1
|
von Hippel B, Stoof-Leichsenring KR, Çabuk U, Liu S, Melles M, Herzschuh U. Postglacial bioweathering, soil nutrient cycling, and podzolization from palaeometagenomics of plants, fungi, and bacteria. SCIENCE ADVANCES 2025; 11:eadj5527. [PMID: 40333974 PMCID: PMC12057668 DOI: 10.1126/sciadv.adj5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
Warming-induced glacier retreat exposes bare rocks and glacial sediments, facilitating the establishment of soils. The dynamic interplay between climate, vegetation cover, and soil formation is poorly understood as time-series data are lacking. Here, we present postglacial soil formation during the past 23,000 years inferred from ancient DNA shotgun analyses of Lake Lama sediments targeting plants, soil-associated fungi, and bacteria showing postmortem damage signatures that verify their ancient origin. In the Late Glacial, we reveal basaltic weathering with high abundances of lichens, carbon, and arsenic cyclers, shifting to mycorrhizae domination and N cycling in the Holocene. We reconstruct podzolization starting with spruce forest migration in the Holocene, resulting in soil acidification and increased iron cycling. Our reconstruction of soil formation also contributes basic knowledge for the design of carbon-capture strategies using basalt weathering.
Collapse
Affiliation(s)
- Barbara von Hippel
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
| | - Kathleen R. Stoof-Leichsenring
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
| | - Uğur Çabuk
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Sisi Liu
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
| | - Martin Melles
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
| | - Ulrike Herzschuh
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Qiu Z, He S, Lian CA, Qiao X, Zhang Q, Yao C, Mu R, Wang L, Cao XA, Yan Y, Yu K. Large scale exploration reveals rare taxa crucially shape microbial assembly in alkaline lake sediments. NPJ Biofilms Microbiomes 2024; 10:62. [PMID: 39069527 DOI: 10.1038/s41522-024-00537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Alkaline lakes are extreme environments inhabited by diverse microbial extremophiles. However, large-scale distribution patterns, environmental adaptations, community assembly, and evolutionary dynamics of microbial communities remain largely underexplored. This study investigated the characteristics of microbial communities on rare and abundant taxa in alkaline lake sediments in west and northwest China. We observed that abundant taxa varied significantly with geographical distance, while rare taxa remained unaffected by regional differences. The assembly process of abundant taxa was influenced by dispersal limitation, whilst rare taxa were predominantly driven by heterogeneous selection. Network analysis indicated that rare taxa as core species for community interactions and community stability. Rare taxa exhibited higher speciation and transition rate than abundant taxa, serving as a genetic reservoir and potential candidates to become abundance taxa, highlighting their crucial role in maintaining microbial diversity. These insights underscore the significant influence of rare taxa on ecosystem biodiversity and stability in alkaline lakes.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Shuhang He
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Chun-Ang Lian
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Xuejiao Qiao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing Zhang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Ciqin Yao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Rong Mu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Li Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xiao-Ai Cao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Garner RE, Kraemer SA, Onana VE, Fradette M, Varin MP, Huot Y, Walsh DA. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat Microbiol 2023; 8:1920-1934. [PMID: 37524802 DOI: 10.1038/s41564-023-01435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/20/2023] [Indexed: 08/02/2023]
Abstract
Lakes are heterogeneous ecosystems inhabited by a rich microbiome whose genomic diversity is poorly defined. We present a continental-scale study of metagenomes representing 6.5 million km2 of the most lake-rich landscape on Earth. Analysis of 308 Canadian lakes resulted in a metagenome-assembled genome (MAG) catalogue of 1,008 mostly novel bacterial genomospecies. Lake trophic state was a leading driver of taxonomic and functional diversity among MAG assemblages, reflecting the responses of communities profiled by 16S rRNA amplicons and gene-centric metagenomics. Coupling the MAG catalogue with watershed geomatics revealed terrestrial influences of soils and land use on assemblages. Agriculture and human population density were drivers of turnover, indicating detectable anthropogenic imprints on lake bacteria at the continental scale. The sensitivity of bacterial assemblages to human impact reinforces lakes as sentinels of environmental change. Overall, the LakePulse MAG catalogue greatly expands the freshwater genomic landscape, advancing an integrative view of diversity across Earth's microbiomes.
Collapse
Affiliation(s)
- Rebecca E Garner
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada
| | | | - Vera E Onana
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada
| | - Maxime Fradette
- Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Pierre Varin
- Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Yannick Huot
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada
- Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, Montreal, Quebec, Canada.
- Groupe de recherche interuniversitaire en limnologie, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Ramos-Tapia I, Salinas P, Núñez R, Cortez D, Soto J, Paneque M. Compositional Changes in Sediment Microbiota Are Associated with Seasonal Variation of the Water Column in High-Altitude Hyperarid Andean Lake Systems. Microbiol Spectr 2023; 11:e0520022. [PMID: 37102964 PMCID: PMC10269505 DOI: 10.1128/spectrum.05200-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
The lacustrine systems of La Brava and La Punta, located in the Tilopozo sector in the extreme south of Salar de Atacama, are pristine high-altitude Andean lakes found along the central Andes of South America. This shallow ecosystem suffers from permanent evaporation, leading to falling water levels, causing it to recede or disappear during the dry season. This dynamic causes physicochemical changes in lakes, such as low nutrient availability, pH change, and dissolved metals, which can influence the composition of the microbial community. In this study, we used a metataxonomic approach (16S rRNA hypervariable regions V3 to V4) to characterize the sedimentary microbiota of these lakes. To understand how the water column affects and is structured in the microbiota of these lakes, we combined the analysis of the persistence of the water column through satellite images and physicochemical characterization. Our results show a significant difference in abiotic factors and microbiota composition between La Punta and La Brava lakes. In addition, microbiota analysis revealed compositional changes in the ecological disaggregation (main and isolated bodies) and antagonistic changes in the abundance of certain taxa between lakes. These findings are an invaluable resource for understanding the microbiological diversity of high Andean lakes using a multidisciplinary approach that evaluates the microbiota behavior in response to abiotic factors. IMPORTANCE In this study, we analyzed the persistence of the water column through satellite images and physicochemical characterization to investigate the composition and diversity in High Andean Lake Systems in a hyperarid environment. In addition to the persistence of the water column, this approach can be used to analyze changes in the morphology of saline accumulations and persistence of snow or ice; for example, for establishing variable plant cover over time and evaluating the microbiota associated with soils with seasonal changes in plants. This makes it an ideal approach to search for novel extremophilic microorganisms with unique properties. In our case, it was used to study microorganisms capable of resisting desiccation and water restriction for a considerable period and adapting to survive in ecological niches, such as those with high UV irradiation, extreme drought, and high salt concentration.
Collapse
Affiliation(s)
- Ignacio Ramos-Tapia
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Pamela Salinas
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Reynaldo Núñez
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Donna Cortez
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Jorge Soto
- Departamento de Metagenómica, Fundación Bionostra Chile Research, San Miguel, Santiago, Chile
| | - Manuel Paneque
- Laboratory of Bioenergy and Environmental Biotechnology, Department of Environmental Sciences and Natural Resources, Faculty of Agricultural Sciences, University of Chile, La Pintana, Santiago, Chile
| |
Collapse
|
5
|
Bruno A, Cafiso A, Sandionigi A, Galimberti A, Magnani D, Manfrin A, Petroni G, Casiraghi M, Bazzocchi C. Red mark syndrome: Is the aquaculture water microbiome a keystone for understanding the disease aetiology? Front Microbiol 2023; 14:1059127. [PMID: 36922974 PMCID: PMC10010170 DOI: 10.3389/fmicb.2023.1059127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Aquaculture significantly contributes to the growing demand for food worldwide. However, diseases associated with intensive aquaculture conditions, especially the skin related syndromes, may have significant implications on fish health and industry. In farmed rainbow trout, red mark syndrome (RMS), which consists of multiple skin lesions, currently lacks recognized aetiological agents, and increased efforts are needed to elucidate the onset of these conditions. Most of the past studies were focused on analyzing skin lesions, but no study focused on water, a medium constantly interacting with fish. Indeed, water tanks are environmental niches colonized by microbial communities, which may be implicated in the onset of the disease. Here, we present the results of water and sediment microbiome analyses performed in an RMS-affected aquaculture facility, bringing new knowledge about the environmental microbiomes harbored under these conditions. On the whole, no significant differences in the bacterial community structure were reported in RMS-affected tanks compared to the RMS-free ones. However, we highlighted significant differences in microbiome composition when analyzing different samples source (i.e., water and sediments). Looking at the finer scale, we measured significant changes in the relative abundances of specific taxa in RMS-affected tanks, especially when analyzing water samples. Our results provide worthwhile insight into a mostly uncharacterized ecological scenario, aiding future studies on the aquaculture built environment for disease prevention and monitoring.
Collapse
Affiliation(s)
- Antonia Bruno
- ZooPlantLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Cafiso
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | | | - Andrea Galimberti
- ZooPlantLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Davide Magnani
- ZooPlantLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Amedeo Manfrin
- Experimental Zooprophylactic Institute of the Venezie (IZSVe), Legnaro, Italy
| | | | - Maurizio Casiraghi
- ZooPlantLab, Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
6
|
Lake microbiome and trophy fluctuations of the ancient hemp rettery. Sci Rep 2022; 12:8846. [PMID: 35614182 PMCID: PMC9132974 DOI: 10.1038/s41598-022-12761-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Lake sediments not only store the long-term ecological information including pollen and microfossils but are also a source of sedimentary DNA (sedDNA). Here, by the combination of traditional multi-proxy paleolimnological methods with the whole-metagenome shotgun-sequencing of sedDNA we were able to paint a comprehensive picture of the fluctuations in trophy and bacterial diversity and metabolism of a small temperate lake in response to hemp retting, across the past 2000 years. Hemp retting (HR), a key step in hemp fibre production, was historically carried out in freshwater reservoirs and had a negative impact on the lake ecosystems. In Lake Slone, we identified two HR events, during the late stage of the Roman and Early Medieval periods and correlated these to the increased trophy and imbalanced lake microbiome. The metagenomic analyses showed a higher abundance of Chloroflexi, Planctomycetes and Bacteroidetes and a functional shift towards anaerobic metabolism, including degradation of complex biopolymers such as pectin and cellulose, during HR episodes. The lake eutrophication during HR was linked to the allochthonous, rather than autochthonous carbon supply—hemp straws. We also showed that the identification of HR based on the palynological analysis of hemp pollen may be inconclusive and we suggest the employment of the fibre count analysis as an additional and independent proxy.
Collapse
|
7
|
Capo E, Monchamp M, Coolen MJL, Domaizon I, Armbrecht L, Bertilsson S. Environmental paleomicrobiology: using DNA preserved in aquatic sediments to its full potential. Environ Microbiol 2022; 24:2201-2209. [PMID: 35049133 PMCID: PMC9304175 DOI: 10.1111/1462-2920.15913] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022]
Abstract
In-depth knowledge about spatial and temporal variation in microbial diversity and function is needed for a better understanding of ecological and evolutionary responses to global change. In particular, the study of microbial ancient DNA preserved in sediment archives from lakes and oceans can help us to evaluate the responses of aquatic microbes in the past and make predictions about future biodiversity change in those ecosystems. Recent advances in molecular genetic methods applied to the analysis of historically deposited DNA in sediments have not only allowed the taxonomic identification of past aquatic microbial communities but also enabled tracing their evolution and adaptation to episodic disturbances and gradual environmental change. Nevertheless, some challenges remain for scientists to take full advantage of the rapidly developing field of paleo-genetics, including the limited ability to detect rare taxa and reconstruct complete genomes for evolutionary studies. Here, we provide a brief review of some of the recent advances in the field of environmental paleomicrobiology and discuss remaining challenges related to the application of molecular genetic methods to study microbial diversity, ecology, and evolution in sediment archives. We anticipate that, in the near future, environmental paleomicrobiology will shed new light on the processes of microbial genome evolution and microbial ecosystem responses to quaternary environmental changes at an unprecedented level of detail. This information can, for example, aid geological reconstructions of biogeochemical cycles and predict ecosystem responses to environmental perturbations, including in the context of human-induced global changes.
Collapse
Affiliation(s)
- Eric Capo
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsala75007Sweden
| | - Marie‐Eve Monchamp
- Department of BiologyMcGill UniversityMontréalQCH3A 1B1Canada
- Groupe de recherche interuniversitaire en limnologie (GRIL)Canada
| | - Marco J. L. Coolen
- School of Earth and Planetary Sciences (EPS), The institute of geological research (TIGeR), Western Australia Organic and Isotope Geochemistry Centre (WA‐OIGC)Curtin UniversityBentleyWA 6102Australia
| | - Isabelle Domaizon
- INRAE, Université Savoie Mont Blanc, CARRTELThonon les Bains74200France
- UMR CARRTEL, Pôle R&D ECLAThonon les Bains74200France
| | - Linda Armbrecht
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobart TAS7004Australia
- Australian Centre for Ancient DNA, School of Biological SciencesThe University of AdelaideAdelaideSA5005Australia
| | - Stefan Bertilsson
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsala75007Sweden
| |
Collapse
|
8
|
Biessy L, Pearman JK, Waters S, Vandergoes MJ, Wood SA. Metagenomic insights to the functional potential of sediment microbial communities in freshwater lakes. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.79265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular-based techniques offer considerable potential to provide new insights into the impact of anthropogenic stressors on lake ecosystems. Microbial communities are involved in many geochemical cycling processes in lakes and a greater understanding of their functions could assist in guiding more targeted remedial actions. Recent advances in metagenomics now make it possible to determine the functional potential of entire microbial communities. The present study investigated microbial communities and their functional potential in surface sediments collected from three lakes with differing trophic states and characteristics. Surface sediments were analysed for their nutrient and elemental contents and metagenomics and metabarcoding analysis undertaken. The nutrients content of the surface sediments did not show as distinct a gradient as water chemistry monitoring data, likely reflecting effects of other lake characteristics, in particular, depth. Metabarcoding and metagenomics revealed differing bacterial community composition and functional potential amongst lakes. Amongst the differentially abundant metabolic pathways, the most prominent were clusters in the energy and xenobiotics pathways. Differences in the energy metabolism paths of photosynthesis and oxidative phosphorylation were observed. These were most likely related to changes in the community composition and especially the presence of cyanobacteria in two of the three lakes. Xenobiotic pathways, such as those involving polycyclic aromatic hydrocarbons, were highest in the lakes with the greatest agricultural land-use in their catchment. These results highlight how microbial metagenomics can be used to gain insights into the causes of differences in trophic status amongst lakes.
Collapse
|
9
|
Behera BK, Dehury B, Rout AK, Patra B, Mantri N, Chakraborty HJ, Sarkar DJ, Kaushik NK, Bansal V, Singh I, Das BK, Rao AR, Rai A. Metagenomics study in aquatic resource management: Recent trends, applied methodologies and future needs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. QUATERNARY 2021. [DOI: 10.3390/quat4010006] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.
Collapse
|
11
|
Capo E, Ninnes S, Domaizon I, Bertilsson S, Bigler C, Wang XR, Bindler R, Rydberg J. Landscape Setting Drives the Microbial Eukaryotic Community Structure in Four Swedish Mountain Lakes over the Holocene. Microorganisms 2021; 9:microorganisms9020355. [PMID: 33670228 PMCID: PMC7916980 DOI: 10.3390/microorganisms9020355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
On the annual and interannual scales, lake microbial communities are known to be heavily influenced by environmental conditions both in the lake and in its terrestrial surroundings. However, the influence of landscape setting and environmental change on shaping these communities over a longer (millennial) timescale is rarely studied. Here, we applied an 18S metabarcoding approach to DNA preserved in Holocene sediment records from two pairs of co-located Swedish mountain lakes. Our data revealed that the microbial eukaryotic communities were strongly influenced by catchment characteristics rather than location. More precisely, the microbial communities from the two bedrock lakes were largely dominated by unclassified Alveolata, while the peatland lakes showed a more diverse microbial community, with Ciliophora, Chlorophyta and Chytrids among the more predominant groups. Furthermore, for the two bedrock-dominated lakes-where the oldest DNA samples are dated to only a few hundred years after the lake formation-certain Alveolata, Chlorophytes, Stramenopiles and Rhizaria taxa were found prevalent throughout all the sediment profiles. Our work highlights the importance of species sorting due to landscape setting and the persistence of microbial eukaryotic diversity over millennial timescales in shaping modern lake microbial communities.
Collapse
Affiliation(s)
- Eric Capo
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden; (S.N.); (C.B.); (X.-R.W.); (R.B.); (J.R.)
- Correspondence:
| | - Sofia Ninnes
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden; (S.N.); (C.B.); (X.-R.W.); (R.B.); (J.R.)
| | - Isabelle Domaizon
- UMR CARRTEL, INRAE, Université Savoie Mont Blanc, 74200 Thonon les Bains, France;
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, SLU, 75007 Uppsala, Sweden;
| | - Christian Bigler
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden; (S.N.); (C.B.); (X.-R.W.); (R.B.); (J.R.)
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden; (S.N.); (C.B.); (X.-R.W.); (R.B.); (J.R.)
| | - Richard Bindler
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden; (S.N.); (C.B.); (X.-R.W.); (R.B.); (J.R.)
| | - Johan Rydberg
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden; (S.N.); (C.B.); (X.-R.W.); (R.B.); (J.R.)
| |
Collapse
|