1
|
Cheung PHH, Yang H, Wu L. dNTP depletion and beyond: the multifaceted nature of SAMHD1-mediated viral restriction. J Virol 2025:e0030225. [PMID: 40277359 DOI: 10.1128/jvi.00302-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
SAMHD1 is a dNTPase of mammalian cells. In 2011, SAMHD1 was found to be a host restriction factor against retroviruses through dNTP reduction. Recent research provides evidence that the antiviral mechanisms of SAMHD1 cannot be explained solely by its dNTPase activity. Instead, the versatility of SAMHD1-mediated restriction of various viruses suggests that its antiviral mechanisms extend beyond dNTP depletion. This explains the multifaceted and broad restriction functions of SAMHD1 that play a significant role in innate antiviral immunity.
Collapse
Affiliation(s)
- Pak-Hin Hinson Cheung
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Yang H, Cheung PHH, Wu L. SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells via the mitochondrial pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632057. [PMID: 39829911 PMCID: PMC11741301 DOI: 10.1101/2025.01.08.632057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Sterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in non-dividing cells by reducing the intracellular dNTP pool. SAMHD1 enhances spontaneous apoptosis in cells, but its effects on HIV-1-induced apoptosis and the underlying mechanisms remain unknown. Here we uncover a new mechanism by which SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells through the mitochondrial pathway. We found that endogenous SAMHD1 enhances apoptosis levels induced by HIV-1 infection in dividing THP-1 cells. Mechanistically, SAMHD1 expression decreases the mitochondrial membrane potential and promotes cytochrome c release induced by HIV-1 infection in THP-1 cells, thereby enhancing mitochondrial apoptotic pathway. SAMHD1-enhanced apoptosis is associated with increased expression of the pro-apoptotic protein BCL-2-interacting killer (BIK) in cells. We further demonstrated that BIK contributes to SAMHD1-enhanced apoptosis during HIV-1 infection. Overall, our results reveal an unappreciated regulatory mechanism of SAMHD1 in enhancing HIV-1-induced apoptosis via the mitochondrial pathway in monocytic cells.
Collapse
Affiliation(s)
- Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Pak-Hin Hinson Cheung
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Lead contact
| |
Collapse
|
3
|
Zhu Y, Yang W, Zhuang Y, Wang F, Ge Y, Jiang J, Feng D. ELF3 Overexpression Contributes to the Malignant Transformation of HPV16 E6/E7-Immortalized Keratinocytes by Promoting CCNE2 Expression. J Microbiol Biotechnol 2024; 34:2484-2491. [PMID: 39572025 PMCID: PMC11733543 DOI: 10.4014/jmb.2408.08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 12/31/2024]
Abstract
Current cancer burden caused by persistent infection with human papillomaviruse genotype 16 (HPV16) cannot be ignored. The related mechanisms of oncoproteins E6 and E7 from HPV16 on keratinocyte malignant transformation need to be further elucidated. GSE3292 dataset analysis revealed the upregulation of ETS transcription factor 3 (ELF3) and cyclin E2 (CCNE2). To verify whether there is an interaction between ELF3 and CCNE2, E74 like ELF3 and CCNE2 expression profiles as well as their putative binding sites were analyzed using bioinformatics. Retroviruses encoding HPV16 E6 and E7 genes were used to induce immortalization of human foreskin keratinocytes (HFKs) in vitro. Dual luciferase reporters assay was used to verify the binding of ELF3 and CCNE2. The effect of ELF3 on the immortalized cells was investigated using CCK-8 assay, cell cycle analysis and western blot. ELF3 and CCNE2 presented overexpression patterns in head and neck squamous cell carcinoma. HPV16 E6/E7-expressing HFKs showed enhanced viability, accelerated cell cycle as well as upregulated ELF3 and CCNE2. ELF3 overexpression enhanced the activity of CCNE2 promoter. ELF3 silencing reduced viability, induced cell cycle arrest and suppressed expressions of CCNE2, E6 and E7 in HPV16 E6/E7-expressing HFKs. Downregulation of ELF3 played an inhibiting role in the malignant transformation of HPV16 E6/E7-immortalized HFKs by decreasing CCNE2 expression.
Collapse
Affiliation(s)
- Yingping Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Wenjuan Yang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, P.R. China
| | - Yulong Zhuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Feifei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Yanlu Ge
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Jun Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Danping Feng
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006, P.R. China
| |
Collapse
|
4
|
James CD, Lewis RL, Witt AJ, Carter C, Rais NM, Wang X, Bristol ML. Fibroblasts regulate the transcriptional signature of human papillomavirus-positive keratinocytes. Tumour Virus Res 2024; 19:200302. [PMID: 39667669 PMCID: PMC11699615 DOI: 10.1016/j.tvr.2024.200302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024] Open
Abstract
Persistent human papillomavirus (HPV) infection is necessary but insufficient for viral oncogenesis. Additional contributing co-factors, such as immune evasion and viral integration have been implicated in HPV-induced cancer progression. It is widely accepted that HPV + keratinocytes require co-culture with fibroblasts to maintain viral DNA as episomes. How fibroblasts regulate viral episome maintenance is a critical knowledge gap. Here we present comprehensive RNA sequencing and proteomic analysis demonstrating that coculture with fibroblasts is supportive of the viral life cycle, and is confirmatory of previous observations. Novel observations suggest that errors in "cross-talk" between fibroblasts and infected keratinocytes may regulate HPV integration and drive oncogenic progression. Our co-culture models offer new insights into HPV-related transformation mechanisms.
Collapse
Affiliation(s)
- Claire D James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Rachel L Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Austin J Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | | | - Nabiha M Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Molly L Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA; VCU Massey Comprehensive Cancer Center, Richmond, VA, USA.
| |
Collapse
|
5
|
Khalil MI, Wang J, Yang C, Vu L, Yin C, Chadha S, Nabors H, Vocelle D, May DG, Chrisopolus RJ, Zhou L, Roux KJ, Bernard MP, Mi QS, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 promotes cancer immune evasion by degrading MHC class I proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626106. [PMID: 39677690 PMCID: PMC11642734 DOI: 10.1101/2024.11.29.626106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The loss of major histocompatibility complex class I (MHC-I) molecules has been proposed as a mechanism by which cancer cells evade tumor-specific T cells in immune checkpoint inhibitor (ICI)-refractory patients. Nevertheless, the mechanism by which cancer cells downregulate MHC-I is poorly understood. We report here that membrane-associated RING-CH-type finger 8 (MARCHF8), upregulated by human papillomavirus (HPV), ubiquitinates and degrades MHC-I proteins in HPV-positive head and neck cancer (HPV+ HNC). MARCHF8 knockdown restores MHC-I levels on HPV+ HNC cells. We further reveal that Marchf8 knockout significantly suppresses tumor growth and increases the infiltration of natural killer (NK) and T cells in the tumor microenvironment (TME). Furthermore, Marchf8 knockout markedly increases crosstalk between the cytotoxic NK cells and CD8 + T cells with macrophages and enhances the tumor cell-killing activity of CD8 + T cells. CD8 + T cell depletion in mice abrogates Marchf8 knockout-driven tumor suppression and T cell infiltration. Interestingly, Marchf8 knockout, in combination with anti-PD-1 treatment, synergistically suppresses tumor growth in mice bearing ICI-refractory tumors. Taken together, our finding suggests that MARCHF8 could be a promising target for novel immunotherapy for HPV+ HNC patients. One Sentence Summary Targeting MARCHF8 restores MHC-I proteins, induces antitumor CD8 + T cell activity, and suppresses the growth of ICI-refractory tumors.
Collapse
|
6
|
James CD, Lewis RL, Fakunmoju AL, Witt AJ, Youssef AH, Wang X, Rais NM, Prabhakar AT, Machado JM, Otoa R, Bristol ML. Fibroblast stromal support model for predicting human papillomavirus-associated cancer drug responses. J Virol 2024; 98:e0102424. [PMID: 39269177 PMCID: PMC11494926 DOI: 10.1128/jvi.01024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERα) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+-specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+-specific estrogen growth responses. Continuing to monopolize on the HPV+-specific overexpression of ERα, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery. IMPORTANCE Human papillomavirus-related cancers (HPV+ cancers) remain a significant public health concern, and specific clinical approaches are desperately needed. In translating drug response data from in vitro to in vivo, the fibroblasts of the adjacent stromal support network play a key role. Our study presents the utilization of a fibroblast 2D co-culture system to better predict translational drug assessments for HPV+ cancers. We also suggest that this co-culture system should be considered for other translational approaches. Predicting even a portion of treatment paradigms that may fail in vivo with a co-culture model will yield significant time, effort, resource, and cost efficiencies.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rachel L. Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Alexis L. Fakunmoju
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Austin J. Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Aya H. Youssef
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Nabiha M. Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Apurva T. Prabhakar
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - J. Mathew Machado
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Raymonde Otoa
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
7
|
James CD, Youssef A, Prabhakar AT, Otoa R, Roe JD, Witt A, Lewis RL, Bristol ML, Wang X, Zhang K, Li R, Morgan IM. Human papillomavirus 16 replication converts SAMHD1 into a homologous recombination factor and promotes its recruitment to replicating viral DNA. J Virol 2024; 98:e0082624. [PMID: 39194246 PMCID: PMC11406955 DOI: 10.1128/jvi.00826-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
We have demonstrated that SAMHD1 (sterile alpha motif and histidine-aspartic domain HD-containing protein 1) is a restriction factor for the human papillomavirus 16 (HPV16) life cycle. Here, we demonstrate that in HPV-negative cervical cancer C33a cells and human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16), SAMHD1 is recruited to E1-E2 replicating DNA. Homologous recombination (HR) factors are required for HPV16 replication, and viral replication promotes phosphorylation of SAMHD1, which converts it from a dNTPase to an HR factor independent from E6/E7 expression. A SAMHD1 phospho-mimic (SAMHD1 T592D) reduces E1-E2-mediated DNA replication in C33a cells and has enhanced recruitment to the replicating DNA. In HFK+HPV16 cells, SAMHD1 T592D is recruited to the viral DNA and attenuates cellular growth, but does not attenuate growth in isogenic HFK cells immortalized by E6/E7 alone. SAMHD1 T592D also attenuates the development of viral replication foci following keratinocyte differentiation. The results indicated that enhanced SAMHD1 phosphorylation could be therapeutically beneficial in cells with HPV16 replicating genomes. Protein phosphatase 2A (PP2A) can dephosphorylate SAMHD1, and PP2A function can be inhibited by endothall. We demonstrate that endothall reduces E1-E2 replication and promotes SAMHD1 recruitment to E1-E2 replicating DNA, mimicking the SAMHD1 T592D phenotypes. Finally, we demonstrate that in head and neck cancer cell lines with HPV16 episomal genomes, endothall attenuates their growth and promotes recruitment of SAMHD1 to the viral genome. The results suggest that targeting cellular phosphatases has therapeutic potential for the treatment of HPV infections and cancers. IMPORTANCE Human papillomaviruses (HPVs) are causative agents in around 5% of all human cancers. The development of anti-viral therapeutics depends upon an increased understanding of the viral life cycle. Here, we demonstrate that HPV16 replication converts sterile alpha motif and histidine-aspartic domain HD-containing protein 1 (SAMHD1) into a homologous recombination (HR) factor via phosphorylation. This phosphorylation promotes recruitment of SAMHD1 to viral DNA to assist with replication. A SAMHD1 mutant that mimics phosphorylation is hyper-recruited to viral DNA and attenuates viral replication. Expression of this mutant in HPV16-immortalized cells attenuates the growth of these cells, but not cells immortalized by the viral oncogenes E6/E7 alone. Finally, we demonstrate that the phosphatase inhibitor endothall promotes hyper-recruitment of endogenous SAMHD1 to HPV16 replicating DNA and can attenuate the growth of both HPV16-immortalized human foreskin keratinocytes (HFKs) and HPV16-positive head and neck cancer cell lines. We propose that phosphatase inhibitors represent a novel tool for combating HPV infections and disease.
Collapse
Affiliation(s)
- Claire D James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Aya Youssef
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Apurva T Prabhakar
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Raymonde Otoa
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Jenny D Roe
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Austin Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rachel L Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Molly L Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Kun Zhang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Renfeng Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Iain M Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
8
|
Lo SY, Lai MJ, Yang CH, Li HC. Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism. Viruses 2024; 16:1412. [PMID: 39339888 PMCID: PMC11437409 DOI: 10.3390/v16091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Deoxynucleoside triphosphates (dNTPs) are crucial for the replication and maintenance of genomic information within cells. The balance of the dNTP pool involves several cellular enzymes, including dihydrofolate reductase (DHFR), ribonucleotide reductase (RNR), and SAM and HD domain-containing protein 1 (SAMHD1), among others. DHFR is vital for the de novo synthesis of purines and deoxythymidine monophosphate, which are necessary for DNA synthesis. SAMHD1, a ubiquitously expressed deoxynucleotide triphosphohydrolase, converts dNTPs into deoxynucleosides and inorganic triphosphates. This process counteracts the de novo dNTP synthesis primarily carried out by RNR and cellular deoxynucleoside kinases, which are most active during the S phase of the cell cycle. The intracellular levels of dNTPs can influence various viral infections. This review provides a concise summary of the interactions between different viruses and the genes involved in dNTP metabolism.
Collapse
Affiliation(s)
- Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
9
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. J Virol 2024; 98:e0172623. [PMID: 38226814 PMCID: PMC10878100 DOI: 10.1128/jvi.01726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
11
|
James CD, Youssef A, Prabhakar AT, Otoa R, Witt A, Lewis RL, Bristol ML, Wang X, Zhang K, Li R, Morgan IM. Human Papillomavirus 16 replication converts SAMHD1 into a homologous recombination factor and promotes its recruitment to replicating viral DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566899. [PMID: 38014153 PMCID: PMC10680734 DOI: 10.1101/2023.11.13.566899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We have demonstrated that SAMHD1 (sterile alpha motif and histidine-aspartic domain HD-containing protein 1) is a restriction factor for the HPV16 life cycle. Here we demonstrate that in HPV negative cervical cancer C33a cells and human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16), SAMHD1 is recruited to E1-E2 replicating DNA. Homologous recombination (HR) factors are required for HPV16 replication and viral replication promotes phosphorylation of SAMHD1, which converts it from a dNTPase to an HR factor independent from E6/E7 expression. A SAMHD1 phosphor-mimic (SAMHD1 T592D) reduces E1-E2 mediated DNA replication in C33a cells and has enhanced recruitment to the replicating DNA. In HFK+HPV16 cells SAMHD1 T592D is recruited to the viral DNA and attenuates cellular growth, but does not attenuate growth in isogenic HFK cells immortalized by E6/E7 alone. SAMHD1 T592D also attenuates the development of viral replication foci following keratinocyte differentiation. The results indicated that enhanced SAMHD1 phosphorylation could be therapeutically beneficial in cells with HPV16 replicating genomes. Protein phosphatase 2A (PP2A) can dephosphorylate SAMHD1 and PP2A function can be inhibited by endothall. We demonstrate that endothall reduces E1-E2 replication and promotes SAMHD1 recruitment to E1-E2 replicating DNA, mimicking the SAMHD1 T592D phenotypes. Finally, we demonstrate that in head and neck cancer cell lines with HPV16 episomal genomes endothall attenuates their growth and promotes recruitment of SAMHD1 to the viral genome. The results suggest that targeting cellular phosphatases has therapeutic potential for the treatment of HPV infections and cancers. Importance Human papillomaviruses are causative agents in around 5% of all human cancers. The development of anti-viral therapeutics depends upon an increased understanding of the viral life cycle. Here we demonstrate that HPV16 replication converts SAMHD1 into an HR factor via phosphorylation. This phosphorylation promotes recruitment of SAMHD1 to viral DNA to assist with replication. A SAMHD1 mutant that mimics phosphorylation is hyper-recruited to viral DNA and attenuates viral replication. Expression of this mutant in HPV16 immortalized cells attenuates the growth of these cells, but not cells immortalized by the viral oncogenes E6/E7 alone. Finally, we demonstrate that the phosphatase inhibitor endothall promotes hyper-recruitment of endogenous SAMHD1 to HPV16 replicating DNA and can attenuate the growth of both HPV16 immortalized human foreskin keratinocytes and HPV16 positive head and neck cancer cell lines. We propose that phosphatase inhibitors represent a novel tool for combating HPV infections and disease.
Collapse
|
12
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565564. [PMID: 37961092 PMCID: PMC10635129 DOI: 10.1101/2023.11.03.565564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the E7 protein by degrading the components of the SKP1-CUL1-F-box (SCF) ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Xu B, Sui Q, Hu H, Hu X, Zhou X, Qian C, Li N. SAMHD1 Attenuates Acute Inflammation by Maintaining Mitochondrial Function in Macrophages via Interaction with VDAC1. Int J Mol Sci 2023; 24:7888. [PMID: 37175593 PMCID: PMC10177872 DOI: 10.3390/ijms24097888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Over-activation of Toll-like receptor 4 (TLR4) is the key mechanism in Gram-negative bacterial infection-induced sepsis. SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) inhibits multiple viruses, but whether it plays a role during bacterial invasion remains unelucidated. Monocyte-macrophage specific Samhd1 knockout (Samhd1-/-) mice and Samhd1-/- macrophage cell line RAW264.7 were constructed and used as research models to evaluate the role of SAMHD1 in TLR4-activated inflammation. In vivo, LPS-challenged Samhd1-/- mice showed higher serum inflammatory factors, accompanied with more severe inflammation infiltration and lower survival rate. In vitro, Samhd1-/- peritoneal macrophages had more activated TLR4 pathway upon LPS-stimulation, accompanied with mitochondrial depolarization and dysfunction and a higher tendency to be M1-polarized. These results could be rescued by overexpressing full-length wild-type SAMHD1 or its phospho-mimetic T634D mutant into Samhd1-/- RAW264.7 cells, whereas the mutants, dNTP hydrolase-function-deprived H238A and phospho-ablative T634A, did not exert the same effect. Lastly, co-IP and immunofluorescence assays confirmed that SAMHD1 interacted with an outer mitochondrial membrane-localized protein, voltage-dependent anion channel-1 (VDAC1). SAMHD1 inhibits TLR4-induced acute inflammation and M1 polarization of macrophages by interacting with VDAC1 and maintaining mitochondria function, which outlines a novel regulatory mechanism of TLR signaling upon LPS stimulation.
Collapse
Affiliation(s)
- Bowen Xu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Qianyi Sui
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiangjia Hu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Cheng Qian
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Wei Y, Zhao Z, Ma X. Description of CRISPR-Cas9 development and its prospects in human papillomavirus-driven cancer treatment. Front Immunol 2022; 13:1037124. [PMID: 36479105 PMCID: PMC9721393 DOI: 10.3389/fimmu.2022.1037124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Human papillomaviruses (HPVs) have been recognized as the etiologic agents of various cancers and are called HPV-driven cancers. Concerning HPV-mediated carcinogenic action, gene therapy can cure cancer at the molecular level by means of the correction of specific genes or sites. CRISPR-Cas9, as a novel genetic editing technique, can correct errors in the genome and change the gene expression and function in cells efficiently, quickly, and with relative ease. Herein, we overviewed studies of CRISPR-mediated gene remedies for HPV-driven cancers and summarized the potential applications of CRISPR-Cas9 in gene therapy for cancer.
Collapse
Affiliation(s)
- Yuhao Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Zhao
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Xuelei Ma,
| |
Collapse
|
15
|
Kapoor-Vazirani P, Rath SK, Liu X, Shu Z, Bowen NE, Chen Y, Haji-Seyed-Javadi R, Daddacha W, Minten EV, Danelia D, Farchi D, Duong DM, Seyfried NT, Deng X, Ortlund EA, Kim B, Yu DS. SAMHD1 deacetylation by SIRT1 promotes DNA end resection by facilitating DNA binding at double-strand breaks. Nat Commun 2022; 13:6707. [PMID: 36344525 PMCID: PMC9640623 DOI: 10.1038/s41467-022-34578-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) has a dNTPase-independent function in promoting DNA end resection to facilitate DNA double-strand break (DSB) repair by homologous recombination (HR); however, it is not known if upstream signaling events govern this activity. Here, we show that SAMHD1 is deacetylated by the SIRT1 sirtuin deacetylase, facilitating its binding with ssDNA at DSBs, to promote DNA end resection and HR. SIRT1 complexes with and deacetylates SAMHD1 at conserved lysine 354 (K354) specifically in response to DSBs. K354 deacetylation by SIRT1 promotes DNA end resection and HR but not SAMHD1 tetramerization or dNTPase activity. Mechanistically, K354 deacetylation by SIRT1 promotes SAMHD1 recruitment to DSBs and binding to ssDNA at DSBs, which in turn facilitates CtIP ssDNA binding, leading to promotion of genome integrity. These findings define a mechanism governing the dNTPase-independent resection function of SAMHD1 by SIRT1 deacetylation in promoting HR and genome stability.
Collapse
Affiliation(s)
- Priya Kapoor-Vazirani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhen Shu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicole E Bowen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yitong Chen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Elizabeth V Minten
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniela Farchi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Fontan CT, James CD, Prabhakar AT, Bristol ML, Otoa R, Wang X, Karimi E, Rajagopalan P, Basu D, Morgan IM. A Critical Role for p53 during the HPV16 Life Cycle. Microbiol Spectr 2022; 10:e0068122. [PMID: 35608342 PMCID: PMC9241828 DOI: 10.1128/spectrum.00681-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) are causative agents in ano-genital and oral cancers; HPV16 is the most prevalent type detected in human cancers. The HPV16 E6 protein targets p53 for proteasomal degradation to facilitate proliferation of the HPV16 infected cell. However, in HPV16 immortalized cells E6 is predominantly spliced (E6*) and unable to degrade p53. Here, we demonstrate that human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16), and HPV16 positive oropharyngeal cancers, retain significant expression of p53. In addition, p53 levels increase in HPV16+ head and neck cancer cell lines following treatment with cisplatin. Introduction of full-length E6 into HFK+HPV16 resulted in attenuation of cellular growth (in hTERT immortalized HFK, E6 expression promoted enhanced proliferation). An understudied interaction is that between E2 and p53 and we investigated whether this was important for the viral life cycle. We generated mutant genomes with E2 unable to interact with p53 resulting in profound phenotypes in primary HFK. The mutant induced hyper-proliferation, but an ultimate arrest of cell growth; β-galactosidase staining demonstrated increased senescence, and COMET assays showed increased DNA damage compared with HFK+HPV16 wild-type cells. There was failure of the viral life cycle in organotypic rafts with the mutant HFK resulting in premature differentiation and reduced proliferation. The results demonstrate that p53 expression is critical during the HPV16 life cycle, and that this may be due to a functional interaction between E2 and p53. Disruption of this interaction has antiviral potential. IMPORTANCE Human papillomaviruses are causative agents in around 5% of all cancers. There are currently no antivirals available to combat these infections and cancers, therefore it remains a priority to enhance our understanding of the HPV life cycle. Here, we demonstrate that an interaction between the viral replication/transcription/segregation factor E2 and the tumor suppressor p53 is critical for the HPV16 life cycle. HPV16 immortalized cells retain significant expression of p53, and the critical role for the E2-p53 interaction demonstrates why this is the case. If the E2-p53 interaction is disrupted then HPV16 immortalized cells fail to proliferate, have enhanced DNA damage and senescence, and there is premature differentiation during the viral life cycle. Results suggest that targeting the E2-p53 interaction would have therapeutic benefits, potentially attenuating the spread of HPV16.
Collapse
Affiliation(s)
- Christian T. Fontan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Apurva T. Prabhakar
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| | - Raymonde Otoa
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Elmira Karimi
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Pavithra Rajagopalan
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Wistar Institute Cancer Center, Philadelphia, Pennsylvania, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
17
|
Kim TH, Lee SW. Therapeutic Application of Genome Editing Technologies in Viral Diseases. Int J Mol Sci 2022; 23:5399. [PMID: 35628210 PMCID: PMC9140762 DOI: 10.3390/ijms23105399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.
Collapse
Affiliation(s)
- Tae Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
| |
Collapse
|
18
|
Temblador A, Topalis D, van den Oord J, Andrei G, Snoeck R. Organotypic Epithelial Raft Cultures as a Three-Dimensional In Vitro Model of Merkel Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14041091. [PMID: 35205840 PMCID: PMC8870341 DOI: 10.3390/cancers14041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare type of skin cancer for which an in vitro model is still lacking. MCC tumorigenesis is associated either with the integration of Merkel cell polyomavirus into the host genome, or with the accumulation of somatic mutations upon chronic exposure to UV light. Transgenic animals expressing the viral oncoproteins, which are constitutively expressed in virus-related MCC, do not fully recapitulate MCC. Although cell-line-derived xenografts have been established for the two subtypes of MCC, they still present certain limitations. Here, we generated organotypic epithelial raft cultures (OERCs) of MCC by using primary human keratinocytes and both virus-positive and virus-negative MCC cell lines. The primary human keratinocytes and the tumor cells were grown on top of a dermal equivalent. Histological and immunohistochemical examination of the rafts confirmed the growth of MCC cells. Furthermore, gene expression analysis revealed differences in the expression profiles of the distinct tumor cells and the keratinocytes at the transcriptional level. In summary, considering the limited availability of patient samples, OERCs of MCC may constitute a suitable model for evaluating the efficacy and selectivity of new drug candidates against MCC; moreover, they are a potential tool to study the oncogenic mechanisms of this malignancy.
Collapse
Affiliation(s)
- Arturo Temblador
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
| | - Dimitrios Topalis
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium;
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
- Correspondence:
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
| |
Collapse
|
19
|
Li Z, Xu B, Sun Y, Zhou L, Tao Y, Hou W, Bao J, Liu J, Fan W. 1α,25(OH) 2D 3(VD3) promotes Raddeanin A-induced anti-proliferative effects on HeLa cell apoptosis and autophagy through negative regulation of HPV18E6-E7/PD-L1/VDR axis. Bioengineered 2022; 13:357-369. [PMID: 34974811 PMCID: PMC8805891 DOI: 10.1080/21655979.2021.2005223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Raddeanin A (RA) has indicated suppressive effects on various human tumor cells, and insufficient vitamin D was associated with human papillomavirus (HPV) persistence and gynecological tumors. However, combined effects of RA and vitamin D on HPV-positive cells remain elusive. Herein, we aimed to investigate the combined effects of RA and 1ɑ,25(OH)2D3 (VD3) on cellular viability and modulation of HPV18E6/E7, programmed cell death 1 ligand (PD-L1) and vitamin D receptor (VDR) expression in HeLa cells in vitro. HeLa cells were treated with RA alone or VD3 combined with RA. Cell viability was measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), and apoptosis was detected by flow cytometry. Real-time PCR (qRT-PCR) and Western blot were used to determine the gene/protein expression levels. The autophagosomes were observed by Transmission electron microscopy (TEM). The result showed that cell viability was inhibited by RA, and apoptosis in HeLa cells treated with RA was elevated accordingly. The expression of Bax, Cleaved-caspase-3, Cleaved-caspase-9 and Cleaved-PARP increased, and Bcl-2 decreased. The autophagy was induced by RA, as evidenced by elevated autophagosomes and the increased LC3-II/I ratio and Beclin-1. The expression of HPV18E6/E7, PD-L1 and VDR was reduced by RA. Moreover, RA combined with VD3 had a stronger effect on HeLa cells than RA alone. In conclusion, RA inhibits HeLa proliferation and induces apoptosis and autophagy via suppressing HPV18E6/E7, PD-L1 and VDR, and VD3 showed reinforced effects of RA on HeLa cells. Therefore, combined usage of VD3 with RA might be a potential novel immunotherapy strategy for HPV-related diseases.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Biyun Xu
- Department of Statistics, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuexin Sun
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lanbo Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Tao
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjun Hou
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Bao
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Liu
- Department of Dermatology, Drum Tower School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weixin Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Smits JP, Meesters LD, Maste BG, Zhou H, Zeeuwen PL, van den Bogaard EH. CRISPR-Cas9 based genomic engineering in keratinocytes: from technology to application. JID INNOVATIONS 2021; 2:100082. [PMID: 35146483 PMCID: PMC8819031 DOI: 10.1016/j.xjidi.2021.100082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jos P.H. Smits
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Luca D. Meesters
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Berber G.W. Maste
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Patrick L.J.M. Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Correspondence: Ellen H. van den Bogaard, Department of Dermatology, Radboud University Medical Center (Radboudumc), Radboud Institute for Molecular Life Sciences (RIMLS), Rene Descartesdreef 1, Nijmegen 6525 GL, The Netherlands.
| |
Collapse
|
21
|
Bowen NE, Temple J, Shepard C, Oo A, Arizaga F, Kapoor-Vazirani P, Persaud M, Yu CH, Kim DH, Schinazi RF, Ivanov DN, Diaz-Griffero F, Yu DS, Xiong Y, Kim B. Structural and functional characterization explains loss of dNTPase activity of the cancer-specific R366C/H mutant SAMHD1 proteins. J Biol Chem 2021; 297:101170. [PMID: 34492268 PMCID: PMC8497992 DOI: 10.1016/j.jbc.2021.101170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Elevated intracellular levels of dNTPs have been shown to be a biochemical marker of cancer cells. Recently, a series of mutations in the multifunctional dNTP triphosphohydrolase (dNTPase), sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), have been reported in various cancers. Here, we investigated the structure and functions of SAMHD1 R366C/H mutants, found in colon cancer and leukemia. Unlike many other cancer-specific mutations, the SAMHD1 R366 mutations do not alter cellular protein levels of the enzyme. However, R366C/H mutant proteins exhibit a loss of dNTPase activity, and their X-ray structures demonstrate the absence of dGTP substrate in their active site, likely because of a loss of interaction with the γ-phosphate of the substrate. The R366C/H mutants failed to reduce intracellular dNTP levels and restrict HIV-1 replication, functions of SAMHD1 that are dependent on the ability of the enzyme to hydrolyze dNTPs. However, these mutants retain dNTPase-independent functions, including mediating dsDNA break repair, interacting with CtIP and cyclin A2, and suppressing innate immune responses. Finally, SAMHD1 degradation in human primary-activated/dividing CD4+ T cells further elevates cellular dNTP levels. This study suggests that the loss of SAMHD1 dNTPase activity induced by R366 mutations can mechanistically contribute to the elevated dNTP levels commonly found in cancer cells.
Collapse
Affiliation(s)
- Nicole E Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Joshua Temple
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Caitlin Shepard
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Fidel Arizaga
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mirjana Persaud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Corey H Yu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Dong-Hyun Kim
- School of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dmitri N Ivanov
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David S Yu
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut, USA.
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
22
|
Brezgin S, Kostyusheva A, Bayurova E, Volchkova E, Gegechkori V, Gordeychuk I, Glebe D, Kostyushev D, Chulanov V. Immunity and Viral Infections: Modulating Antiviral Response via CRISPR-Cas Systems. Viruses 2021; 13:1373. [PMID: 34372578 PMCID: PMC8310348 DOI: 10.3390/v13071373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections cause a variety of acute and chronic human diseases, sometimes resulting in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics. Understanding and exploiting virus-host interactions is instrumental for identifying host factors involved in viral replication, developing effective antiviral agents, and mitigating the severity of virus-borne infectious diseases. The diversity of CRISPR systems and CRISPR-based tools enables the specific modulation of innate immune responses and has contributed impressively to the fields of virology and immunology in a very short time. In this review, we describe the most recent advances in the use of CRISPR systems for basic and translational studies of virus-host interactions.
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Elena Volchkova
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
- Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| |
Collapse
|
23
|
Saiada F, Zhang K, Li R. PIAS1 potentiates the anti-EBV activity of SAMHD1 through SUMOylation. Cell Biosci 2021; 11:127. [PMID: 34238351 PMCID: PMC8264492 DOI: 10.1186/s13578-021-00636-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sterile alpha motif and HD domain 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase (dNTPase) that restricts the infection of a variety of RNA and DNA viruses, including herpesviruses. The anti-viral function of SAMHD1 is associated with its dNTPase activity, which is regulated by several post-translational modifications, including phosphorylation, acetylation and ubiquitination. Our recent studies also demonstrated that the E3 SUMO ligase PIAS1 functions as an Epstein-Barr virus (EBV) restriction factor. However, whether SAMHD1 is regulated by PIAS1 to restrict EBV replication remains unknown. RESULTS In this study, we showed that PIAS1 interacts with SAMHD1 and promotes its SUMOylation. We identified three lysine residues (K469, K595 and K622) located on the surface of SAMHD1 as the major SUMOylation sites. We demonstrated that phosphorylated SAMHD1 can be SUMOylated by PIAS1 and SUMOylated SAMHD1 can also be phosphorylated by viral protein kinases. We showed that SUMOylation-deficient SAMHD1 loses its anti-EBV activity. Furthermore, we demonstrated that SAMHD1 is associated with EBV genome in a PIAS1-dependent manner. CONCLUSION Our study reveals that PIAS1 synergizes with SAMHD1 to inhibit EBV lytic replication through protein-protein interaction and SUMOylation.
Collapse
Affiliation(s)
- Farjana Saiada
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kun Zhang
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Renfeng Li
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
24
|
Dual roles of SAMHD1 in tumor development and chemoresistance to anticancer drugs. Oncol Lett 2021; 21:451. [PMID: 33907561 PMCID: PMC8063254 DOI: 10.3892/ol.2021.12712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/10/2021] [Indexed: 11/05/2022] Open
Abstract
Human sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) has been identified as a GTP or dGTP-dependent deoxynucleotide triphosphohydrolase (dNTPase) and acts as an antiviral factor against certain retroviruses and DNA viruses. Genetic mutation in SAMHD1 causes the inflammatory Aicardi-Goutières Syndrome and abnormal intracellular deoxyribonucleoside triphosphates (dNTPs) pool. At present, the role of SAMHD1 in numerous types of cancer, such as chronic lymphocytic leukemia, lung cancer and colorectal cancer, is highly studied. Furthermore, it has been found that methylation, acetylation and phosphorylation are involved in the regulation of SAMHD1 expression, and that genetic mutations can cause changes in its activities, including dNTPase activity, long interspersed element type 1 (LINE-1) suppression and DNA damage repair, which could lead to uncontrolled cell cycle progression and cancer development. In addition, SAMHD1 has been reported to have a negative regulatory role in the chemosensitivity to anticancer drugs through its dNTPase activity. The present review aimed to summarize the regulation of SAMHD1 expression in cancer and its function in tumor growth and chemotherapy sensitivity, and discussed controversial points and future directions.
Collapse
|
25
|
SAMHD1 … and Viral Ways around It. Viruses 2021; 13:v13030395. [PMID: 33801276 PMCID: PMC7999308 DOI: 10.3390/v13030395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.
Collapse
|
26
|
Human Papillomavirus 16 (HPV16) E2 Repression of TWIST1 Transcription Is a Potential Mediator of HPV16 Cancer Outcomes. mSphere 2020; 5:5/6/e00981-20. [PMID: 33298572 PMCID: PMC7729257 DOI: 10.1128/msphere.00981-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
HPV16-positive cancers have a better clinical outcome that their non-HPV anatomical counterparts. Furthermore, the presence of HPV16 E2 RNA predicts a better outcome for HPV16-positive tumors; the reasons for this are not known. Human papillomaviruses (HPVs) are causative agents in around 5% of all cancers, including cervical and oropharyngeal. A feature of HPV cancers is their better clinical outcome compared with non-HPV anatomical counterparts. In turn, the presence of E2 predicts a better clinical outcome in HPV-positive cancers; the reason(s) for the better outcome of E2-positive patients is not fully understood. Previously, we demonstrated that HPV16 E2 regulates host gene transcription that is relevant to the HPV16 life cycle in N/Tert-1 cells. One of the genes repressed by E2 and the entire HPV16 genome in N/Tert-1 cells is TWIST1. Here, we demonstrate that TWIST1 RNA levels are reduced in HPV-positive versus HPV-negative head and neck cancer and that E2 and HPV16 downregulate both TWIST1 RNA and protein in our N/Tert-1 model; E6/E7 cannot repress TWIST1. E2 represses the TWIST1 promoter in transient assays and is localized to the TWIST1 promoter; E2 also induces repressive epigenetic changes on the TWIST1 promoter. TWIST1 is a master transcriptional regulator of the epithelial to mesenchymal transition (EMT), and a high level of TWIST1 is a prognostic marker indicative of poor cancer outcomes. We demonstrate that TWIST1 target genes are also downregulated in E2-positive N/Tert-1 cells and that E2 promotes a failure in wound healing, a phenotype of low TWIST1 levels. We propose that the presence of E2 in HPV-positive tumors leads to TWIST1 repression and that this plays a role in the better clinical response of E2-positive HPV tumors. IMPORTANCE HPV16-positive cancers have a better clinical outcome that their non-HPV anatomical counterparts. Furthermore, the presence of HPV16 E2 RNA predicts a better outcome for HPV16-positive tumors; the reasons for this are not known. Here, we demonstrate that E2 represses expression of the TWIST1 gene; an elevated level of this gene is a marker of poor prognosis for a variety of cancers. We demonstrate that E2 directly binds to the TWIST1 promoter and actively represses transcription. TWIST1 is a master regulator promoting EMT, and here, we demonstrate that the presence of E2 reduces the ability of N/Tert-1 cells to wound heal. Overall, we propose that the E2 repression of TWIST1 may contribute to the better clinical outcome of E2-positive HPV16-positive tumors.
Collapse
|
27
|
James CD, Das D, Morgan EL, Otoa R, Macdonald A, Morgan IM. Werner Syndrome Protein (WRN) Regulates Cell Proliferation and the Human Papillomavirus 16 Life Cycle during Epithelial Differentiation. mSphere 2020; 5:e00858-20. [PMID: 32938703 PMCID: PMC7494838 DOI: 10.1128/msphere.00858-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomaviruses recruit a host of DNA damage response factors to their viral genome to facilitate homologous recombination replication in association with the viral replication factors E1 and E2. We previously demonstrated that SIRT1 deacetylation of WRN promotes recruitment of WRN to E1-E2 replicating DNA and that WRN regulates both the levels and fidelity of E1-E2 replication. The deacetylation of WRN by SIRT1 results in an active protein able to complex with replicating DNA, but a protein that is less stable. Here, we demonstrate an inverse correlation between SIRT1 and WRN in CIN cervical lesions compared to normal control tissue, supporting our model of SIRT1 deacetylation destabilizing WRN protein. We CRISPR/Cas9 edited N/Tert-1 and N/Tert-1+HPV16 cells to knock out WRN protein expression and subjected the cells to organotypic raft cultures. In N/Tert-1 cells without WRN expression, there was enhanced basal cell proliferation, DNA damage, and thickening of the differentiated epithelium. In N/Tert-1+HPV16 cells, there was enhanced basal cell proliferation, increased DNA damage throughout the epithelium, and increased viral DNA replication. Overall, the results demonstrate that the expression of WRN is required to control the proliferation of N/Tert-1 cells and controls the HPV16 life cycle in these cells. This complements our previous data demonstrating that WRN controls the levels and fidelity of HPV16 E1-E2 DNA replication. The results describe a new role for WRN, a tumor suppressor, in controlling keratinocyte differentiation and the HPV16 life cycle.IMPORTANCE HPV16 is the major human viral carcinogen, responsible for around 3 to 4% of all cancers worldwide. Our understanding of how the viral replication machinery interacts with host factors to control/activate the DNA damage response to promote the viral life cycle remains incomplete. Recently, we demonstrated a SIRT1-WRN axis that controls HPV16 replication, and here we demonstrate that this axis persists in clinical cervical lesions induced by HPV16. Here, we describe the effects of WRN depletion on cellular differentiation with or without HPV16; WRN depletion results in enhanced proliferation and DNA damage irrespective of HPV16 status. Also, WRN is a restriction factor for the viral life cycle since replication is disrupted in the absence of WRN. Future studies will focus on enhancing our understanding of how WRN regulates viral replication. Our goal is to ultimately identify cellular factors essential for HPV16 replication that can be targeted for therapeutic gain.
Collapse
Affiliation(s)
- Claire D James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Dipon Das
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Raymonde Otoa
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Iain M Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
28
|
James CD, Das D, Bristol ML, Morgan IM. Activating the DNA Damage Response and Suppressing Innate Immunity: Human Papillomaviruses Walk the Line. Pathogens 2020; 9:E467. [PMID: 32545729 PMCID: PMC7350329 DOI: 10.3390/pathogens9060467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Activation of the DNA damage response (DDR) by external agents can result in DNA fragments entering the cytoplasm and activating innate immune signaling pathways, including the stimulator of interferon genes (STING) pathway. The consequences of this activation can result in alterations in the cell cycle including the induction of cellular senescence, as well as boost the adaptive immune response following interferon production. Human papillomaviruses (HPV) are the causative agents in a host of human cancers including cervical and oropharyngeal; HPV are responsible for around 5% of all cancers. During infection, HPV replication activates the DDR in order to promote the viral life cycle. A striking feature of HPV-infected cells is their ability to continue to proliferate in the presence of an active DDR. Simultaneously, HPV suppress the innate immune response using a number of different mechanisms. The activation of the DDR and suppression of the innate immune response are essential for the progression of the viral life cycle. Here, we describe the mechanisms HPV use to turn on the DDR, while simultaneously suppressing the innate immune response. Pushing HPV from this fine line and tipping the balance towards activation of the innate immune response would be therapeutically beneficial.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
| | - Dipon Das
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
- VCU Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
29
|
SAMHD1 Functions and Human Diseases. Viruses 2020; 12:v12040382. [PMID: 32244340 PMCID: PMC7232136 DOI: 10.3390/v12040382] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.
Collapse
|