1
|
Thiruppathy D, Moyne O, Marotz C, Williams M, Navarro P, Zaramela L, Zengler K. Absolute quantification of the living skin microbiome overcomes relic-DNA bias and reveals specific patterns across volunteers. MICROBIOME 2025; 13:65. [PMID: 40038838 PMCID: PMC11877739 DOI: 10.1186/s40168-025-02063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/09/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND As the first line of defense against external pathogens, the skin and its resident microbiota are responsible for protection and eubiosis. Innovations in DNA sequencing have significantly increased our knowledge of the skin microbiome. However, current characterizations do not discriminate between DNA from live cells and remnant DNA from dead organisms (relic DNA), resulting in a combined readout of all microorganisms that were and are currently present on the skin rather than the actual living population of the microbiome. Additionally, most methods lack the capability for absolute quantification of the microbial load on the skin, complicating the extrapolation of clinically relevant information. RESULTS Here, we integrated relic-DNA depletion with shotgun metagenomics and bacterial load determination to quantify live bacterial cell abundances across different skin sites. Though we discovered up to 90% of microbial DNA from the skin to be relic DNA, we saw no significant effect of this on the relative abundances of taxa determined by shotgun sequencing. Relic-DNA depletion prior to sequencing strengthened underlying patterns between microbiomes across volunteers and reduced intraindividual similarity. We determined the absolute abundance and the fraction of population alive for several common skin taxa across body sites and found taxa-specific differential abundance of live bacteria across regions to be different from estimates generated by total DNA (live + dead) sequencing. CONCLUSIONS Our results reveal the significant bias relic DNA has on the quantification of low biomass samples like the skin. The reduced intraindividual similarity across samples following relic-DNA depletion highlights the bias introduced by traditional (total DNA) sequencing in diversity comparisons across samples. The divergent levels of cell viability measured across different skin sites, along with the inconsistencies in taxa differential abundance determined by total vs live cell DNA sequencing, suggest an important hypothesis for certain sites being susceptible to pathogen infection. Overall, our study demonstrates a characterization of the skin microbiome that overcomes relic-DNA bias to provide a baseline for live microbiota that will further improve mechanistic studies of infection, disease progression, and the design of therapies for the skin. Video Abstract.
Collapse
Affiliation(s)
- Deepan Thiruppathy
- Department of Bioengineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Oriane Moyne
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Michael Williams
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Perris Navarro
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Livia Zaramela
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Karsten Zengler
- Department of Bioengineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
2
|
Han X, Xia Z. Application of Host-Depleted Nanopore Metagenomic Sequencing in the Clinical Detection of Pathogens in Pigs and Cats. Animals (Basel) 2023; 13:3838. [PMID: 38136875 PMCID: PMC10741237 DOI: 10.3390/ani13243838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Metagenomic sequencing is a valuable tool for non-specifically detecting various microorganisms in samples, offering unique advantages for detecting emerging pathogens, fastidious or uncultivable pathogens, and mixed infections. It has recently been applied to clinically detect pathogenic microorganisms in animals; however, the high proportion of host genes, expensive sequencing equipment, and the complexity of sequencing and data analysis methods have limited its clinical utility. In this study, a combination of tissue homogenization and nuclease digestion was employed to remove host genes from pig and cat samples; DNA and RNA were then extracted and subjected to nonselective PCR amplification to simultaneously detect DNA and RNA pathogen genomes using R9.4.1 or R10.4.1 flow cells on the MinION platform. Real-time pathogen detection was conducted using EPI2M WIMP, and viral genome assembly was performed using NanoFilt, minimap2, samtools, and ivar. Pathogens in five clinical samples (serum, nasopharyngeal swab, feces, or ascites) from cats and four clinical samples (lung or small intestine tissue) from pigs were examined by metagenomic sequencing, and the results were consistent with those obtained by PCR and bacterial culture. Additionally, we detected four viruses and three bacteria that may be associated with diseases. A comparison of results before and after host gene removal in three samples showed a 9-50% reduction in host genes. We also compared the assembly efficiency of six virus genomes and found that data volumes ranging from 3.3 to 98.3 MB were sufficient to assemble >90% of the viral genomes. In summary, this study utilized optimized nanopore metagenomic sequencing and analysis methods to reduce host genes, decrease the required data volume for sequencing analysis, and enable real-time detection to determine when to stop sequencing. The streamlined sequencing and analysis process overcomes barriers to the veterinary clinical application of metagenomic sequencing and provides a reference for clinical implementation.
Collapse
Affiliation(s)
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Serghiou IR, Webber MA, Hall LJ. An update on the current understanding of the infant skin microbiome and research challenges. Curr Opin Microbiol 2023; 75:102364. [PMID: 37586254 DOI: 10.1016/j.mib.2023.102364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Multiple factors contribute to establishment of skin microbial communities in early life, with perturbations in these ecosystems impacting health. This review provides an update on methods used to profile the skin microbiome and how this is helping enhance our understanding of infant skin microbial communities, including factors that influence composition and disease risk. We also provide insights into new interventional studies and treatments in this area. However, it is apparent that there are still research bottlenecks that include overreliance on high-income countries for skin microbiome 'surveys', many studies still focus solely on the bacterial microbiota, and also technical issues related to the lower microbial biomass of skin sites. These points link to pertinent open-research questions, such as how the whole infant skin microbiome interacts and how microbial-associated functions shape infant skin health and immunity.
Collapse
Affiliation(s)
- Iliana R Serghiou
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
4
|
Hellmann KT, Challagundla L, Gray BM, Robinson DA. Improved Genomic Prediction of Staphylococcus epidermidis Isolation Sources with a Novel Polygenic Score. J Clin Microbiol 2023; 61:e0141222. [PMID: 36840569 PMCID: PMC10035303 DOI: 10.1128/jcm.01412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/22/2023] [Indexed: 02/25/2023] Open
Abstract
Staphylococcus epidermidis infections can be challenging to diagnose due to the species frequent contamination of clinical specimens and indolent course of infection. Nevertheless, S. epidermidis is the major cause of late-onset sepsis among premature infants and of intravascular infection in all age groups. Prior work has shown that bacterial virulence factors, antimicrobial resistances, and strains have up to 80% in-sample accuracy to distinguish hospital from community sources, but are unable to distinguish true bacteremia from blood culture contamination. Here, a phylogeny-informed genome-wide association study of 88 isolates was used to estimate effect sizes of particular genomic variants for isolation sources. A "polygenic score" was calculated for each isolate as the summed effect sizes of its repertoire of genomic variants. Predictive models of isolation sources based on polygenic scores were tested with in-samples and out-samples from prior studies of different patient populations. Polygenic scores from accessory genes (AGs) distinguished hospital from community sources with the highest accuracy to date, up to 98% for in-samples and 65% to 91% for various out-samples, whereas scores from single nucleotide polymorphisms (SNPs) had lower accuracy. Scores from AGs and SNPs achieved the highest in-sample accuracy to date, up to 76%, in distinguishing infection from contaminant sources within a hospital. Model training and testing data sets with more similar population structures resulted in more accurate predictions. This study reports the first use of a polygenic score for predicting a complex bacterial phenotype and shows the potential of this approach for enhancing S. epidermidis diagnosis.
Collapse
Affiliation(s)
- K. Taylor Hellmann
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lavanya Challagundla
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Barry M. Gray
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
5
|
Abstract
Our skin is the interface through which we mediate lifelong interactions with our surrounding environment. Initial development of the skin's epidermis, adnexal structures, and barrier function is necessary for normal cutaneous microbial colonization, immune development, and prevention of disease. Early life microbial exposures can have unique and long-lasting impacts on skin health. The identity of neonatal skin microbes and the context in which they are first encountered, i.e., through a compromised skin barrier or in conjunction with cutaneous inflammation, can have additional short- and long-term health consequences. Here, we discuss key attributes of infant skin and endogenous and exogenous factors that shape its relationship to the early life cutaneous microbiome, with a focus on their clinical implications.
Collapse
Affiliation(s)
- Laura R Dwyer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|