESULTS A pH < 5.3 completely inhibited C. difficile growth to optical density (OD) 0.019 vs. 1.19 for control pH 7.5. Toxin production was reduced to 25 units vs. 3125 units for pH 7.6 (1 in 5 dilutions). Virulence gene expression reduced by 150-fold compared with pH 7.6 (p < 0.05). Germination and proliferation of spores below pH 6.13 yielded an average OD of 0.006 vs. 0.99 for control. SCFA were potent regulators of toxin production at 25 mM and above (p < 0.05). Acetate significantly inhibited toxin production to 25 units independent of OD (0.8733) vs. control (OD 0.6 and toxin titre 3125) (p < 0.05). ORP did not impact C. difficile growth. CONCLUSIONS This study highlights the critical role that pH has in the CRB, regulating CDI in vitro and that SCFA can regulate C. difficile function independent of pH.
Collapse
Affiliation(s)
- S Yuille
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| | - W G Mackay
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - D J Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, UK
| | - M C Tedford
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK.
| |
Collapse
|
28
|
Rohlfing AE, Eckenroth BE, Forster ER, Kevorkian Y, Donnelly ML, Benito de la Puebla H, Doublié S, Shen A. The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genet 2019; 15:e1008224. [PMID: 31276487 PMCID: PMC6636752 DOI: 10.1371/journal.pgen.1008224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/17/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC's unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC's responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor.
Collapse
Affiliation(s)
- Amy E. Rohlfing
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Brian E. Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Emily R. Forster
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuzo Kevorkian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - M. Lauren Donnelly
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hector Benito de la Puebla
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Cheng S, Zhu L, Faden HS. Interactions of bile acids and the gut microbiota: learning from the differences in Clostridium difficile infection between children and adults. Physiol Genomics 2019; 51:218-223. [PMID: 31074701 DOI: 10.1152/physiolgenomics.00034.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bile acids and microbiota differ significantly in the gut of children and adults. In the first 3 yr of life, intestinal bile consists mostly of two primary bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA); however, in adults, primary bile acids are transformed into the secondary bile acids, deoxycholic acid (DCA) and lithocholic acid. This difference has a major impact on the gut microbiome, especially on anaerobic spore-forming bacteria. CA augments germination of spores in the terminal ileum. On the other hand, DCA curtails the number of germinated anaerobes entering the cecum from the terminal ileum. The control mechanism that exists in the adult cecum is absent in the young child and results in unrestrained proliferation of anaerobes, such as Clostridium difficile, in the cecum. A similar situation may develop during antibiotic therapy when an antibiotic eradicates the anaerobic population capable of converting primary bile acids into secondary bile acids.
Collapse
Affiliation(s)
- Sijing Cheng
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Lixin Zhu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University , Guangzhou , China.,Department of Biochemistry; Genome, Environment and Microbiome Community of Excellence, the State University of New York at Buffalo , Buffalo, New York
| | - Howard S Faden
- University at Buffalo, Jacobs School of Medicine and Biological Sciences, Department of Pediatrics, Division of Infectious Diseases , Buffalo, New York
| |
Collapse
|
30
|
Shrestha R, Cochran AM, Sorg JA. The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA. PLoS Pathog 2019; 15:e1007681. [PMID: 30943268 PMCID: PMC6464247 DOI: 10.1371/journal.ppat.1007681] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/15/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile spore germination is critical for the transmission of disease. C. difficile spores germinate in response to cholic acid derivatives, such as taurocholate (TA), and amino acids, such as glycine or alanine. Although the receptor with which bile acids are recognized (germinant receptor) is known, the amino acid co-germinant receptor has remained elusive. Here, we used EMS mutagenesis to generate mutants with altered requirements for the amino acid co-germinant, similar to the strategy we used previously to identify the bile acid germinant receptor, CspC. Surprisingly, we identified strains that do not require co-germinants, and the mutant spores germinated in response to TA alone. Upon sequencing these mutants, we identified different mutations in yabG. In C. difficile, yabG expression is required for the processing of key germination components to their mature forms (e.g., CspBA to CspB and CspA). A defined yabG mutant exacerbated the EMS mutant phenotype. Building upon this work, we found that small deletions in cspA resulted in spores that germinated in the presence of TA alone without the requirement of a co-germinant. cspA encodes a pseudoprotease that was previously shown to be important for incorporation of the CspC germinant receptor. Herein, our study builds upon the role of CspA during C. difficile spore germination by providing evidence that CspA is important for recognition of co-germinants during C. difficile spore germination. Our work suggests that two pseudoproteases (CspC and CspA) likely function as the C. difficile germinant receptors. Germination by C. difficile spores is one of the very first steps in the pathogenesis of this organism. The transition from the metabolically dormant spore form to the actively-growing, toxin-producing vegetative form is initiated by certain host-derived bile acids and amino acid signals. Despite near universal conservation in endospore-forming bacteria of the Ger-type germinant receptors, C. difficile and related organisms do not encode these proteins. In prior work, we identified the C. difficile bile acid germinant receptor as the CspC pseudoprotease. In this manuscript, we implicate the CspA pseudoprotease as the C. difficile co-germinant receptor. C. difficile cspA is encoded as a translational fusion to cspB. The resulting CspBA protein is processed post-translationally by the YabG protease. Inactivation of yabG resulted in strains whose spores no longer responded to amino acids or divalent cations as co-germinants and germinated in response to bile acid alone. Building upon this, we found that small deletions in the cspA portion of cspBA resulted in spores that could germinate in response to bile acids alone. Our results suggest that two pseudoproteases regulate C. difficile spore germination and provide further evidence that C. difficile spore germination proceeds through a novel spore germination pathway.
Collapse
Affiliation(s)
- Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Alicia M. Cochran
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, United States of America
- * E-mail:
| |
Collapse
|
31
|
Shrestha R, Sorg JA. Terbium chloride influences Clostridium difficile spore germination. Anaerobe 2019; 58:80-88. [PMID: 30926439 DOI: 10.1016/j.anaerobe.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
The germination of Clostridium difficile spores is an important stage of the C. difficile life cycle. In other endospore-forming bacteria, the composition of the medium in which the spores are generated influences the abundance of germination-specific proteins, thereby influencing the sensitivity of the spores towards germinants. In C. difficile media composition on the spores has only been reported to influence the number of spores produced. One of the measures of spore germination is the analysis of the release of DPA from the spore core. To detect DPA release in real time, terbium chloride is often added to the germination conditions because Tb3+ complexes with the released DPA and this can be detected using fluorescence measurements. Although C. difficile spores germinate in response to TA and glycine, recently calcium was identified as an enhancer for spore germination. Here, we find that germination by spores prepared in peptone rich media, such as 70:30, is positively influenced by terbium. We hypothesize that, in these assays, Tb3+ functions similarly to calcium. Although the mechanism(s) causing increased sensitivity of the C. difficile spores that are prepared in peptone rich media to terbium is still unknown, we suggest that the TbCl3 concentration used in the analysis of C. difficile DPA release be carefully titrated so as not to misinterpret future findings.
Collapse
Affiliation(s)
- Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
32
|
Iacob S, Iacob DG, Luminos LM. Intestinal Microbiota as a Host Defense Mechanism to Infectious Threats. Front Microbiol 2019; 9:3328. [PMID: 30761120 PMCID: PMC6362409 DOI: 10.3389/fmicb.2018.03328] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is a complex microbial community, with diverse and stable populations hosted by the gastrointestinal tract since birth. This ecosystem holds multiple anti-infectious, anti-inflammatory, and immune modulating roles decisive for intestinal homeostasis. Among these, colonization resistance refers to the dynamic antagonistic interactions between commensals and pathogenic flora. Hence, gut bacteria compete for the same intestinal niches and substrates, while also releasing antimicrobial substances such as bacteriocines and changing the environmental conditions. Short chain fatty acids (SCFAs) generated in anaerobic conditions prompt epigenetic regulatory mechanisms that favor a tolerogenic immune response. In addition, the commensal flora is involved in the synthesis of bactericidal products, namely secondary biliary acids or antimicrobial peptides (AMPs) such as cathellicidin-LL37, an immunomodulatory, antimicrobial, and wound healing peptide. Gut microbiota is protected through symbiotic relations with the hosting organism and by quorum sensing, a specific cell-to-cell communication system. Any alterations of these relationships favor the uncontrollable multiplication of the resident pathobionts or external entero-pathogens, prompting systemic translocations, inflammatory reactions, or exacerbations of bacterial virulence mechanisms (T6SS, T3SS) and ultimately lead to gastrointestinal or systemic infections. The article describes the metabolic and immunological mechanisms through which the intestinal microbiota is both an ally of the organism against enteric pathogens and an enemy that favors the development of infections.
Collapse
Affiliation(s)
- Simona Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Infectious Diseases "Prof. Dr. Matei Bals", Bucharest, Romania
| | - Diana Gabriela Iacob
- National Institute of Infectious Diseases "Prof. Dr. Matei Bals", Bucharest, Romania
| | - Luminita Monica Luminos
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,National Institute of Infectious Diseases "Prof. Dr. Matei Bals", Bucharest, Romania
| |
Collapse
|