1
|
Lim CS, Gibbon AK, Tran Nguyen AT, Chieng GSW, Brown CM. RIBOSS detects novel translational events by combining long- and short-read transcriptome and translatome profiling. Brief Bioinform 2025; 26:bbaf164. [PMID: 40221960 PMCID: PMC11994033 DOI: 10.1093/bib/bbaf164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/15/2025] Open
Abstract
Ribosome profiling is a high-throughput sequencing technique that captures the positions of translating ribosomes on RNAs. Recent advancements in ribosome profiling include achieving highly phased ribosome footprints for plant translatomes and more recently for bacterial translatomes. This substantially increases the specificity of detecting open reading frames (ORFs) that can be translated, such as small ORFs located upstream and downstream of the annotated ORFs. However, most genomes (e.g. bacterial genomes) lack the annotations for the transcription start and termination sites. This hinders the systematic discovery of novel ORFs in the 'untranslated' regions in ribosome profiling data. Here, we develop a new computational pipeline called RIBOSS to discover noncanonical ORFs and assess their translational potential against annotated ORFs. The RIBOSS Python modules are versatile, and we use them to analyse both prokaryotic and eukaryotic data. We present a resulting list of noncanonical ORFs with high translational potential in Homo sapiens, Arabidopsis thaliana, and Salmonella enterica. We further illustrate RIBOSS utility when studying organisms with incomplete transcriptome annotations. We leverage long-read and short-read data for reference-guided transcriptome assembly and highly phased ribosome profiling data for detecting novel translational events in the assembled transcriptome for S. enterica. In sum, RIBOSS is the first integrated computational pipeline for noncanonical ORF detection and translational potential assessment that incorporates long- and short-read sequencing technologies to investigate translation. RIBOSS is freely available at https://github.com/lcscs12345/riboss.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Alexandra K Gibbon
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Anh Thu Tran Nguyen
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Gabrielle S W Chieng
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Wang C, Tang Y, Zhou C, Li S, Chen J, Sun Z. RNA-seq and Ribosome Profiling Reveal the Translational Landscape of Rice in Response to Rice Stripe Virus Infection. Viruses 2024; 16:1866. [PMID: 39772176 PMCID: PMC11680141 DOI: 10.3390/v16121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings. Our results reveal that translational reprogramming is a critical aspect of the plant's defense mechanism, operating independently of transcriptional changes. Notably, less than half of the differentially expressed genes showed concordance between transcription and translation. Furthermore, RSV infection led to significant alterations in translational efficiency for numerous genes, suggesting that the virus selectively manipulates translation to enhance its pathogenicity. Our findings underscore the necessity of examining both transcriptional and translational landscapes to fully understand plant responses to viral infections.
Collapse
Affiliation(s)
- Chen Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.W.); (Y.T.); (C.Z.); (S.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yao Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.W.); (Y.T.); (C.Z.); (S.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Changmei Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.W.); (Y.T.); (C.Z.); (S.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shanshan Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.W.); (Y.T.); (C.Z.); (S.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.W.); (Y.T.); (C.Z.); (S.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zongtao Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.W.); (Y.T.); (C.Z.); (S.L.)
| |
Collapse
|
3
|
Fijalkowski I, Snauwaert V, Van Damme P. Proteins à la carte: riboproteogenomic exploration of bacterial N-terminal proteoform expression. mBio 2024; 15:e0033324. [PMID: 38511928 PMCID: PMC11005335 DOI: 10.1128/mbio.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
In recent years, it has become evident that the true complexity of bacterial proteomes remains underestimated. Gene annotation tools are known to propagate biases and overlook certain classes of truly expressed proteins, particularly proteoforms-protein isoforms arising from a single gene. Recent (re-)annotation efforts heavily rely on ribosome profiling by providing a direct readout of translation to fully describe bacterial proteomes. In this study, we employ a robust riboproteogenomic pipeline to conduct a systematic census of expressed N-terminal proteoform pairs, representing two isoforms encoded by a single gene raised by annotated and alternative translation initiation, in Salmonella. Intriguingly, conditional-dependent changes in relative utilization of annotated and alternative translation initiation sites (TIS) were observed in several cases. This suggests that TIS selection is subject to regulatory control, adding yet another layer of complexity to our understanding of bacterial proteomes. IMPORTANCE With the emerging theme of genes within genes comprising the existence of alternative open reading frames (ORFs) generated by translation initiation at in-frame start codons, mechanisms that control the relative utilization of annotated and alternative TIS need to be unraveled and our molecular understanding of resulting proteoforms broadened. Utilizing complementary ribosome profiling strategies to map ORF boundaries, we uncovered dual-encoding ORFs generated by in-frame TIS usage in Salmonella. Besides demonstrating that alternative TIS usage may generate proteoforms with different characteristics, such as differential localization and specialized function, quantitative aspects of conditional retapamulin-assisted ribosome profiling (Ribo-RET) translation initiation maps offer unprecedented insights into the relative utilization of annotated and alternative TIS, enabling the exploration of gene regulatory mechanisms that control TIS usage and, consequently, the translation of N-terminal proteoform pairs.
Collapse
Affiliation(s)
- Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Valdes Snauwaert
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Fremin BJ, Bhatt AS, Kyrpides NC. Identification of over ten thousand candidate structured RNAs in viruses and phages. Comput Struct Biotechnol J 2023; 21:5630-5639. [PMID: 38047235 PMCID: PMC10690425 DOI: 10.1016/j.csbj.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Structured RNAs play crucial roles in viruses, exerting influence over both viral and host gene expression. However, the extensive diversity of structured RNAs and their ability to act in cis or trans positions pose challenges for predicting and assigning their functions. While comparative genomics approaches have successfully predicted candidate structured RNAs in microbes on a large scale, similar efforts for viruses have been lacking. In this study, we screened over 5 million DNA and RNA viral sequences, resulting in the prediction of 10,006 novel candidate structured RNAs. These predictions are widely distributed across taxonomy and ecosystem. We found transcriptional evidence for 206 of these candidate structured RNAs in the human fecal microbiome. These candidate RNAs exhibited evidence of nucleotide covariation, indicative of selective pressure maintaining the predicted secondary structures. Our analysis revealed a diverse repertoire of candidate structured RNAs, encompassing a substantial number of putative tRNAs or tRNA-like structures, Rho-independent transcription terminators, and potentially cis-regulatory structures consistently positioned upstream of genes. In summary, our findings shed light on the extensive diversity of structured RNAs in viruses, offering a valuable resource for further investigations into their functional roles and implications in viral gene expression and pave the way for a deeper understanding of the intricate interplay between viruses and their hosts at the molecular level.
Collapse
Affiliation(s)
- Brayon J. Fremin
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ami S. Bhatt
- Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Lead Contact, USA
| |
Collapse
|
5
|
Simoens L, Fijalkowski I, Van Damme P. Exposing the small protein load of bacterial life. FEMS Microbiol Rev 2023; 47:fuad063. [PMID: 38012116 PMCID: PMC10723866 DOI: 10.1093/femsre/fuad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
The ever-growing repertoire of genomic techniques continues to expand our understanding of the true diversity and richness of prokaryotic genomes. Riboproteogenomics laid the foundation for dynamic studies of previously overlooked genomic elements. Most strikingly, bacterial genomes were revealed to harbor robust repertoires of small open reading frames (sORFs) encoding a diverse and broadly expressed range of small proteins, or sORF-encoded polypeptides (SEPs). In recent years, continuous efforts led to great improvements in the annotation and characterization of such proteins, yet many challenges remain to fully comprehend the pervasive nature of small proteins and their impact on bacterial biology. In this work, we review the recent developments in the dynamic field of bacterial genome reannotation, catalog the important biological roles carried out by small proteins and identify challenges obstructing the way to full understanding of these elusive proteins.
Collapse
Affiliation(s)
- Laure Simoens
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Moritz RL, Deutsch EW, van Heesch S. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome? Mol Cell Proteomics 2023; 22:100631. [PMID: 37572790 PMCID: PMC10506109 DOI: 10.1016/j.mcpro.2023.100631] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."
Collapse
Affiliation(s)
- John R Prensner
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | - Leron W Kok
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Agora Center Bugnon 25A, University of Lausanne, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland
| | - Robert L Moritz
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | | |
Collapse
|
7
|
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Deutsch EW, van Heesch S. What can Ribo-seq and proteomics tell us about the non-canonical proteome? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541049. [PMID: 37292611 PMCID: PMC10245706 DOI: 10.1101/2023.05.16.541049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ribosome profiling (Ribo-seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of non-canonical sites of ribosome translation outside of the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7,000 non-canonical open reading frames (ORFs) are translated, which, at first glance, has the potential to expand the number of human protein-coding sequences by 30%, from ∼19,500 annotated CDSs to over 26,000. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of non-canonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome, but searching for guidance on how to proceed. Here, we discuss the current state of non-canonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein-coding". In brief The human genome encodes thousands of non-canonical open reading frames (ORFs) in addition to protein-coding genes. As a nascent field, many questions remain regarding non-canonical ORFs. How many exist? Do they encode proteins? What level of evidence is needed for their verification? Central to these debates has been the advent of ribosome profiling (Ribo-seq) as a method to discern genome-wide ribosome occupancy, and immunopeptidomics as a method to detect peptides that are processed and presented by MHC molecules and not observed in traditional proteomics experiments. This article provides a synthesis of the current state of non-canonical ORF research and proposes standards for their future investigation and reporting. Highlights Combined use of Ribo-seq and proteomics-based methods enables optimal confidence in detecting non-canonical ORFs and their protein products.Ribo-seq can provide more sensitive detection of non-canonical ORFs, but data quality and analytical pipelines will impact results.Non-canonical ORF catalogs are diverse and span both high-stringency and low-stringency ORF nominations.A framework for standardized non-canonical ORF evidence will advance the research field.
Collapse
Affiliation(s)
- John R. Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Leron W. Kok
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Karl R. Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jonathan M. Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Eric W. Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
8
|
Fedorova AD, Tierney JA, Michel AM, Baranov PV. RiboGalaxy: A Galaxy-based Web Platform for Ribosome Profiling Data Processing – 2023 Update. J Mol Biol 2023. [DOI: 10.1016/j.jmb.2023.168043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
Graf F, Zehentner B, Fellner L, Scherer S, Neuhaus K. Three Novel Antisense Overlapping Genes in E. coli O157:H7 EDL933. Microbiol Spectr 2023; 11:e0235122. [PMID: 36533921 PMCID: PMC9927249 DOI: 10.1128/spectrum.02351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
The abundance of long overlapping genes in prokaryotic genomes is likely to be significantly underestimated. To date, only a few examples of such genes are fully established. Using RNA sequencing and ribosome profiling, we found expression of novel overlapping open reading frames in Escherichia coli O157:H7 EDL933 (EHEC). Indeed, the overlapping candidate genes are equipped with typical structural elements required for transcription and translation, i.e., promoters, transcription start sites, as well as terminators, all of which were experimentally verified. Translationally arrested mutants, unable to produce the overlapping encoded protein, were found to have a growth disadvantage when grown competitively against the wild type. Thus, the phenotypes found imply biological functionality of the genes at the level of proteins produced. The addition of 3 more examples of prokaryotic overlapping genes to the currently limited, yet constantly growing pool of such genes emphasizes the underestimated coding capacity of bacterial genomes. IMPORTANCE The abundance of long overlapping genes in prokaryotic genomes is likely to be significantly underestimated, since such genes are not allowed in genome annotations. However, ribosome profiling catches mRNA in the moment of being template for protein production. Using this technique and subsequent experiments, we verified 3 novel overlapping genes encoded in antisense of known genes. This adds more examples of prokaryotic overlapping genes to the currently limited, yet constantly growing pool of such genes.
Collapse
Affiliation(s)
- Franziska Graf
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Freising, Germany
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Barbara Zehentner
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Lea Fellner
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Siegfried Scherer
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Freising, Germany
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Freising, Germany
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
10
|
Hadjeras L, Bartel J, Maier LK, Maaß S, Vogel V, Svensson SL, Eggenhofer F, Gelhausen R, Müller T, Alkhnbashi OS, Backofen R, Becher D, Sharma CM, Marchfelder A. Revealing the small proteome of Haloferax volcanii by combining ribosome profiling and small-protein optimized mass spectrometry. MICROLIFE 2023; 4:uqad001. [PMID: 37223747 PMCID: PMC10117724 DOI: 10.1093/femsml/uqad001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 05/25/2023]
Abstract
In contrast to extensively studied prokaryotic 'small' transcriptomes (encompassing all small noncoding RNAs), small proteomes (here defined as including proteins ≤70 aa) are only now entering the limelight. The absence of a complete small protein catalogue in most prokaryotes precludes our understanding of how these molecules affect physiology. So far, archaeal genomes have not yet been analyzed broadly with a dedicated focus on small proteins. Here, we present a combinatorial approach, integrating experimental data from small protein-optimized mass spectrometry (MS) and ribosome profiling (Ribo-seq), to generate a high confidence inventory of small proteins in the model archaeon Haloferax volcanii. We demonstrate by MS and Ribo-seq that 67% of the 317 annotated small open reading frames (sORFs) are translated under standard growth conditions. Furthermore, annotation-independent analysis of Ribo-seq data showed ribosomal engagement for 47 novel sORFs in intergenic regions. A total of seven of these were also detected by proteomics, in addition to an eighth novel small protein solely identified by MS. We also provide independent experimental evidence in vivo for the translation of 12 sORFs (annotated and novel) using epitope tagging and western blotting, underlining the validity of our identification scheme. Several novel sORFs are conserved in Haloferax species and might have important functions. Based on our findings, we conclude that the small proteome of H. volcanii is larger than previously appreciated, and that combining MS with Ribo-seq is a powerful approach for the discovery of novel small protein coding genes in archaea.
Collapse
Affiliation(s)
- Lydia Hadjeras
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | | | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Verena Vogel
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sarah L Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Teresa Müller
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Anita Marchfelder
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
11
|
Wei G, Li S, Ye S, Wang Z, Zarringhalam K, He J, Wang W, Shao Z. High-Resolution Small RNAs Landscape Provides Insights into Alkane Adaptation in the Marine Alkane-Degrader Alcanivorax dieselolei B-5. Int J Mol Sci 2022; 23:ijms232415995. [PMID: 36555635 PMCID: PMC9788540 DOI: 10.3390/ijms232415995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Alkanes are widespread in the ocean, and Alcanivorax is one of the most ubiquitous alkane-degrading bacteria in the marine ecosystem. Small RNAs (sRNAs) are usually at the heart of regulatory pathways, but sRNA-mediated alkane metabolic adaptability still remains largely unknown due to the difficulties of identification. Here, differential RNA sequencing (dRNA-seq) modified with a size selection (~50-nt to 500-nt) strategy was used to generate high-resolution sRNAs profiling in the model species Alcanivorax dieselolei B-5 under alkane (n-hexadecane) and non-alkane (acetate) conditions. As a result, we identified 549 sRNA candidates at single-nucleotide resolution of 5'-ends, 63.4% of which are with transcription start sites (TSSs), and 36.6% of which are with processing sites (PSSs) at the 5'-ends. These sRNAs originate from almost any location in the genome, regardless of intragenic (65.8%), antisense (20.6%) and intergenic (6.2%) regions, and RNase E may function in the maturation of sRNAs. Most sRNAs locally distribute across the 15 reference genomes of Alcanivorax, and only 7.5% of sRNAs are broadly conserved in this genus. Expression responses to the alkane of several core conserved sRNAs, including 6S RNA, M1 RNA and tmRNA, indicate that they may participate in alkane metabolisms and result in more actively global transcription, RNA processing and stresses mitigation. Two novel CsrA-related sRNAs are identified, which may be involved in the translational activation of alkane metabolism-related genes by sequestering the global repressor CsrA. The relationships of sRNAs with the characterized genes of alkane sensing (ompS), chemotaxis (mcp, cheR, cheW2), transporting (ompT1, ompT2, ompT3) and hydroxylation (alkB1, alkB2, almA) were created based on the genome-wide predicted sRNA-mRNA interactions. Overall, the sRNA landscape lays the ground for uncovering cryptic regulations in critical marine bacterium, among which both the core and species-specific sRNAs are implicated in the alkane adaptive metabolisms.
Collapse
Affiliation(s)
- Guangshan Wei
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Sujie Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Sida Ye
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Zining Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jianguo He
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Correspondence: (W.W.); (Z.S.)
| | - Zongze Shao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: (W.W.); (Z.S.)
| |
Collapse
|
12
|
Thousands of small, novel genes predicted in global phage genomes. Cell Rep 2022; 39:110984. [PMID: 35732113 DOI: 10.1016/j.celrep.2022.110984] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Small genes (<150 nucleotides) have been systematically overlooked in phage genomes. We employ a large-scale comparative genomics approach to predict >40,000 small-gene families in ∼2.3 million phage genome contigs. We find that small genes in phage genomes are approximately 3-fold more prevalent than in host prokaryotic genomes. Our approach enriches for small genes that are translated in microbiomes, suggesting the small genes identified are coding. More than 9,000 families encode potentially secreted or transmembrane proteins, more than 5,000 families encode predicted anti-CRISPR proteins, and more than 500 families encode predicted antimicrobial proteins. By combining homology and genomic-neighborhood analyses, we reveal substantial novelty and diversity within phage biology, including small phage genes found in multiple host phyla, small genes encoding proteins that play essential roles in host infection, and small genes that share genomic neighborhoods and whose encoded proteins may share related functions.
Collapse
|
13
|
Abstract
Noncoding RNAs with secondary structures play important roles in CRISPR-Cas systems. Many of these structures likely remain undiscovered. We used a large-scale comparative genomics approach to predict 156 novel candidate structured RNAs from 36,111 CRISPR-Cas systems. A number of these were found to overlap with coding genes, including palindromic candidates that overlapped with a variety of Cas genes in type I and III systems. Among these 156 candidates, we identified 46 new models of CRISPR direct repeats and 1 tracrRNA. This tracrRNA model occasionally overlapped with predicted cas9 coding regions, emphasizing the importance of expanding our search windows for novel structure RNAs in coding regions. We also demonstrated that the antirepeat sequence in this tracrRNA model can be used to accurately assign thousands of predicted CRISPR arrays to type II-C systems. This study highlights the importance of unbiased identification of candidate structured RNAs across CRISPR-Cas systems.
Collapse
Affiliation(s)
- Brayon J. Fremin
- Department of Energy, Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
14
|
Gelhausen R, Müller T, Svensson SL, Alkhnbashi OS, Sharma CM, Eggenhofer F, Backofen R. RiboReport - benchmarking tools for ribosome profiling-based identification of open reading frames in bacteria. Brief Bioinform 2022; 23:bbab549. [PMID: 35037022 PMCID: PMC8921622 DOI: 10.1093/bib/bbab549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Small proteins encoded by short open reading frames (ORFs) with 50 codons or fewer are emerging as an important class of cellular macromolecules in diverse organisms. However, they often evade detection by proteomics or in silico methods. Ribosome profiling (Ribo-seq) has revealed widespread translation in genomic regions previously thought to be non-coding, driving the development of ORF detection tools using Ribo-seq data. However, only a handful of tools have been designed for bacteria, and these have not yet been systematically compared. Here, we aimed to identify tools that use Ribo-seq data to correctly determine the translational status of annotated bacterial ORFs and also discover novel translated regions with high sensitivity. To this end, we generated a large set of annotated ORFs from four diverse bacterial organisms, manually labeled for their translation status based on Ribo-seq data, which are available for future benchmarking studies. This set was used to investigate the predictive performance of seven Ribo-seq-based ORF detection tools (REPARATION_blast, DeepRibo, Ribo-TISH, PRICE, smORFer, ribotricer and SPECtre), as well as IRSOM, which uses coding potential and RNA-seq coverage only. DeepRibo and REPARATION_blast robustly predicted translated ORFs, including sORFs, with no significant difference for ORFs in close proximity to other genes versus stand-alone genes. However, no tool predicted a set of novel, experimentally verified sORFs with high sensitivity. Start codon predictions with smORFer show the value of initiation site profiling data to further improve the sensitivity of ORF prediction tools in bacteria. Overall, we find that bacterial tools perform well for sORF detection, although there is potential for improving their performance, applicability, usability and reproducibility.
Collapse
Affiliation(s)
- Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110, Freiburg, Germany
| | - Teresa Müller
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110, Freiburg, Germany
| | - Sarah L Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2 / D15, 97080, Würzburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Saudi Arabia
- SDAIA-KFUPM Joint Research Center for Artificial Intelligence (JRC-AI), King Fahd University of Petroleum and Minerals, Saudi Arabia
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2 / D15, 97080, Würzburg, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, State, Germany
| |
Collapse
|
15
|
Kreitmeier M, Ardern Z, Abele M, Ludwig C, Scherer S, Neuhaus K. Spotlight on alternative frame coding: Two long overlapping genes in Pseudomonas aeruginosa are translated and under purifying selection. iScience 2022; 25:103844. [PMID: 35198897 PMCID: PMC8850804 DOI: 10.1016/j.isci.2022.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
The existence of overlapping genes (OLGs) with significant coding overlaps revolutionizes our understanding of genomic complexity. We report two exceptionally long (957 nt and 1536 nt), evolutionarily novel, translated antisense open reading frames (ORFs) embedded within annotated genes in the pathogenic Gram-negative bacterium Pseudomonas aeruginosa. Both OLG pairs show sequence features consistent with being genes and transcriptional signals in RNA sequencing. Translation of both OLGs was confirmed by ribosome profiling and mass spectrometry. Quantitative proteomics of samples taken during different phases of growth revealed regulation of protein abundances, implying biological functionality. Both OLGs are taxonomically restricted, and likely arose by overprinting within the genus. Evidence for purifying selection further supports functionality. The OLGs reported here, designated olg1 and olg2, are the longest yet proposed in prokaryotes and are among the best attested in terms of translation and evolutionary constraint. These results highlight a potentially large unexplored dimension of prokaryotic genomes.
Collapse
Affiliation(s)
- Michaela Kreitmeier
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
16
|
Fremin BJ, Nicolaou C, Bhatt AS. Simultaneous ribosome profiling of hundreds of microbes from the human microbiome. Nat Protoc 2021; 16:4676-4691. [PMID: 34381207 PMCID: PMC8750612 DOI: 10.1038/s41596-021-00592-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Ribosome profiling enables sequencing of ribosome-bound fragments of RNA, revealing which transcripts are being translated as well as the position of ribosomes along mRNAs. Although ribosome profiling has been applied to cultured bacterial isolates, its application to uncultured, mixed communities has been challenging. We present MetaRibo-Seq, a protocol that enables the application of ribosome profiling directly to the human fecal microbiome. MetaRibo-Seq is a benchmarked method that includes several modifications to existing ribosome profiling protocols, specifically addressing challenges involving fecal sample storage, purity and input requirements. We also provide a computational workflow to quality control and trim reads, de novo assemble a reference metagenome with metagenomic reads, align MetaRibo-Seq reads to the reference, and assess MetaRibo-Seq library quality ( https://github.com/bhattlab/bhattlab_workflows/tree/master/metariboseq ). This MetaRibo-Seq protocol enables researchers in standard molecular biology laboratories to study translation in the fecal microbiome in ~5 d.
Collapse
Affiliation(s)
- Brayon J Fremin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Cosmos Nicolaou
- Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Divisions of Hematology and Blood & Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Tjeldnes H, Labun K, Torres Cleuren Y, Chyżyńska K, Świrski M, Valen E. ORFik: a comprehensive R toolkit for the analysis of translation. BMC Bioinformatics 2021; 22:336. [PMID: 34147079 PMCID: PMC8214792 DOI: 10.1186/s12859-021-04254-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND With the rapid growth in the use of high-throughput methods for characterizing translation and the continued expansion of multi-omics, there is a need for back-end functions and streamlined tools for processing, analyzing, and characterizing data produced by these assays. RESULTS Here, we introduce ORFik, a user-friendly R/Bioconductor API and toolbox for studying translation and its regulation. It extends GenomicRanges from the genome to the transcriptome and implements a framework that integrates data from several sources. ORFik streamlines the steps to process, analyze, and visualize the different steps of translation with a particular focus on initiation and elongation. It accepts high-throughput sequencing data from ribosome profiling to quantify ribosome elongation or RCP-seq/TCP-seq to also quantify ribosome scanning. In addition, ORFik can use CAGE data to accurately determine 5'UTRs and RNA-seq for determining translation relative to RNA abundance. ORFik supports and calculates over 30 different translation-related features and metrics from the literature and can annotate translated regions such as proteins or upstream open reading frames (uORFs). As a use-case, we demonstrate using ORFik to rapidly annotate the dynamics of 5' UTRs across different tissues, detect their uORFs, and characterize their scanning and translation in the downstream protein-coding regions. CONCLUSION In summary, ORFik introduces hundreds of tested, documented and optimized methods. ORFik is designed to be easily customizable, enabling users to create complete workflows from raw data to publication-ready figures for several types of sequencing data. Finally, by improving speed and scope of many core Bioconductor functions, ORFik offers enhancement benefiting the entire Bioconductor environment. AVAILABILITY http://bioconductor.org/packages/ORFik .
Collapse
Affiliation(s)
- Håkon Tjeldnes
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Kornel Labun
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Yamila Torres Cleuren
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Katarzyna Chyżyńska
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway. .,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| |
Collapse
|
18
|
Fremin BJ, Bhatt AS. Comparative genomics identifies thousands of candidate structured RNAs in human microbiomes. Genome Biol 2021; 22:100. [PMID: 33845850 PMCID: PMC8040213 DOI: 10.1186/s13059-021-02319-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Structured RNAs play varied bioregulatory roles within microbes. To date, hundreds of candidate structured RNAs have been predicted using informatic approaches that search for motif structures in genomic sequence data. The human microbiome contains thousands of species and strains of microbes. Yet, much of the metagenomic data from the human microbiome remains unmined for structured RNA motifs primarily due to computational limitations. RESULTS We sought to apply a large-scale, comparative genomics approach to these organisms to identify candidate structured RNAs. With a carefully constructed, though computationally intensive automated analysis, we identify 3161 conserved candidate structured RNAs in intergenic regions, as well as 2022 additional candidate structured RNAs that may overlap coding regions. We validate the RNA expression of 177 of these candidate structures by analyzing small fragment RNA-seq data from four human fecal samples. CONCLUSIONS This approach identifies a wide variety of candidate structured RNAs, including tmRNAs, antitoxins, and likely ribosome protein leaders, from a wide variety of taxa. Overall, our pipeline enables conservative predictions of thousands of novel candidate structured RNAs from human microbiomes.
Collapse
Affiliation(s)
- Brayon J Fremin
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
- Department of Medicine (Hematology), Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|