1
|
Cueny R, Voter A, McKenzie A, Morgenstern M, Myers K, Place M, Peters J, Coon J, Keck J. Altering translation allows E. coli to overcome G-quadruplex stabilizers. Nucleic Acids Res 2025; 53:gkaf264. [PMID: 40193707 PMCID: PMC11975287 DOI: 10.1093/nar/gkaf264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
G-quadruplex (G4) structures can form in guanine-rich DNA or RNA and have been found to modulate cellular processes, including replication, transcription, and translation. Many studies on the cellular roles of G4s have focused on eukaryotic systems, with far fewer probing bacterial G4s. Using a chemical-genetic approach, we identified genes in Escherichia coli that are important for growth in G4-stabilizing conditions. Reducing levels of translation elongation factor Tu or slowing translation initiation or elongation with kasugamycin, chloramphenicol, or spectinomycin suppress the effects of G4-stabilizing compounds. In contrast, reducing the expression of specific translation termination or ribosome recycling proteins is detrimental to growth in G4-stabilizing conditions. Proteomic and transcriptomic analyses reveal decreased protein and transcript levels, respectively, for ribosome assembly factors and proteins associated with translation in the presence of G4 stabilizer. Our results support a model in which reducing the rate of translation by altering translation initiation, translation elongation, or ribosome assembly can compensate for G4-related stress in E. coli.
Collapse
Affiliation(s)
- Rachel R Cueny
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Andrew F Voter
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Aidan M McKenzie
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Marcel Morgenstern
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726 United States
| | - Michael M Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726 United States
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53706 United States
| | - Joshua J Coon
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, 53706 United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706 United States
- Morgridge Institute for Research, Madison, WI, 53715 United States
| | - James L Keck
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706 United States
| |
Collapse
|
2
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for genetic engineering and gene expression control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. Appl Environ Microbiol 2024; 90:e0034824. [PMID: 39324814 PMCID: PMC11497788 DOI: 10.1128/aem.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts that have the potential to contribute to the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis show promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify isopropyl β-D-1-thiogalactopyranoside-inducible promoters with regulated activity in both organisms (up to ~15-fold induction in N. aromaticivorans and ~5-fold induction in R. sphaeroides). Combining Tn7 integration with promoters from our library, we establish CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference systems for N. aromaticivorans and R. sphaeroides (up to ~10-fold knockdown in N. aromaticivorans and R. sphaeroides) that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these species and other Alphaproteobacteria.IMPORTANCEIt is important to increase our understanding of the microbial world to improve health, agriculture, the environment, and biotechnology. For example, building a sustainable bioeconomy depends on the efficient conversion of plant material to valuable biofuels and bioproducts by microbes. One limitation in this conversion process is that microbes with otherwise promising properties for conversion are challenging to genetically engineer. Here we report genetic tools for Novosphingobium aromaticivorans and Rhodobacter sphaeroides that add to the burgeoning set of tools available for genome engineering and gene expression in Alphaproteobacteria. Our approaches allow straightforward insertion of engineered pathways into the N. aromaticivorans or R. sphaeroides genome and control of gene expression by inducing genes with synthetic promoters or repressing genes using CRISPR interference. These tools can be used in future work to gain additional insight into these and other Alphaproteobacteria and to aid in optimizing yield of biofuels and bioproducts.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Fernández-García G, Valdés-Chiara P, Villazán-Gamonal P, Alonso-Fernández S, Manteca A. Essential Genes Discovery in Microorganisms by Transposon-Directed Sequencing (Tn-Seq): Experimental Approaches, Major Goals, and Future Perspectives. Int J Mol Sci 2024; 25:11298. [PMID: 39457080 PMCID: PMC11508858 DOI: 10.3390/ijms252011298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Essential genes are crucial for microbial viability, playing key roles in both the primary and secondary metabolism. Since mutations in these genes can threaten organism viability, identifying them is challenging. Conditionally essential genes are required only under specific conditions and are important for functions such as virulence, immunity, stress survival, and antibiotic resistance. Transposon-directed sequencing (Tn-Seq) has emerged as a powerful method for identifying both essential and conditionally essential genes. In this review, we explored Tn-Seq workflows, focusing on eubacterial species and some yeast species. A comparison of 14 eubacteria species revealed 133 conserved essential genes, including those involved in cell division (e.g., ftsA, ftsZ), DNA replication (e.g., dnaA, dnaE), ribosomal function, cell wall synthesis (e.g., murB, murC), and amino acid synthesis (e.g., alaS, argS). Many other essential genes lack clear orthologues across different microorganisms, making them specific to each organism studied. Conditionally essential genes were identified in 18 bacterial species grown under various conditions, but their conservation was low, reflecting dependence on specific environments and microorganisms. Advances in Tn-Seq are expected to reveal more essential genes in the near future, deepening our understanding of microbial biology and enhancing our ability to manipulate microbial growth, as well as both the primary and secondary metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Angel Manteca
- Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Cueny RR, Voter AF, McKenzie AM, Morgenstern M, Myers KS, Place MM, Peters JM, Coon JJ, Keck JL. Altering translation allows E. coli to overcome chemically stabilized G-quadruplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607615. [PMID: 39185182 PMCID: PMC11343134 DOI: 10.1101/2024.08.12.607615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
G-quadruplex (G4) structures can form in guanine-rich DNA or RNA and have been found to modulate cellular processes including replication, transcription, and translation. Many studies on the cellular roles of G4s have focused on eukaryotic systems, with far fewer probing bacterial G4s. Using a chemical-genetic approach, we identified genes in Escherichia coli that are important for growth in G4-stabilizing conditions. Reducing levels of elongation factor Tu or slowing translation elongation with chloramphenicol suppress the effects of G4 stabilization. In contrast, reducing expression of certain translation termination or ribosome recycling proteins is detrimental to growth in G4-stabilizing conditions. Proteomic and transcriptomic analyses demonstrate that ribosome assembly factors and other proteins involved in translation are less abundant in G4-stabilizing conditions. Our integrated systems approach allowed us to propose a model for how RNA G4s can present barriers to E. coli growth and that reducing the rate of translation can compensate for G4-related stress.
Collapse
Affiliation(s)
- Rachel R Cueny
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew F Voter
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aidan M McKenzie
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcel Morgenstern
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison Wisconsin, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J Coon
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - James L Keck
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Atay G, Holyavkin C, Can H, Arslan M, Topaloğlu A, Trotta M, Çakar ZP. Evolutionary engineering and molecular characterization of cobalt-resistant Rhodobacter sphaeroides. Front Microbiol 2024; 15:1412294. [PMID: 38993486 PMCID: PMC11236759 DOI: 10.3389/fmicb.2024.1412294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
With its versatile metabolism including aerobic and anaerobic respiration, photosynthesis, photo-fermentation and nitrogen fixation, Rhodobacter sphaeroides can adapt to diverse environmental and nutritional conditions, including the presence of various stressors such as heavy metals. Thus, it is an important microorganism to study the molecular mechanisms of bacterial stress response and resistance, and to be used as a microbial cell factory for biotechnological applications or bioremediation. In this study, a highly cobalt-resistant and genetically stable R. sphaeroides strain was obtained by evolutionary engineering, also known as adaptive laboratory evolution (ALE), a powerful strategy to improve and characterize genetically complex, desired microbial phenotypes, such as stress resistance. For this purpose, successive batch selection was performed in the presence of gradually increased cobalt stress levels between 0.1-15 mM CoCl2 for 64 passages and without any mutagenesis of the initial population prior to selection. The mutant individuals were randomly chosen from the last population and analyzed in detail. Among these, a highly cobalt-resistant and genetically stable evolved strain called G7 showed significant cross-resistance against various stressors such as iron, magnesium, nickel, aluminum, and NaCl. Growth profiles and flame atomic absorption spectrometry analysis results revealed that in the presence of 4 mM CoCl2 that significantly inhibited growth of the reference strain, the growth of the evolved strain was unaffected, and higher levels of cobalt ions were associated with G7 cells than the reference strain. This may imply that cobalt ions accumulated in or on G7 cells, indicating the potential of G7 for cobalt bioremediation. Whole genome sequencing of the evolved strain identified 23 single nucleotide polymorphisms in various genes that are associated with transcriptional regulators, NifB family-FeMo cofactor biosynthesis, putative virulence factors, TRAP-T family transporter, sodium/proton antiporter, and also in genes with unknown functions, which may have a potential role in the cobalt resistance of R. sphaeroides.
Collapse
Affiliation(s)
- Güneş Atay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Can Holyavkin
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Hanay Can
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Mevlüt Arslan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Massimo Trotta
- IPCF-CNR Istituto per I processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| |
Collapse
|
6
|
Bonde NJ, Wood EA, Myers KS, Place M, Keck JL, Cox MM. Identification of recG genetic interactions in Escherichia coli by transposon sequencing. J Bacteriol 2023; 205:e0018423. [PMID: 38019006 PMCID: PMC10870727 DOI: 10.1128/jb.00184-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE DNA damage and subsequent DNA repair processes are mutagenic in nature and an important driver of evolution in prokaryotes, including antibiotic resistance development. Genetic screening approaches, such as transposon sequencing (Tn-seq), have provided important new insights into gene function and genetic relationships. Here, we employed Tn-seq to gain insight into the function of the recG gene, which renders Escherichia coli cells moderately sensitive to a variety of DNA-damaging agents when they are absent. The reported recG genetic interactions can be used in combination with future screens to aid in a more complete reconstruction of DNA repair pathways in bacteria.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Enright AL, Banta AB, Ward RD, Rivera Vazquez J, Felczak MM, Wolfe MB, TerAvest MA, Amador-Noguez D, Peters JM. The genetics of aerotolerant growth in an alphaproteobacterium with a naturally reduced genome. mBio 2023; 14:e0148723. [PMID: 37905909 PMCID: PMC10746277 DOI: 10.1128/mbio.01487-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The inherent complexity of biological systems is a major barrier to our understanding of cellular physiology. Bacteria with markedly fewer genes than their close relatives, or reduced genome bacteria, are promising biological models with less complexity. Reduced genome bacteria can also have superior properties for industrial use, provided the reduction does not overly restrict strain robustness. Naturally reduced genome bacteria, such as the alphaproteobacterium Zymomonas mobilis, have fewer genes but remain environmentally robust. In this study, we show that Z. mobilis is a simplified genetic model for Alphaproteobacteria, a class with important impacts on the environment, human health, and industry. We also identify genes that are only required in the absence of atmospheric oxygen, uncovering players that maintain and utilize the cellular energy state. Our findings have broad implications for the genetics of Alphaproteobacteria and industrial use of Z. mobilis to create biofuels and bioproducts.
Collapse
Affiliation(s)
- Amy L. Enright
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julio Rivera Vazquez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Magdalena M. Felczak
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Michael B. Wolfe
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michaela A. TerAvest
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Sharma G, Zee PC, Zea L, Curtis PD. Whole genome-scale assessment of gene fitness of Novosphingobium aromaticavorans during spaceflight. BMC Genomics 2023; 24:782. [PMID: 38102595 PMCID: PMC10725011 DOI: 10.1186/s12864-023-09799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
In microgravity, bacteria undergo intriguing physiological adaptations. There have been few attempts to assess global bacterial physiological responses to microgravity, with most studies only focusing on a handful of individual systems. This study assessed the fitness of each gene in the genome of the aromatic compound-degrading Alphaproteobacterium Novosphingobium aromaticavorans during growth in spaceflight. This was accomplished using Comparative TnSeq, which involves culturing the same saturating transposon mutagenized library under two different conditions. To assess gene fitness, a novel comparative TnSeq analytical tool was developed, named TnDivA, that is particularly useful in leveraging biological replicates. In this approach, transposon diversity is represented numerically using a modified Shannon diversity index, which was then converted into effective transposon density. This transformation accounts for variability in read distribution between samples, such as cases where reads were dominated by only a few transposon inserts. Effective density values were analyzed using multiple statistical methods, including log2-fold change, least-squares regression analysis, and Welch's t-test. The results obtained across applied statistical methods show a difference in the number of significant genes identified. However, the functional categories of genes important to growth in microgravity showed similar patterns. Lipid metabolism and transport, energy production, transcription, translation, and secondary metabolite biosynthesis and transport were shown to have high fitness during spaceflight. This suggests that core metabolic processes, including lipid and secondary metabolism, play an important role adapting to stress and promoting growth in microgravity.
Collapse
Affiliation(s)
- Gayatri Sharma
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Peter C Zee
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA
| | - Luis Zea
- Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, 402 Shoemaker Hall, University, MS, 38677, USA.
| |
Collapse
|
9
|
Lakey BD, Alberge F, Parrell D, Wright ER, Noguera DR, Donohue TJ. The role of CenKR in the coordination of Rhodobacter sphaeroides cell elongation and division. mBio 2023; 14:e0063123. [PMID: 37283520 PMCID: PMC10470753 DOI: 10.1128/mbio.00631-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/08/2023] Open
Abstract
Cell elongation and division are essential aspects of the bacterial life cycle that must be coordinated for viability and replication. The impact of misregulation of these processes is not well understood as these systems are often not amenable to traditional genetic manipulation. Recently, we reported on the CenKR two-component system (TCS) in the Gram-negative bacterium Rhodobacter sphaeroides that is genetically tractable, widely conserved in α-proteobacteria, and directly regulates the expression of components crucial for cell elongation and division, including genes encoding subunit of the Tol-Pal complex. In this work, we show that overexpression of cenK results in cell filamentation and chaining. Using cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), we generated high-resolution two-dimensional (2D) images and three-dimensional (3D) volumes of the cell envelope and division septum of wild-type cells and a cenK overexpression strain finding that these morphological changes stem from defects in outer membrane (OM) and peptidoglycan (PG) constriction. By monitoring the localization of Pal, PG biosynthesis, and the bacterial cytoskeletal proteins MreB and FtsZ, we developed a model for how increased CenKR activity leads to changes in cell elongation and division. This model predicts that increased CenKR activity decreases the mobility of Pal, delaying OM constriction, and ultimately disrupting the midcell positioning of MreB and FtsZ and interfering with the spatial regulation of PG synthesis and remodeling. IMPORTANCE By coordinating cell elongation and division, bacteria maintain their shape, support critical envelope functions, and orchestrate division. Regulatory and assembly systems have been implicated in these processes in some well-studied Gram-negative bacteria. However, we lack information on these processes and their conservation across the bacterial phylogeny. In R. sphaeroides and other α-proteobacteria, CenKR is an essential two-component system (TCS) that regulates the expression of genes known or predicted to function in cell envelope biosynthesis, elongation, and/or division. Here, we leverage unique features of CenKR to understand how increasing its activity impacts cell elongation/division and use antibiotics to identify how modulating the activity of this TCS leads to changes in cell morphology. Our results provide new insight into how CenKR activity controls the structure and function of the bacterial envelope, the localization of cell elongation and division machinery, and cellular processes in organisms with importance in health, host-microbe interactions, and biotechnology.
Collapse
Affiliation(s)
- Bryan D. Lakey
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - François Alberge
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel Parrell
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth R. Wright
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cryo-Electron Microscopy Research Center,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for Genetic Engineering and Gene Expression Control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554875. [PMID: 37662258 PMCID: PMC10473679 DOI: 10.1101/2023.08.25.554875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts have the potential to form the backbone of the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis, show particular promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify inducible promoters with strong, regulated activity in both organisms. Combining Tn7 integration with promoters from our library, we establish CRISPR interference systems for N. aromaticivorans and R. sphaeroides that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these industrially important species and other Alphaproteobacteria.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Trujillo Rodríguez L, Ellington AJ, Reisch CR, Chevrette MG. CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria. ACS Synth Biol 2023. [PMID: 37368499 PMCID: PMC10367135 DOI: 10.1021/acssynbio.3c00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Genome editing tools, through the disruption of an organism's native genetic material or the introduction of non-native DNA, facilitate functional investigations to link genotypes to phenotypes. Transposons have been instrumental genetic tools in microbiology, enabling genome-wide, randomized disruption of genes and insertions of new genetic elements. Due to this randomness, identifying and isolating particular transposon mutants (i.e., those with modifications at a genetic locus of interest) can be laborious, often requiring one to sift through hundreds or thousands of mutants. Programmable, site-specific targeting of transposons became possible with recently described CRISPR-associated transposase (CASTs) systems, allowing the streamlined recovery of desired mutants in a single step. Like other CRISPR-derived systems, CASTs can be programmed by guide-RNA that is transcribed from short DNA sequence(s). Here, we describe a CAST system and demonstrate its function in bacteria from three classes of Proteobacteria. A dual plasmid strategy is demonstrated: (i) CAST genes are expressed from a broad-host-range replicative plasmid and (ii) guide-RNA and transposon are encoded on a high-copy, suicidal pUC plasmid. Using our CAST system, single-gene disruptions were performed with on-target efficiencies approaching 100% in Beta- and Gammaproteobacteria (Burkholderia thailandensis and Pseudomonas putida, respectively). We also report a peak efficiency of 45% in the Alphaproteobacterium Agrobacterium fabrum. In B. thailandensis, we performed simultaneous co-integration of transposons at two different target sites, demonstrating CAST's utility in multilocus strategies. The CAST system is also capable of high-efficiency large transposon insertion totaling over 11 kbp in all three bacteria tested. Lastly, the dual plasmid system allowed for iterative transposon mutagenesis in all three bacteria without loss of efficiency. Given these iterative capabilities and large payload capacity, this system will be helpful for genome engineering experiments across several fields of research.
Collapse
Affiliation(s)
- Lidimarie Trujillo Rodríguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Adam J Ellington
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher R Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| |
Collapse
|
12
|
Zhang H, Xu Y, Huang Y, Xiong X, Wu X, Yuan G, Zheng D. Tn-seq identifies Ralstonia solanacearum genes required for tolerance of plant immunity induced by exogenous salicylic acid. MOLECULAR PLANT PATHOLOGY 2023; 24:536-548. [PMID: 36912695 DOI: 10.1111/mpp.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Ralstonia solanacearum, the causal agent of the devastating bacterial wilt disease, is of particular interest to the scientific community. The repertoire of type III effectors plays an important role in the evasion of plant immunity, but tolerance to plant immunity is also crucial for the survival and virulence of R. solanacearum. Nevertheless, a systematic study of R. solanacearum tolerance to plant immunity is lacking. In this study, we used exogenous salicylic acid (SA) to improve the immunity of tomato plants, followed by transposon insertion sequencing (Tn-seq) analysis and the identification of R. solanacearum genes associated with tolerance to plant immunity. Target gene deletion revealed that the lipopolysaccharide (LPS) production genes RS_RS02830, RS_RS03460, and RS_RS03465 are essential for R. solanacearum tolerance to plant immunity, and their expression is induced by plant immunity, thereby expanding our knowledge of the pathogenic function of R. solanacearum LPS. SA treatment increased the relative abundance of transposon insertion mutants of four genes, including two genes with unknown function, RS_RS11975 and RS_RS07760. Further verification revealed that deletion of RS_RS11975 or RS_RS07760 resulted in reduced in vivo competitive indexes but increased tolerance to plant immunity induced by SA treatment, suggesting that these two genes contribute to the trade-off between tolerance to plant immunity and fitness cost. In conclusion, this work identified and validated R. solanacearum genes required for tolerance to plant immunity and provided essential information for a more complete view of the interaction between R. solanacearum and the host plant.
Collapse
Affiliation(s)
- Huimeng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Yanan Xu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yingying Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoqi Xiong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaogang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Gaoqing Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Dehong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater Today Bio 2023; 19:100560. [PMID: 36756210 PMCID: PMC9900623 DOI: 10.1016/j.mtbio.2023.100560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
| | - Jenny M. Tam
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ahmad S. Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
14
|
Harten T, Nimzyk R, Gawlick VEA, Reinhold-Hurek B. Elucidation of Essential Genes and Mutant Fitness during Adaptation toward Nitrogen Fixation Conditions in the Endophyte Azoarcus olearius BH72 Revealed by Tn-Seq. Microbiol Spectr 2022; 10:e0216222. [PMID: 36416558 PMCID: PMC9769520 DOI: 10.1128/spectrum.02162-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022] Open
Abstract
Azoarcus olearius BH72 is a diazotrophic model endophyte that contributes fixed nitrogen to its host plant, Kallar grass, and expresses nitrogenase genes endophytically. Despite extensive studies on biological nitrogen fixation (BNF) of diazotrophic endophytes, little is known about global genetic players involved in survival under respective physiological conditions. Here, we report a global genomic screen for putatively essential genes of A. olearius employing Tn5 transposon mutagenesis with a modified transposon combined with high-throughput sequencing (Tn-Seq). A large Tn5 master library of ~6 × 105 insertion mutants of strain BH72 was obtained. Next-generation sequencing identified 183,437 unique insertion sites into the 4,376,040-bp genome, displaying one insertion every 24 bp on average. Applying stringent criteria, we describe 616 genes as putatively essential for growth on rich medium. COG (Clusters of Orthologous Groups) assignment of the 564 identified protein-coding genes revealed enrichment of genes related to core cellular functions and cell viability. To mimic gradual adaptations toward BNF conditions, the Tn5 mutant library was grown aerobically in synthetic medium or microaerobically on either combined or atmospheric nitrogen. Enrichment and depletion analysis of Tn5 mutants not only demonstrated the role of BNF- and metabolism-related proteins but also revealed that, strikingly, many genes relevant for plant-microbe interactions decrease bacterial competitiveness in pure culture, such type IV pilus- and bacterial envelope-associated genes. IMPORTANCE A constantly growing world population and the daunting challenge of climate change demand new strategies in agricultural crop production. Intensive usage of chemical fertilizers, overloading the world's fields with organic input, threaten terrestrial and marine ecosystems as well as human health. Long overlooked, the beneficial interaction of endophytic bacteria and grasses has attracted ever-growing interest in research in the last decade. Capable of biological nitrogen fixation, diazotrophic endophytes not only provide a valuable source of combined nitrogen but also are known for diverse plant growth-promoting effects, thereby contributing to plant productivity. Elucidation of an essential gene set for a prominent model endophyte such as A. olearius BH72 provides us with powerful insights into its basic lifestyle. Knowledge about genes detrimental or advantageous under defined physiological conditions may point out a way of manipulating key steps in the bacterium's lifestyle and plant interaction toward a more sustainable agriculture.
Collapse
Affiliation(s)
- Theresa Harten
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Rolf Nimzyk
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Nucleic Acid Analysis Facility (NAA), Bremen, Germany
| | - Vivian E. A. Gawlick
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| | - Barbara Reinhold-Hurek
- University of Bremen, Faculty of Biology and Chemistry, CBIB Center for Biomolecular Interactions, Department of Microbe-Plant Interactions, Bremen, Germany
| |
Collapse
|
15
|
McKenzie AM, Henry C, Myers KS, Place MM, Keck JL. Identification of genetic interactions with priB links the PriA/PriB DNA replication restart pathway to double-strand DNA break repair in Escherichia coli. G3 (BETHESDA, MD.) 2022; 12:jkac295. [PMID: 36326440 PMCID: PMC9713433 DOI: 10.1093/g3journal/jkac295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2023]
Abstract
Collisions between DNA replication complexes (replisomes) and impediments such as damaged DNA or proteins tightly bound to the chromosome lead to premature dissociation of replisomes at least once per cell cycle in Escherichia coli. Left unrepaired, these events produce incompletely replicated chromosomes that cannot be properly partitioned into daughter cells. DNA replication restart, the process that reloads replisomes at prematurely terminated sites, is therefore essential in E. coli and other bacteria. Three replication restart pathways have been identified in E. coli: PriA/PriB, PriA/PriC, and PriC/Rep. A limited number of genetic interactions between replication restart and other genome maintenance pathways have been defined, but a systematic study placing replication restart reactions in a broader cellular context has not been performed. We have utilized transposon-insertion sequencing to identify new genetic interactions between DNA replication restart pathways and other cellular systems. Known genetic interactors with the priB replication restart gene (uniquely involved in the PriA/PriB pathway) were confirmed and several novel priB interactions were discovered. Targeted genetic and imaging-based experiments with priB and its genetic partners revealed significant double-strand DNA break accumulation in strains with mutations in dam, rep, rdgC, lexA, or polA. Modulating the activity of the RecA recombinase partially suppressed the detrimental effects of rdgC or lexA mutations in ΔpriB cells. Taken together, our results highlight roles for several genes in double-strand DNA break homeostasis and define a genetic network that facilitates DNA repair/processing upstream of PriA/PriB-mediated DNA replication restart in E. coli.
Collapse
Affiliation(s)
- Aidan M McKenzie
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Michael M Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
16
|
Lakey BD, Myers KS, Alberge F, Mettert EL, Kiley PJ, Noguera DR, Donohue TJ. The essential Rhodobacter sphaeroides CenKR two-component system regulates cell division and envelope biosynthesis. PLoS Genet 2022; 18:e1010270. [PMID: 35767559 PMCID: PMC9275681 DOI: 10.1371/journal.pgen.1010270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/12/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Bacterial two-component systems (TCSs) often function through the detection of an extracytoplasmic stimulus and the transduction of a signal by a transmembrane sensory histidine kinase. This kinase then initiates a series of reversible phosphorylation modifications to regulate the activity of a cognate, cytoplasmic response regulator as a transcription factor. Several TCSs have been implicated in the regulation of cell cycle dynamics, cell envelope integrity, or cell wall development in Escherichia coli and other well-studied Gram-negative model organisms. However, many α-proteobacteria lack homologs to these regulators, so an understanding of how α-proteobacteria orchestrate extracytoplasmic events is lacking. In this work we identify an essential TCS, CenKR (Cell envelope Kinase and Regulator), in the α-proteobacterium Rhodobacter sphaeroides and show that modulation of its activity results in major morphological changes. Using genetic and biochemical approaches, we dissect the requirements for the phosphotransfer event between CenK and CenR, use this information to manipulate the activity of this TCS in vivo, and identify genes that are directly and indirectly controlled by CenKR in Rb. sphaeroides. Combining ChIP-seq and RNA-seq, we show that the CenKR TCS plays a direct role in maintenance of the cell envelope, regulates the expression of subunits of the Tol-Pal outer membrane division complex, and indirectly modulates the expression of peptidoglycan biosynthetic genes. CenKR represents the first TCS reported to directly control the expression of Tol-Pal machinery genes in Gram-negative bacteria, and we predict that homologs of this TCS serve a similar function in other closely related organisms. We propose that Rb. sphaeroides genes of unknown function that are directly regulated by CenKR play unknown roles in cell envelope biosynthesis, assembly, and/or remodeling in this and other α-proteobacteria.
Collapse
Affiliation(s)
- Bryan D. Lakey
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin S. Myers
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - François Alberge
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erin L. Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel R. Noguera
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Donohue
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
18
|
Su Y, Xu Y, Liang H, Yuan G, Wu X, Zheng D. Genome-Wide Identification of Ralstonia solanacearum Genes Required for Survival in Tomato Plants. mSystems 2021; 6:e0083821. [PMID: 34636662 PMCID: PMC8510521 DOI: 10.1128/msystems.00838-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
Ralstonia solanacearum is an extremely destructive phytopathogenic bacterium for which there is no effective control method. Though many pathogenic factors have been identified, the survival strategies of R. solanacearum in host plants remain unclear. Transposon insertion sequencing (Tn-seq) is a high-throughput genetic screening technology. This study conducted a Tn-seq analysis using the in planta environment as selective pressure to identify R. solanacearum genes required for survival in tomato plants. One hundred thirty genes were identified as putative genes required for survival in tomato plants. Sixty-three of these genes were classified into four Clusters of Orthologous Groups categories. The absence of genes that encode the outer membrane lipoprotein LolB (RS_RS01965) or the membrane protein RS_RS04475 severely decreased the in planta fitness of R. solanacearum. RS_RS09970 and RS_RS04490 are involved in tryptophan and serine biosynthesis, respectively. Mutants that lack RS_RS09970 or RS_RS04490 did not cause any wilt symptoms in susceptible tomato plants. These results confirmed the importance of genes related to "cell wall/membrane/envelope biogenesis" and "amino acid transport and metabolism" for survival in plants. The gene encoding NADH-quinone oxidoreductase subunit B (RS_RS10340) is one of the 13 identified genes involved in "energy production and conversion," and the Clp protease gene (RS_RS08645) is one of the 11 identified genes assigned to "posttranslational modification, protein turnover, and chaperones." Both genes were confirmed to be required for survival in plants. In conclusion, this study globally identified and validated R. solanacearum genes required for survival in tomato plants and provided essential information for a more complete view of the pathogenic mechanism of R. solanacearum. IMPORTANCE Tomato plant xylem is a nutritionally limiting and dynamically changing habitat. Studies on how R. solanacearum survives in this hostile environment are important for our full understanding of the pathogenic mechanism of this bacterium. Though many omics approaches have been employed to study in planta survival strategies, the direct genome-wide identification of R. solanacearum genes required for survival in plants is still lacking. This study performed a Tn-seq analysis in R. solanacearum and revealed that genes in the categories "cell wall/membrane/envelope biogenesis," "amino acid transport and metabolism," "energy production and conversion," "posttranslational modification, protein turnover, chaperones" and others play important roles in the survival of R. solanacearum in tomato plants.
Collapse
Affiliation(s)
- Yaxing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Yanan Xu
- Pharmaceutical College, Guangxi Medical University, Nanning, People’s Republic of China
| | - Hailing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Gaoqing Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Xiaogang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Dehong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| |
Collapse
|
19
|
Myers KS, Noguera DR, Donohue TJ. Promoter Architecture Differences among Alphaproteobacteria and Other Bacterial Taxa. mSystems 2021; 6:e0052621. [PMID: 34254822 PMCID: PMC8407463 DOI: 10.1128/msystems.00526-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Much of our knowledge of bacterial transcription initiation has been derived from studying the promoters of Escherichia coli and Bacillus subtilis. Given the expansive diversity across the bacterial phylogeny, it is unclear how much of this knowledge can be applied to other organisms. Here, we report on bioinformatic analyses of promoter sequences of the primary σ factor (σ70) by leveraging publicly available transcription start site (TSS) sequencing data sets for nine bacterial species spanning five phyla. This analysis identifies previously unreported differences in the -35 and -10 elements of σ70-dependent promoters in several groups of bacteria. We found that Actinobacteria and Betaproteobacteria σ70-dependent promoters lack the TTG triad in their -35 element, which is predicted to be conserved across the bacterial phyla. In addition, the majority of the Alphaproteobacteria σ70-dependent promoters analyzed lacked the thymine at position -7 that is highly conserved in other phyla. Bioinformatic examination of the Alphaproteobacteria σ70-dependent promoters identifies a significant overrepresentation of essential genes and ones encoding proteins with common cellular functions downstream of promoters containing an A, C, or G at position -7. We propose that transcription of many σ70-dependent promoters in Alphaproteobacteria depends on the transcription factor CarD, which is an essential protein in several members of this phylum. Our analysis expands the knowledge of promoter architecture across the bacterial phylogeny and provides new information that can be used to engineer bacteria for use in medical, environmental, agricultural, and biotechnological processes. IMPORTANCE Transcription of DNA to RNA by RNA polymerase is essential for cells to grow, develop, and respond to stress. Understanding the process and control of transcription is important for health, disease, the environment, and biotechnology. Decades of research on a few bacteria have identified promoter DNA sequences that are recognized by the σ subunit of RNA polymerase. We used bioinformatic analyses to reveal previously unreported differences in promoter DNA sequences across the bacterial phylogeny. We found that many Actinobacteria and Betaproteobacteria promoters lack a sequence in their -35 DNA recognition element that was previously assumed to be conserved and that Alphaproteobacteria lack a thymine residue at position -7, also previously assumed to be conserved. Our work reports important new information about bacterial transcription, illustrates the benefits of studying bacteria across the phylogenetic tree, and proposes new lines of future investigation.
Collapse
Affiliation(s)
- Kevin S. Myers
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Civil & Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Abstract
Bioinformatic analysis showed previously that a majority of promoters in the photoheterotrophic alphaproteobacterium Rhodobacter sphaeroides lack the thymine at the last position of the -10 element (-7T), a base that is very highly conserved in promoters in bacteria other than alphaproteobacteria. The absence of -7T was correlated with low promoter activity using purified R. sphaeroides RNA polymerase (RNAP), but the transcription factor CarD compensated by activating almost all promoters lacking -7T tested in vitro, including rRNA promoters. Here, we show that a previously uncharacterized R. sphaeroides promoter, the promoter for carD itself, has high basal activity relative to other tested R. sphaeroides promoters despite lacking -7T, and its activity is inhibited rather than activated by CarD. This high basal activity is dependent on a consensus-extended -10 element (TGn) and specific features in the spacer immediately upstream of the extended -10 element. CarD negatively autoregulates its own promoter by producing abortive transcripts, limiting promoter escape, and reducing full-length mRNA synthesis. This mechanism of negative regulation differs from that employed by classical repressors, in which the transcription factor competes with RNA polymerase for binding to the promoter, and with the mechanism of negative regulation used by transcription factors like DksA/ppGpp and TraR that allosterically inhibit the rate of open complex formation. IMPORTANCE R. sphaeroides CarD activates many promoters by binding directly to RNAP and DNA just upstream of the -10 element. In contrast, we show here that CarD inhibits its own promoter using the same interactions with RNAP and DNA used for activation. Inhibition results from increasing abortive transcript formation, thereby decreasing promoter escape and full-length RNA synthesis. We propose that the combined interactions of RNAP with CarD, with the extended -10 element and with features in the adjacent -10/-35 spacer DNA, stabilize the promoter complex, reducing promoter clearance. These findings support previous predictions that the effects of CarD on transcription can be either positive or negative, depending on the kinetic properties of the specific promoter.
Collapse
|
21
|
Improving mobilization of foreign DNA into Zymomonas mobilis ZM4 by removal of multiple restriction systems. Appl Environ Microbiol 2021; 87:e0080821. [PMID: 34288704 PMCID: PMC8432527 DOI: 10.1128/aem.00808-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis has emerged as a promising candidate for production of high-value bioproducts from plant biomass. However, a major limitation in equipping Z. mobilis with novel pathways to achieve this goal is restriction of heterologous DNA. Here, we characterized the contribution of several defense systems of Z. mobilis strain ZM4 to impeding heterologous gene transfer from an Escherichia coli donor. Bioinformatic analysis revealed that Z. mobilis ZM4 encodes a previously described mrr-like type IV restriction modification (RM) system, a type I-F CRISPR system, a chromosomal type I RM system (hsdMSc), and a previously uncharacterized type I RM system, located on an endogenous plasmid (hsdRMSp). The DNA recognition motif of HsdRMSp was identified by comparing the methylated DNA sequence pattern of mutants lacking one or both of the hsdMSc and hsdRMSp systems to that of the parent strain. The conjugation efficiency of synthetic plasmids containing single or combinations of the HsdMSc and HsdRMSp recognition sites indicated that both systems are active and decrease uptake of foreign DNA. In contrast, deletions of mrr and cas3 led to no detectable improvement in conjugation efficiency for the exogenous DNA tested. Thus, the suite of markerless restriction-negative strains that we constructed and the knowledge of this new restriction system and its DNA recognition motif provide the necessary platform to flexibly engineer the next generation of Z. mobilis strains for synthesis of valuable products. IMPORTANCEZymomonas mobilis is equipped with a number of traits that make it a desirable platform organism for metabolic engineering to produce valuable bioproducts. Engineering strains equipped with synthetic pathways for biosynthesis of new molecules requires integration of foreign genes. In this study, we developed an all-purpose strain, devoid of known host restriction systems and free of any antibiotic resistance markers, which dramatically improves the uptake efficiency of heterologous DNA into Z. mobilis ZM4. We also confirmed the role of a previously known restriction system as well as identifying a previously unknown type I RM system on an endogenous plasmid. Elimination of the barriers to DNA uptake as shown here will allow facile genetic engineering of Z. mobilis.
Collapse
|
22
|
Larivière D, Wickham L, Keiler K, Nekrutenko A. Reproducible and accessible analysis of transposon insertion sequencing in Galaxy for qualitative essentiality analyses. BMC Microbiol 2021; 21:168. [PMID: 34090324 PMCID: PMC8178898 DOI: 10.1186/s12866-021-02184-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/08/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Significant progress has been made in advancing and standardizing tools for human genomic and biomedical research. Yet, the field of next-generation sequencing (NGS) analysis for microorganisms (including multiple pathogens) remains fragmented, lacks accessible and reusable tools, is hindered by local computational resource limitations, and does not offer widely accepted standards. One such "problem areas" is the analysis of Transposon Insertion Sequencing (TIS) data. TIS allows probing of almost the entire genome of a microorganism by introducing random insertions of transposon-derived constructs. The impact of the insertions on the survival and growth under specific conditions provides precise information about genes affecting specific phenotypic characteristics. A wide array of tools has been developed to analyze TIS data. Among the variety of options available, it is often difficult to identify which one can provide a reliable and reproducible analysis. RESULTS Here we sought to understand the challenges and propose reliable practices for the analysis of TIS experiments. Using data from two recent TIS studies, we have developed a series of workflows that include multiple tools for data de-multiplexing, promoter sequence identification, transposon flank alignment, and read count repartition across the genome. Particular attention was paid to quality control procedures, such as determining the optimal tool parameters for the analysis and removal of contamination. CONCLUSIONS Our work provides an assessment of the currently available tools for TIS data analysis. It offers ready to use workflows that can be invoked by anyone in the world using our public Galaxy platform ( https://usegalaxy.org ). To lower the entry barriers, we have also developed interactive tutorials explaining details of TIS data analysis procedures at https://bit.ly/gxy-tis .
Collapse
Affiliation(s)
- Delphine Larivière
- Biochemistry and Molecular Biology Department, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Galaxy Project
| | - Laura Wickham
- Biochemistry and Molecular Biology Department, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kenneth Keiler
- Biochemistry and Molecular Biology Department, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anton Nekrutenko
- Biochemistry and Molecular Biology Department, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, USA.
- The Galaxy Project, .
| |
Collapse
|
23
|
Zheng D, Xu Y, Yuan G, Wu X, Li Q. Bacterial ClpP Protease Is a Potential Target for Methyl Gallate. Front Microbiol 2021; 11:598692. [PMID: 33613462 PMCID: PMC7890073 DOI: 10.3389/fmicb.2020.598692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
Methyl gallate (MG) is an effective microbicide with great potential application in the integrated management of plant diseases and an important potential drug for clinical application. However, its target remains unknown. This study conducted a transposon sequencing (Tn-seq) under MG treatment in plant pathogenic bacterium Ralstonia solanacearum. Tn-seq identified that the mutation of caseinolytic protease proteolytic subunit gene clpP significantly increased the resistance of R. solanacearum to MG, which was validated by the in-frame gene deletion. iTRAQ (isobaric tags for relative and absolute quantitation) proteomics analysis revealed that chemotaxis and flagella associated proteins were the major substrates degraded by ClpP under the tested condition. Moreover, sulfur metabolism-associated proteins were potential substrates of ClpP and were upregulated by MG treatment in wild-type R. solanacearum but not in clpP mutant. Furthermore, molecular docking confirmed the possible interaction between MG and ClpP. Collectively, this study revealed that MG might target bacterial ClpP, inhibit the activity of ClpP, and consequently disturb bacterial proteostasis, providing a theoretical basis for the application of MG.
Collapse
Affiliation(s)
- Dehong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yanan Xu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Gaoqing Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaogang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Qiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
24
|
A High-Throughput Method for Identifying Novel Genes That Influence Metabolic Pathways Reveals New Iron and Heme Regulation in Pseudomonas aeruginosa. mSystems 2021; 6:6/1/e00933-20. [PMID: 33531406 PMCID: PMC7857532 DOI: 10.1128/msystems.00933-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ability to simultaneously and more directly correlate genes with metabolite levels on a global level would provide novel information for many biological platforms yet has thus far been challenging. Here, we describe a method to help address this problem, which we dub “Met-Seq” (metabolite-coupled Tn sequencing). Heme is an essential metabolite for most life on earth. Bacterial pathogens almost universally require iron to infect a host, often acquiring this nutrient in the form of heme. The Gram-negative pathogen Pseudomonas aeruginosa is no exception, where heme acquisition and metabolism are known to be crucial for both chronic and acute infections. To unveil unknown genes and pathways that could play a role with heme metabolic flux in this pathogen, we devised an omic-based approach we dubbed “Met-Seq,” for metabolite-coupled transposon sequencing. Met-Seq couples a biosensor with fluorescence-activated cell sorting (FACS) and massively parallel sequencing, allowing for direct identification of genes associated with metabolic changes. In this work, we first construct and validate a heme biosensor for use with P. aeruginosa and exploit Met-Seq to identify 188 genes that potentially influence intracellular heme levels. Identified genes largely consisted of metabolic pathways not previously associated with heme, including many secreted virulence effectors, as well as 11 predicted small RNAs (sRNAs) and riboswitches whose functions are not currently understood. We verify that five Met-Seq hits affect intracellular heme levels; a predicted extracytoplasmic function (ECF) factor, a phospholipid acquisition system, heme biosynthesis regulator Dnr, and two predicted antibiotic monooxygenase (ABM) domains of unknown function (PA0709 and PA3390). Finally, we demonstrate that PA0709 and PA3390 are novel heme-binding proteins. Our data suggest that Met-Seq could be extrapolated to other biological systems and metabolites for which there is an available biosensor, and provides a new template for further exploration of iron/heme regulation and metabolism in P. aeruginosa and other pathogens. IMPORTANCE The ability to simultaneously and more directly correlate genes with metabolite levels on a global level would provide novel information for many biological platforms yet has thus far been challenging. Here, we describe a method to help address this problem, which we dub “Met-Seq” (metabolite-coupled Tn sequencing). Met-Seq uses the powerful combination of fluorescent biosensors, fluorescence-activated cell sorting (FACS), and next-generation sequencing (NGS) to rapidly identify genes that influence the levels of specific intracellular metabolites. For proof of concept, we create and test a heme biosensor and then exploit Met-Seq to identify novel genes involved in the regulation of heme in the pathogen Pseudomonas aeruginosa. Met-Seq-generated data were largely comprised of genes which have not previously been reported to influence heme levels in this pathogen, two of which we verify as novel heme-binding proteins. As heme is a required metabolite for host infection in P. aeruginosa and most other pathogens, our studies provide a new list of targets for potential antimicrobial therapies and shed additional light on the balance between infection, heme uptake, and heme biosynthesis.
Collapse
|
25
|
Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, Zhang R. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res 2021; 49:D677-D686. [PMID: 33095861 PMCID: PMC7779065 DOI: 10.1093/nar/gkaa917] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Essential genes refer to genes that are required by an organism to survive under specific conditions. Studies of the minimal-gene-set for bacteria have elucidated fundamental cellular processes that sustain life. The past five years have seen a significant progress in identifying human essential genes, primarily due to the successful use of CRISPR/Cas9 in various types of human cells. DEG 15, a new release of the Database of Essential Genes (www.essentialgene.org), has provided major advancements, compared to DEG 10. Specifically, the number of eukaryotic essential genes has increased by more than fourfold, and that of prokaryotic ones has more than doubled. Of note, the human essential-gene number has increased by more than tenfold. Moreover, we have developed built-in analysis modules by which users can perform various analyses, such as essential-gene distributions between bacterial leading and lagging strands, sub-cellular localization distribution, enrichment analysis of gene ontology and KEGG pathways, and generation of Venn diagrams to compare and contrast gene sets between experiments. Additionally, the database offers customizable BLAST tools for performing species- and experiment-specific BLAST searches. Therefore, DEG comprehensively harbors updated human-curated essential-gene records among prokaryotes and eukaryotes with built-in tools to enhance essential-gene analysis.
Collapse
Affiliation(s)
- Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Yan Lin
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Tao Liu
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Fei-Liao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Chun-Ting Zhang
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
26
|
Henry KK, Ross W, Myers KS, Lemmer KC, Vera JM, Landick R, Donohue TJ, Gourse RL. A majority of Rhodobacter sphaeroides promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation. Proc Natl Acad Sci U S A 2020; 117:29658-29668. [PMID: 33168725 PMCID: PMC7703639 DOI: 10.1073/pnas.2010087117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Using an in vitro transcription system with purified RNA polymerase (RNAP) to investigate rRNA synthesis in the photoheterotrophic α-proteobacterium Rhodobacter sphaeroides, we identified a surprising feature of promoters recognized by the major holoenzyme. Transcription from R. sphaeroides rRNA promoters was unexpectedly weak, correlating with absence of -7T, the very highly conserved thymine found at the last position in -10 elements of promoters in most bacterial species. Thymine substitutions for adenine at position -7 in the three rRNA promoters strongly increased intrinsic promoter activity, indicating that R. sphaeroides RNAP can utilize -7T when present. rRNA promoters were activated by purified R. sphaeroides CarD, a transcription factor found in many bacterial species but not in β- and γ-proteobacteria. Overall, CarD increased the activity of 15 of 16 native R. sphaeroides promoters tested in vitro that lacked -7T, whereas it had no effect on three of the four native promoters that contained -7T. Genome-wide bioinformatic analysis of promoters from R. sphaeroides and two other α-proteobacterial species indicated that 30 to 43% contained -7T, whereas 90 to 99% of promoters from non-α-proteobacteria contained -7T. Thus, promoters lacking -7T appear to be widespread in α-proteobacteria and may have evolved away from consensus to enable their coordinated regulation by transcription factors like CarD. We observed a strong reduction in R. sphaeroides CarD levels when cells enter stationary phase, suggesting that reduced activation by CarD may contribute to inhibition of rRNA transcription when cells enter stationary phase, the stage of growth when bacterial ribosome synthesis declines.
Collapse
Affiliation(s)
- Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Kimberly C Lemmer
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Jessica M Vera
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Robert Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| |
Collapse
|
27
|
Genome-Wide Identification of Transcription Start Sites in Two Alphaproteobacteria, Rhodobacter sphaeroides 2.4.1 and Novosphingobium aromaticivorans DSM 12444. Microbiol Resour Announc 2020; 9:9/36/e00880-20. [PMID: 32883797 PMCID: PMC7471390 DOI: 10.1128/mra.00880-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Here, we report the genome-wide identification of transcription start sites (TSSs) from two Alphaproteobacteria grown under conditions that result in significant changes in gene expression. TSSs that were identified as present in one condition or both will be an important resource for future studies of these, and possibly other, Alphaproteobacteria. Here, we report the genome-wide identification of transcription start sites (TSSs) from two Alphaproteobacteria grown under conditions that result in significant changes in gene expression. TSSs that were identified as present in one condition or both will be an important resource for future studies of these, and possibly other, Alphaproteobacteria.
Collapse
|
28
|
Su Y, Xu Y, Li Q, Yuan G, Zheng D. The essential genome of Ralstonia solanacearum. Microbiol Res 2020; 238:126500. [PMID: 32502949 DOI: 10.1016/j.micres.2020.126500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/13/2023]
Abstract
Ralstonia solanacearum is a scientifically/economically important plant pathogenic bacterium. The plant disease caused by R. solanacearum causes huge economic losses, and efficient control measures for the disease remain limited. To gain a better system-level understanding of R. solanacearum, we generated a near-saturated transposon insertion library of R. solanacearum GMI1000 with approximately 240,000 individual insertion mutants. Transposon sequencing (Tn-seq) allowed the mapping of 70.44%-80.96% of all potential insertion sites of the mariner C9 transposase in the genome of R. solanacearum and the identification of 465 genes essential for the growth of R. solanacearum in rich medium. Functional and comparative analyses of essential genes revealed that many basic physiological and biochemical processes such as transcription differ between R. solanacearum and other bacteria. A comparative analysis of essential genes also suggested that 34 genes might be essential only for Ralstonia group bacteria, whereas another 16 essential genes are unique to Ralstonia, providing high-priority candidate targets for developing R. solanacearum-specific drugs.
Collapse
Affiliation(s)
- Yaxing Su
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Yanan Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, PR China
| | - Qiqin Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Gaoqing Yuan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Dehong Zheng
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
29
|
Selection or drift: The population biology underlying transposon insertion sequencing experiments. Comput Struct Biotechnol J 2020; 18:791-804. [PMID: 32280434 PMCID: PMC7138912 DOI: 10.1016/j.csbj.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 01/23/2023] Open
Abstract
Transposon insertion sequencing methods such as Tn-seq revolutionized microbiology by allowing the identification of genomic loci that are critical for viability in a specific environment on a genome-wide scale. While powerful, transposon insertion sequencing suffers from limited reproducibility when different analysis methods are compared. From the perspective of population biology, this may be explained by changes in mutant frequency due to chance (drift) rather than differential fitness (selection). Here, we develop a mathematical model of the population biology of transposon insertion sequencing experiments, i.e. the changes in size and composition of the transposon-mutagenized population during the experiment. We use this model to investigate mutagenesis, the growth of the mutant library, and its passage through bottlenecks. Specifically, we study how these processes can lead to extinction of individual mutants depending on their fitness and the distribution of fitness effects (DFE) of the entire mutant population. We find that in typical in vitro experiments few mutants with high fitness go extinct. However, bottlenecks of a size that is common in animal infection models lead to so much random extinction that a large number of viable mutants would be misclassified. While mutants with low fitness are more likely to be lost during the experiment, mutants with intermediate fitness are expected to be much more abundant and can constitute a large proportion of detected hits, i.e. false positives. Thus, incorporating the DFEs of randomly generated mutations in the analysis may improve the reproducibility of transposon insertion experiments, especially when strong bottlenecks are encountered.
Collapse
|
30
|
Nogales J, Mueller J, Gudmundsson S, Canalejo FJ, Duque E, Monk J, Feist AM, Ramos JL, Niu W, Palsson BO. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ Microbiol 2019; 22:255-269. [PMID: 31657101 PMCID: PMC7078882 DOI: 10.1111/1462-2920.14843] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.
Collapse
Affiliation(s)
- Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Mueller
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Francisco J Canalejo
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Jonathan Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Metabolic modelling of mixed culture anaerobic microbial processes. Curr Opin Biotechnol 2019; 57:137-144. [DOI: 10.1016/j.copbio.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 01/22/2023]
|
32
|
Blazier AS, Papin JA. Reconciling high-throughput gene essentiality data with metabolic network reconstructions. PLoS Comput Biol 2019; 15:e1006507. [PMID: 30973869 PMCID: PMC6478342 DOI: 10.1371/journal.pcbi.1006507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/23/2019] [Accepted: 03/06/2019] [Indexed: 11/30/2022] Open
Abstract
The identification of genes essential for bacterial growth and survival represents a promising strategy for the discovery of antimicrobial targets. Essential genes can be identified on a genome-scale using transposon mutagenesis approaches; however, variability between screens and challenges with interpretation of essentiality data hinder the identification of both condition-independent and condition-dependent essential genes. To illustrate the scope of these challenges, we perform a large-scale comparison of multiple published Pseudomonas aeruginosa gene essentiality datasets, revealing substantial differences between the screens. We then contextualize essentiality using genome-scale metabolic network reconstructions and demonstrate the utility of this approach in providing functional explanations for essentiality and reconciling differences between screens. Genome-scale metabolic network reconstructions also enable a high-throughput, quantitative analysis to assess the impact of media conditions on the identification of condition-independent essential genes. Our computational model-driven analysis provides mechanistic insight into essentiality and contributes novel insights for design of future gene essentiality screens and the identification of core metabolic processes.
Collapse
Affiliation(s)
- Anna S. Blazier
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Medicine, Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, United States of America
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
33
|
diCenzo GC, Mengoni A, Fondi M. Tn-Core: A Toolbox for Integrating Tn-seq Gene Essentiality Data and Constraint-Based Metabolic Modeling. ACS Synth Biol 2019; 8:158-169. [PMID: 30525460 DOI: 10.1021/acssynbio.8b00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of synthetic cells requires a detailed understanding of the relevance of genes and gene networks underlying complex cellular phenotypes. Transposon-sequencing (Tn-seq) and constraint-based metabolic modeling can be used to probe the core genetic and metabolic networks underlying a biological process. Integrating these highly complementary experimental and in silico approaches has the potential to yield a highly comprehensive understanding of the core networks of a cell. Specifically, it can facilitate the interpretation of Tn-seq data sets and identify gaps in the data that could hinder the engineering of the cellular system, while also providing refined models for the accurate predictions of cellular metabolism. Here, we present Tn-Core, the first easy-to-use computational pipeline specifically designed for integrating Tn-seq data with metabolic modeling, prepared for use by both experimental and computational biologists. Tn-Core is a MATLAB toolbox that contains several custom functions, and it is built upon existing functions within the COBRA Toolbox and the TIGER Toolbox. Tn-Core takes as input a genome-scale metabolic model, Tn-seq data, and optionally RNA-seq data, and returns: (i) a context-specific core metabolic model; (ii) an evaluation of redundancies within core metabolic pathways, and optionally (iii) a refined genome-scale metabolic model. A simple, user-friendly workflow, requiring limited knowledge of metabolic modeling, is provided that allows users to run the analyses and export the data as easy-to-explore files of value to both experimental and computational biologists. We demonstrate the utility of Tn-Core using Sinorhizobium meliloti, Pseudomonas aeruginosa, and Rhodobacter sphaeroides genome-scale metabolic reconstructions as case studies.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| |
Collapse
|
34
|
Mouammine A, Collier J. The impact of DNA methylation in Alphaproteobacteria. Mol Microbiol 2018; 110:1-10. [PMID: 29995343 DOI: 10.1111/mmi.14079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2018] [Indexed: 02/02/2023]
Abstract
Alphaproteobacteria include bacteria with very different modes of life, from free-living to host-associated and pathogenic bacteria. Their genomes vary in size and organization from single circular chromosomes to multipartite genomes and are often methylated by one or more adenine or cytosine methyltransferases (MTases). These include MTases that are part of restriction/modification systems and so-called orphan MTases. The development of novel technologies accelerated the analysis of methylomes and revealed the existence of epigenetic patterns in several Alphaproteobacteria. This review describes the known functions of DNA methylation in Alphaproteobacteria and also discusses its potential drawbacks through the accidental deamination of methylated cytosines. Particular emphasis is given to the strong connection between the cell cycle-regulated orphan MTase CcrM and the complex network that controls gene expression and cell cycle progression in Alphaproteobacteria.
Collapse
Affiliation(s)
- Annabelle Mouammine
- Faculty of Biology and Medicine, Department of Fundamental Microbiology, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland
| | - Justine Collier
- Faculty of Biology and Medicine, Department of Fundamental Microbiology, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland
| |
Collapse
|
35
|
diCenzo GC, Benedict AB, Fondi M, Walker GC, Finan TM, Mengoni A, Griffitts JS. Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti. PLoS Genet 2018; 14:e1007357. [PMID: 29672509 PMCID: PMC5929573 DOI: 10.1371/journal.pgen.1007357] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/01/2018] [Accepted: 04/10/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone. S. meliloti, which has traditionally facilitated ground-breaking insights into symbiotic communication, is also emerging as an excellent model for studying the evolution of functional relationships between bacterial chromosomes and anciently acquired accessory replicons. Multi-replicon genome architecture is present in ~ 10% of presently sequenced bacterial genomes. The S. meliloti genome is composed of three circular replicons, two of which are dispensable even though they encompass nearly half of the protein-coding genes in this organism. The construction of strains lacking these replicons has enabled a straightforward, genome-wide analysis of interactions between the chromosome and the non-essential replicons, revealing extensive functional cooperation between these genomic components. This analysis enabled a substantial refinement of a metabolic network model for S. meliloti. The integration of massively parallel genotype-phenotype screening with in silico metabolic reconstruction has enhanced our understanding of metabolic network structure as it relates to genome evolution in S. meliloti, and exemplifies an approach that may be productively applied to other taxa. The combined experimental and computational approach employed here further provides unique insights into the pervasive genetic interactions that may exist within large bacterial genomes.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI, Italy
- * E-mail:
| | - Alex B. Benedict
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI, Italy
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
36
|
A Metagenome-Wide Association Study and Arrayed Mutant Library Confirm Acetobacter Lipopolysaccharide Genes Are Necessary for Association with Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:1119-1127. [PMID: 29487183 PMCID: PMC5873903 DOI: 10.1534/g3.117.300530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A metagenome wide association (MGWA) study of bacterial host association determinants in Drosophila predicted that LPS biosynthesis genes are significantly associated with host colonization. We were unable to create site-directed mutants for each of the predicted genes in Acetobacter, so we created an arrayed transposon insertion library using Acetobacter fabarum DsW_054 isolated from Drosophila. Creation of the A. fabarum DsW_054 gene knock-out library was performed by combinatorial mapping and Illumina sequencing of random transposon insertion mutants. Transposon insertion locations for 6,418 mutants were successfully mapped, including hits within 63% of annotated genes in the A. fabarum DsW_054 genome. For 45/45 members of the library, insertion sites were verified by arbitrary PCR and Sanger sequencing. Mutants with insertions in four different LPS biosynthesis genes were selected from the library to validate the MGWA predictions. Insertion mutations in two genes biosynthetically upstream of Lipid-A formation, lpxC and lpxB, show significant differences in host association, whereas mutations in two genes encoding LPS biosynthesis functions downstream of Lipid-A biosynthesis had no effect. These results suggest an impact of bacterial cell surface molecules on the bacterial capacity for host association. Also, the transposon insertion mutant library will be a useful resource for ongoing research on the genetic basis for Acetobacter traits.
Collapse
|
37
|
Peng C, Lin Y, Luo H, Gao F. A Comprehensive Overview of Online Resources to Identify and Predict Bacterial Essential Genes. Front Microbiol 2017; 8:2331. [PMID: 29230204 PMCID: PMC5711816 DOI: 10.3389/fmicb.2017.02331] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Genes critical for the survival or reproduction of an organism in certain circumstances are classified as essential genes. Essential genes play a significant role in deciphering the survival mechanism of life. They may be greatly applied to pharmaceutics and synthetic biology. The continuous progress of experimental method for essential gene identification has accelerated the accumulation of gene essentiality data which facilitates the study of essential genes in silico. In this article, we present some available online resources related to gene essentiality, including bioinformatic software tools for transposon sequencing (Tn-seq) analysis, essential gene databases and online services to predict bacterial essential genes. We review several computational approaches that have been used to predict essential genes, and summarize the features used for gene essentiality prediction. In addition, we evaluate the available online bacterial essential gene prediction servers based on the experimentally validated essential gene sets of 30 bacteria from DEG. This article is intended to be a quick reference guide for the microbiologists interested in the essential genes.
Collapse
Affiliation(s)
- Chong Peng
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Yan Lin
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
38
|
Yang J, Yin L, Lessner FH, Nakayasu ES, Payne SH, Fixen KR, Gallagher L, Harwood CS. Genes essential for phototrophic growth by a purple alphaproteobacterium. Environ Microbiol 2017; 19:3567-3578. [PMID: 28677146 DOI: 10.1111/1462-2920.13852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 12/01/2022]
Abstract
Tn-seq was used to identify genes essential for phototrophic growth by the purple bacterium Rhodopseudomonas palustris. About 167 genes required for anaerobic growth on acetate in light were identified, 35 of which are annotated as photosynthesis genes. The essentiality of many of these genes by analysing the phenotypes of independently generated mutants that had altered pigmentation was verified. Three genes were identified, two possibly involved in biogenesis of the membrane-bound photosynthetic apparatus and one for phosphatidylcholine biosynthesis, that were not known to be essential for phototrophic growth. Site-directed mutagenesis was used to show that the NADH:quinone oxidoreductase complex IE was essential for phototrophic growth under strictly anaerobic conditions and appeared to play a role in reverse electron transport to generate NADH. A homologous NADH:quinone oxidoreductase complex IA likely operates in the opposite direction to oxidize NADH. The operation of the two enzymes in opposition would allow R. palustris to maintain redox balance. As a complement to the genetic data, proteomics experiments were carried out in which it was found that 408 proteins were present in significantly higher amounts in cells grown anaerobically in light compared with aerobically. Among these were proteins encoded by subset of the phototrophic growth-essential genes.
Collapse
Affiliation(s)
- Jianming Yang
- Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.,Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Liang Yin
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Faith H Lessner
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Samuel H Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kathryn R Fixen
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Larry Gallagher
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|