1
|
Johnson MM, Bess CW, Olson R, Bischel HN. Flow Virometry in Wastewater Monitoring: Comparison of Virus-like Particles to Coliphage, Pepper Mild Mottle Virus, CrAssphage, and Tomato Brown Rugose Fruit Virus. Viruses 2025; 17:575. [PMID: 40285017 PMCID: PMC12031537 DOI: 10.3390/v17040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/13/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Flow virometry (FVM) offers a promising approach for monitoring viruses and virus-like particles (VLPs) in environmental samples. This study compares levels of non-specific VLPs across a wastewater treatment plant (WWTP) with levels of somatic coliphage, (F+) specific coliphage, Pepper Mild Mottle Virus (PMMoV), CrAssphage (CrAss), and Tomato Brown Rugose Fruit Virus (ToBRFV). All targets were quantified in influent, secondary-treated effluent, and tertiary-treated effluent at the University of California, Davis Wastewater Treatment Plant (UCDWWTP) over 11 weeks. We established an FVM-gating boundary for VLPs using bacteriophages T4 and ϕ6 as well as four phages isolated from wastewater. We then utilize T4 alongside three submicron beads as quality controls in the FVM assay. Coliphage was measured by standard plaque assays, and genome copies of PMMoV, CrAss, and ToBRFV were measured by digital droplet (dd)PCR. FVM results for wastewater revealed distinct microbial profiles at each treatment stage. However, correlations between VLPs and targeted viruses were poor. Trends for virus inactivation and removal, observed for targeted viruses during wastewater treatment, were consistent with expectations. Conversely, VLP counts were elevated in the WWTP effluent relative to the influent. Additional sampling revealed a decrease in VLP counts during the filtration treatment step following secondary treatment but a substantial increase in VLPs following ultraviolet disinfection. Defining application boundaries remain crucial to ensuring meaningful data interpretation as flow cytometry and virometry take on greater significance in water quality monitoring.
Collapse
Affiliation(s)
| | | | | | - Heather N. Bischel
- Department of Civil and Environmental Engineering, University of California Davis, Davis, CA 95616, USA; (M.M.J.)
| |
Collapse
|
2
|
Kongsomboonchoke P, Mongkolkarvin P, Khunti P, Vijitphichiankul J, Nonejuie P, Thiennimitr P, Chaikeeratisak V. Rapid formulation of a genetically diverse phage cocktail targeting uropathogenic Escherichia coli infections using the UTI89 model. Sci Rep 2025; 15:12832. [PMID: 40229393 PMCID: PMC11997193 DOI: 10.1038/s41598-025-96561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Urinary tract infections are commonly caused by uropathogenic Escherichia coli (UPEC). Due to the emergence of multidrug-resistant UPEC, rendering antibiotic treatment ineffective, phage combination-based therapy has been proposed as a potential alternative. Here, we present a formulation of a genetically diverse phage-derived cocktail that is rapidly customized for UPEC using E. coli UTI89 as a model strain. Through our rapid selection and combination of four phages against UPEC strain UTI89 (SR01, SR02, SR04, and Zappy) from our library, the combination of two lytic phages, SR02 and SR04, exhibits the strongest suppression of bacterial growth for at least 16 h, with no emergence of phage resistance observed in vitro. Phage SR02 undergoes subcellular activity for 25 min, producing approximately 106 progeny particles per cell, while SR04 completes its replication cycle in 20 min, generating around 564 progeny particles per cell. These two novel phages are genetically diverse, and their cocktail exhibited potent suppression of bacterial growth, independent of multiplicities of infection (MOIs), significantly reducing the viable bacterial counts after treatment in vitro. The phage cocktail has low immunogenicity and does not induce any proinflammatory gene responses in human bladder uroepithelial cells. Moreover, the cocktail effectively eradicates the invading UPEC strain UTI89 in the uroepithelial cells at a comparable level to that of phage SR04 alone, likely releasing some immunostimulatory agents that, in turn, trigger upregulation of MIP-3 and IL-8 genes. Altogether, this study offers an alternative pipeline for rapidly formulating genetically diverse phage-derived cocktails, which is specifically customized for targeted bacteria.
Collapse
Affiliation(s)
| | - Panupon Mongkolkarvin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patiphan Khunti
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Poochit Nonejuie
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Hakim TA, Zaki BM, Mohamed DA, Blasdel B, Gad MA, Fayez MS, El-Shibiny A. Novel strategies for vancomycin-resistant Enterococcus faecalis biofilm control: bacteriophage (vB_EfaS_ZC1), propolis, and their combined effects in an ex vivo endodontic model. Ann Clin Microbiol Antimicrob 2025; 24:24. [PMID: 40223105 PMCID: PMC11995525 DOI: 10.1186/s12941-025-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Endodontic treatment failures are predominantly attributed to Enterococcus faecalis (E. faecalis) infection, a Gram-positive coccus. E. faecalis forms biofilms, resist multiple antibiotics, and can withstand endodontic disinfection protocols. Vancomycin-resistant strains, in particular, are challenging to treat and are associated with serious medical complications. METHODS A novel phage, vB_EfaS_ZC1, was isolated and characterized. Its lytic activity against E. faecalis was assessed in vitro through time-killing and biofilm assays. The phage's stability under various conditions was determined. Genomic analysis was conducted to characterize the phage and its virulence. The phage, propolis, and their combination were evaluated as an intracanal irrigation solution against a 4-week E. faecalis mature biofilm, using an ex vivo infected human dentin model. The antibiofilm activity was analyzed using a colony-forming unit assay, field emission scanning electron microscopy, and confocal laser scanning microscopy. RESULTS The isolated phage, vB_EfaS_ZC1, a siphovirus with prolate capsid, exhibited strong lytic activity against Vancomycin-resistant strains. In vitro assays indicated its effectiveness in inhibiting planktonic growth and disrupting mature biofilms. The phage remained stable under wide range of temperatures (- 80 to 60 °C), tolerated pH levels from 4 to 11; however the phage viability significantly reduced after UV exposure. Genomic analysis strongly suggests the phage's virulence and suitability for therapeutic applications; neither lysogeny markers nor antibiotic resistance markers were identified. Phylogenetic analysis clustered vB_EfaS_ZC1 within the genus Saphexavirus. The phage, both alone and in combination with propolis, demonstrated potent antibiofilm effects compared to conventional root canal irrigation. CONCLUSION Phage vB_EfaS_ZC1 demonstrates a promising therapy, either individually or in combination with propolis, for addressing challenging endodontic infections caused by E. faecalis.
Collapse
Affiliation(s)
- Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Bishoy Maher Zaki
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Dalia A Mohamed
- Department of Endodontics, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522, Egypt
- Department of Endodontics, Faculty of Dentistry, Sinai University, Kantara-Shark, Ismailia, Egypt
| | - Bob Blasdel
- Vésale Bioscience, Vésale Pharmaceutica, 5310, Noville-Sur-Mehaigne, Belgium
| | - Mohamed A Gad
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
4
|
Monsibais AN, Tea O, Ghatbale P, Dunham SJB, Zünd M, Phan J, Lam K, Paulson M, Tran N, Suder DS, Blanc AN, Samillano C, Suh J, Atif H, Vien E, Nguyen R, Vo A, Gonen S, Pride D, Whiteson K. Enhanced suppression of Stenotrophomonas maltophilia by a three-phage cocktail: genomic insights and kinetic profiling. Antimicrob Agents Chemother 2025; 69:e0116224. [PMID: 39840957 PMCID: PMC11881566 DOI: 10.1128/aac.01162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Stenotrophomonas maltophilia is an understudied, gram-negative, aerobic bacterium that is widespread in the environment and increasingly a cause of opportunistic infections. Treating S. maltophilia remains difficult, leading to an increase in disease severity and higher hospitalization rates in people with cystic fibrosis, cancer, and other immunocompromised health conditions. The lack of effective antibiotics has led to renewed interest in phage therapy; however, there remains a great need for well-characterized phages, especially against S. maltophilia. In response to an oncology patient with a sepsis infection, we collected 18 phages from Southern California wastewater influent that exhibit different plaque morphology against S. maltophilia host strain B28B. We hypothesized that, when combined into a cocktail, genetically diverse phages would give rise to distinct lytic infection kinetics that would enhance bacterial killing when compared to the individual phages alone. We identified three genetically distinct clusters of phages, and a representative from each group was further investigated and screened for potential therapeutic use. The results demonstrated that the three-phage cocktail significantly suppressed bacterial growth compared with individual phages when observed for 48 h. We also assessed the lytic impacts of our three-phage cocktail against a collection of 46 S. maltophilia strains to determine if a multi-phage cocktail has an expanded host range. Our phages remained strain-specific and infected >50% of tested strains. In six clinically relevant S. maltophilia strains, the multi-phage cocktail has enhanced suppression of bacterial growth. These findings suggest that specialized phage cocktails may be an effective avenue of treatment for recalcitrant S. maltophilia infections resistant to current antibiotics.
Collapse
Affiliation(s)
- Alisha N. Monsibais
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Olivia Tea
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Pooja Ghatbale
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sage J. B. Dunham
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Mirjam Zünd
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Jennifer Phan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Karen Lam
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - McKenna Paulson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Natalie Tran
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Diana S. Suder
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Alisha N. Blanc
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cyril Samillano
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Joy Suh
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Hanna Atif
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Ethan Vien
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Ryan Nguyen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Allene Vo
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - David Pride
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| |
Collapse
|
5
|
Ghatbale P, Sah GP, Dunham S, Khong E, Blanc A, Monsibais A, Garcia A, Schooley RT, Cobián Güemes AG, Whiteson K, Pride DT. In vitro resensitization of multidrug-resistant clinical isolates of Enterococcus faecium and E. faecalis through phage-antibiotic synergy. Antimicrob Agents Chemother 2025; 69:e0074024. [PMID: 39699213 PMCID: PMC11823633 DOI: 10.1128/aac.00740-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Bacteriophages are an increasingly attractive option for the treatment of antibiotic-resistant infections, but their efficacy is difficult to discern due to the confounding effects of antibiotics. Phages are generally delivered in conjunction with antibiotics, and thus, when patients improve, it is unclear whether the phages, antibiotics, or both are responsible. This question is particularly relevant for enterococcus infections, as limited data suggest phages might restore antibiotic efficacy against resistant strains. Enterococci can develop high-level resistance to vancomycin, a primary treatment. We assessed clinical and laboratory isolates of Enterococcus faecium and Enterococcus faecalis to determine whether we could observe synergistic interactions between phages and antibiotics. We identified synergy between multiple phages and antibiotics including linezolid, ampicillin, and vancomycin. Notably, antibiotic susceptibility did not predict synergistic interactions with phages. Vancomycin-resistant isolates (n = 6) were eradicated by the vancomycin-phage combination as effectively as vancomycin-susceptible isolates (n = 2). Transcriptome analysis revealed significant gene expression changes under antibiotic-phage conditions, especially for linezolid and vancomycin, with upregulated genes involved in nucleotide and protein biosynthesis and downregulated stress response and prophage-related genes. While our results do not conclusively determine the mechanism of the observed synergistic interactions between antibiotics and phages, they do confirm and build upon previous research that observed these synergistic interactions. Our work highlights how using phages can restore the effectiveness of vancomycin against resistant isolates. This finding provides a promising, although unexpected, strategy for moving forward with phage treatments for vancomycin-resistant Enterococcus infections.
Collapse
Affiliation(s)
- Pooja Ghatbale
- Department of Pathology, University of California, San Diego, California, USA
| | - Govind Prasad Sah
- Department of Pathology, University of California, San Diego, California, USA
| | - Sage Dunham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Ethan Khong
- Department of Pathology, University of California, San Diego, California, USA
| | - Alisha Blanc
- Department of Pathology, University of California, San Diego, California, USA
| | - Alisha Monsibais
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew Garcia
- Department of Pathology, University of California, San Diego, California, USA
| | - Robert T. Schooley
- Department of Medicine, University of California, San Diego, California, USA
| | | | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - David T. Pride
- Department of Pathology, University of California, San Diego, California, USA
- Department of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
6
|
Papudeshi B, Roach MJ, Mallawaarachchi V, Bouras G, Grigson SR, Giles SK, Harker CM, Hutton ALK, Tarasenko A, Inglis LK, Vega AA, Souza C, Boling L, Hajama H, Cobián Güemes AG, Segall AM, Dinsdale EA, Edwards RA. Sphae: an automated toolkit for predicting phage therapy candidates from sequencing data. BIOINFORMATICS ADVANCES 2025; 5:vbaf004. [PMID: 39897948 PMCID: PMC11783317 DOI: 10.1093/bioadv/vbaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Motivation Phage therapy offers a viable alternative for bacterial infections amid rising antimicrobial resistance. Its success relies on selecting safe and effective phage candidates that require comprehensive genomic screening to identify potential risks. However, this process is often labor intensive and time-consuming, hindering rapid clinical deployment. Results We developed Sphae, an automated bioinformatics pipeline designed to streamline the therapeutic potential of a phage in under 10 minutes. Using Snakemake workflow manager, Sphae integrates tools for quality control, assembly, genome assessment, and annotation tailored specifically for phage biology. Sphae automates the detection of key genomic markers, including virulence factors, antimicrobial resistance genes, and lysogeny indicators such as integrase, recombinase, and transposase, which could preclude therapeutic use. Among the 65 phage sequences analyzed, 28 showed therapeutic potential, 8 failed due to low sequencing depth, 22 contained prophage or virulent markers, and 23 had multiple phage genomes. This workflow produces a report to assess phage safety and therapy suitability quickly. Sphae is scalable and portable, facilitating efficient deployment across most high-performance computing and cloud platforms, accelerating the genomic evaluation process. Availability and implementation Sphae source code is freely available at https://github.com/linsalrob/sphae, with installation supported on Conda, PyPi, Docker containers.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Michael J Roach
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5070, Australia
- The Department of Surgery—Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia 5070, Australia
| | - Susanna R Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Sarah K Giles
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Clarice M Harker
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Abbey L K Hutton
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Anita Tarasenko
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Laura K Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Alejandro A Vega
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Cole Souza
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
| | - Lance Boling
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
| | - Hamza Hajama
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
| | | | - Anca M Segall
- Department of Biology, San Diego State University, San Diego, CA 92182, United States
| | - Elizabeth A Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science of Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
7
|
Ribes-Martínez L, Muñoz-Egea MC, Yuste J, Esteban J, García-Quintanilla M. Bacteriophage Therapy as a Promising Alternative for Antibiotic-Resistant Enterococcus faecium: Advances and Challenges. Antibiotics (Basel) 2024; 13:1120. [PMID: 39766510 PMCID: PMC11672805 DOI: 10.3390/antibiotics13121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Enterococcus faecium is a Gram-positive bacterium increasingly identified as a critical nosocomial pathogen that poses significant treatment challenges due to its resistance to multiple antibiotics, particularly vancomycin-resistant E. faecium (VRE) strains. The urgent need for alternative therapeutic strategies has renewed interest in bacteriophage (phage) therapy, given phages specificity and bactericidal potential. This review explores the advancements in phage therapy against antibiotic-resistant E. faecium, including phage morphological diversity, genomic characteristics, and infection mechanisms. The efficacy of phage therapy in in vitro, ex vivo, and in vivo models and the compassionate use in clinical settings are evaluated, highlighting the promising outcomes of phage-antibiotic synergies and biofilm disruption. Key challenges and future research directions are discussed, with a focus on improving therapeutic efficacy and overcoming bacterial resistance. This review emphasizes the potential of phage therapy as a viable solution for managing multidrug-resistant E. faecium infections and underscores the importance of future investigations to enhance clinical applications.
Collapse
Affiliation(s)
- Laura Ribes-Martínez
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria-Carmen Muñoz-Egea
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Jose Yuste
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Spanish Pneumococcal Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBERES-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Meritxell García-Quintanilla
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.R.-M.); (M.-C.M.-E.); (J.E.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- MePRAM, Proyecto de Medicina de Precisión Contra las Resistencias Antimicrobianas, CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
8
|
Papudeshi B, Roach MJ, Mallawaarachchi V, Bouras G, Grigson SR, Giles SK, Harker CM, Hutton ALK, Tarasenko A, Inglis LK, Vega AA, Souza C, Boling L, Hajama H, Cobián Güemes AG, Segall AM, Dinsdale EA, Edwards RA. phage therapy candidates from Sphae: An automated toolkit for predicting sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624194. [PMID: 39605506 PMCID: PMC11601643 DOI: 10.1101/2024.11.18.624194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Motivation Phage therapy is a viable alternative for treating bacterial infections amidst the escalating threat of antimicrobial resistance. However, the therapeutic success of phage therapy depends on selecting safe and effective phage candidates. While experimental methods focus on isolating phages and determining their lifecycle and host range, comprehensive genomic screening is critical to identify markers that indicate potential risks, such as toxins, antimicrobial resistance, or temperate lifecycle traits. These analyses are often labor-intensive and time-consuming, limiting the rapid deployment of phage in clinical settings. Results We developed Sphae, an automated bioinformatics pipeline designed to streamline therapeutic potential of a phage in under ten minutes. Using Snakemake workflow manager, Sphae integrates tools for quality control, assembly, genome assessment, and annotation tailored specifically for phage biology. Sphae automates the detection of key genomic markers, including virulence factors, antimicrobial resistance genes, and lysogeny indicators like integrase, recombinase, and transposase, which could preclude therapeutic use. Benchmarked on 65 phage sequences, 28 phage samples showed therapeutic potential, 8 failed during assembly due to low sequencing depth, 22 samples included prophage or virulent markers, and the remaining 23 samples included multiple phage genomes per sample. This workflow outputs a comprehensive report, enabling rapid assessment of phage safety and suitability for phage therapy under these criteria. Sphae is scalable, portable, facilitating efficient deployment across most high-performance computing (HPC) and cloud platforms, expediting the genomic evaluation process. Availability Sphae is source code and freely available at https://github.com/linsalrob/sphae, with installation supported on Conda, PyPi, Docker containers.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Susanna R. Grigson
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Clarice M. Harker
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Abbey L. K. Hutton
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Anita Tarasenko
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Laura K. Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Alejandro A. Vega
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Souza
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Hamza Hajama
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Ana Georgina Cobián Güemes
- Department of Pathology, University of San Diego, 500 Gilman Drive, MC 0612, La Jolla, San Diego, CA, 92093-0612, USA
| | - Anca M. Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
9
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
10
|
Alrafaie AM, Pyrzanowska K, Smith EM, Partridge DG, Rafferty J, Mesnage S, Shepherd J, Stafford GP. A diverse set of Enterococcus-infecting phage provides insight into phage host-range determinants. Virus Res 2024; 347:199426. [PMID: 38960003 PMCID: PMC11269942 DOI: 10.1016/j.virusres.2024.199426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Enterococci are robust Gram-positive bacteria that pose a significant threat in healthcare settings due to antibiotic resistance, with vancomycin-resistant enterococci (VRE) most prominent. To tackle this issue, bacteriophages (bacterial viruses) can be exploited as they specifically and efficiently target bacteria. Here, we successfully isolated and characterised a set of novel phages: SHEF10, SHEF11, SHEF13, SHEF14, and SHEF16 which target E. faecalis (SHEF10,11,13), or E. faecium (SHEF13, SHEF14 & SHEF16) strains including a range of clinical and VRE isolates. Genomic analysis shows that all phages are strictly lytic and diverse in terms of genome size and content, quickly and effectively lysing strains at different multiplicity of infections. Detailed analysis of the broad host-range SHEF13 phage revealed the crucial role of the enterococcal polysaccharide antigen (EPA) variable region in its infection of E. faecalis V583. In parallel, the discovery of a carbohydrate-targeting domain (CBM22) found conserved within the three phage genomes indicates a role in cell surface interactions that may be important in phage-bacterial interactons. These findings advance our comprehension of phage-host interactions and pave the way for targeted therapeutic strategies against antibiotic-resistant enterococcal infections.
Collapse
Affiliation(s)
- Alhassan M Alrafaie
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Karolina Pyrzanowska
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom, S10 2TA, UK
| | - Elspeth M Smith
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom, S10 2TA, UK
| | - David G Partridge
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - John Rafferty
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stephane Mesnage
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joanna Shepherd
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom, S10 2TA, UK
| | - Graham P Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom, S10 2TA, UK; School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
11
|
Soro O, Kigen C, Nyerere A, Gachoya M, Georges M, Odoyo E, Musila L. Characterization and Anti-Biofilm Activity of Lytic Enterococcus Phage vB_Efs8_KEN04 against Clinical Isolates of Multidrug-Resistant Enterococcus faecalis in Kenya. Viruses 2024; 16:1275. [PMID: 39205249 PMCID: PMC11360260 DOI: 10.3390/v16081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Enterococcus faecalis (E. faecalis) is a growing cause of nosocomial and antibiotic-resistant infections. Treating drug-resistant E. faecalis requires novel approaches. The use of bacteriophages (phages) against multidrug-resistant (MDR) bacteria has recently garnered global attention. Biofilms play a vital role in E. faecalis pathogenesis as they enhance antibiotic resistance. Phages eliminate biofilms by producing lytic enzymes, including depolymerases. In this study, Enterococcus phage vB_Efs8_KEN04, isolated from a sewage treatment plant in Nairobi, Kenya, was tested against clinical strains of MDR E. faecalis. This phage had a broad host range against 100% (26/26) of MDR E. faecalis clinical isolates and cross-species activity against Enterococcus faecium. It was able to withstand acidic and alkaline conditions, from pH 3 to 11, as well as temperatures between -80 °C and 37 °C. It could inhibit and disrupt the biofilms of MDR E. faecalis. Its linear double-stranded DNA genome of 142,402 bp contains 238 coding sequences with a G + C content and coding gene density of 36.01% and 91.46%, respectively. Genomic analyses showed that phage vB_Efs8_KEN04 belongs to the genus Kochikohdavirus in the family Herelleviridae. It lacked antimicrobial resistance, virulence, and lysogeny genes, and its stability, broad host range, and cross-species lysis indicate strong potential for the treatment of Enterococcus infections.
Collapse
Affiliation(s)
- Oumarou Soro
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology, and Innovation, Nairobi P.O. Box 62000-00200, Kenya;
| | - Collins Kigen
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Andrew Nyerere
- Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Moses Gachoya
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Martin Georges
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Erick Odoyo
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Lillian Musila
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi P.O. Box 606-00621, Kenya; (C.K.); (M.G.); (M.G.); (E.O.)
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| |
Collapse
|
12
|
Xue Y, Gao Y, Guo M, Zhang Y, Zhao G, Xia L, Ma J, Cheng Y, Wang H, Sun J, Wang Z, Yan Y. Phage cocktail superimposed disinfection: A ecological strategy for preventing pathogenic bacterial infections in dairy farms. ENVIRONMENTAL RESEARCH 2024; 252:118720. [PMID: 38537740 DOI: 10.1016/j.envres.2024.118720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Bovine mastitis (BM) is mainly caused by bacterial infection that has a highly impact on dairy production, affecting both economic viability and animal well-being. A cross-sectional study was conducted in dairy farms to investigate the prevalence and antimicrobial resistance patterns of bacterial pathogens associated with BM. The analysis revealed that Staphylococcus (49%), Escherichia (16%), Pseudomonas (11%), and Klebsiella (6%) were the primary bacterial pathogens associated with mastitis. A significant proportion of Staphylococcus strains displayed multiple drug resistance. The use of disinfectants is an important conventional measure to control the pathogenic bacteria in the environment. Bacteriophages (Phages), possessing antibacterial properties, are natural green and effective disinfectants. Moreover, they mitigate the risk of generating harmful disinfection byproducts, which are commonly associated with traditional disinfection methods. Based on the primary bacterial pathogens associated with mastitis in the investigation area, a phage cocktail, named SPBC-SJ, containing seven phages capable of lysing S. aureus, E. coli, and P. aeruginosa was formulated. SPBC-SJ exhibited superior bactericidal activity and catharsis effect on pollutants (glass surface) compared to chemical disinfectants. Clinical trials confirmed that the SPBC-SJ-based superimposed disinfection group (phage combined with chemical disinfectants) not only cut down the dosage of disinfectants used, but significantly reduced total bacterial counts on the ground and in the feeding trough of dairy farms. Furthermore, SPBC-SJ significantly reduced the abundance of Staphylococcus and Pseudomonas in the environment of the dairy farm. These findings suggest that phage-based superimposed disinfection is a promising alternative method to combat mastitis pathogens in dairy farms due to its highly efficient and environmentally-friendly properties.
Collapse
Affiliation(s)
- Yibing Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Ya Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Mengting Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yumin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Guoqing Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Lu Xia
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| |
Collapse
|
13
|
Bozidis P, Markou E, Gouni A, Gartzonika K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024; 13:522. [PMID: 38921819 PMCID: PMC11206709 DOI: 10.3390/pathogens13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| |
Collapse
|
14
|
Lossouarn J, Beurrier E, Bouteau A, Moncaut E, Sir Silmane M, Portalier H, Zouari A, Cattoir V, Serror P, Petit MA. The virtue of training: extending phage host spectra against vancomycin-resistant Enterococcus faecium strains using the Appelmans method. Antimicrob Agents Chemother 2024; 68:e0143923. [PMID: 38591854 PMCID: PMC11210271 DOI: 10.1128/aac.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.
Collapse
Affiliation(s)
- Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elsa Beurrier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Astrid Bouteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Maria Sir Silmane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Heïdi Portalier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Asma Zouari
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
- Université de Rennes, INSERM, UMR_S1230 BRM, Rennes, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
15
|
Xiong X, Gong J, Lu T, Yuan L, Lan Y, Tu X. Characteristics of intestinal bacteriophages and their relationship with Bacteria and serum metabolites during quail sexual maturity transition. BMC Vet Res 2024; 20:93. [PMID: 38459523 PMCID: PMC10921806 DOI: 10.1186/s12917-024-03945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Bacteriophages are prokaryotic viruses that rank among the most abundant microbes in the gut but remain among the least understood, especially in quails. In this study, we surveyed the gut bacteriophage communities in 22 quails at different ages (days 20 and 70) using shotgun metagenomic sequencing. We then systematically evaluated the relationships with gut bacteria and host serum metabolites. RESULTS We discovered that Myoviridae and Siphoviridae were the dominant bacteriophage families in quails. Through a random forest and LEfSe analysis, we identified 23 differential bacteriophages with overlapping presence. Of these, 21 bacteriophages (e.g., Enterococcus phage IME-EFm5 and Enterococcus phage IME-EFm1) showed higher abundances in the day 20 group, while two bacteriophages (Bacillus phage Silence and Bacillus virus WPh) were enriched in the day 70 group. These key bacteriophages can serve as biomarkers for quail sexual maturity. Additionally, the differential bacteriophages significantly correlated with specific bacterial species and shifts in the functional capacities of the gut microbiome. For example, Enterococcus phages (e.g., Enterococcus phage EFP01, Enterococcus phage IME-EFm5, and Enterococcus phage IME-EFm1) were significantly (P < 0.001, FDR) and positively correlated with Enterococcus faecalis. However, the relationships between the host serum metabolites and either bacteriophages or bacterial species varied. None of the bacteriophages significantly (P > 0.05, FDR) correlated with nicotinamide riboside and triacetate lactone. In contrast, some differential bacterial species (e.g., Christensenella massiliensis and Bacteroides neonati) significantly (P < 0.05, FDR) correlated with nicotinamide riboside and triacetate lactone. Furthermore, characteristic successional alterations in gut bacteriophages, bacteria, and host serum metabolites across different ages highlighted a sexual maturity transition coexpression network. CONCLUSION This study improves our understanding of the gut bacteriophage characteristics in quails and offers profound insights into the interactions among gut bacteriophages, bacteria, and host serum metabolites during the quail's sexual maturity transition.
Collapse
Affiliation(s)
- Xinwei Xiong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China.
| | - Jishang Gong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China
| | - Tian Lu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China
| | - Liuying Yuan
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China
| | - Yuehang Lan
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China
| | - Xutang Tu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China.
| |
Collapse
|
16
|
Jokar J, Abdulabbas HT, Javanmardi K, Mobasher MA, Jafari S, Ghasemian A, Rahimian N, Zarenezhad A, ُSoltani Hekmat A. Enhancement of bactericidal effects of bacteriophage and gentamicin combination regimen against Staphylococcus aureus and Pseudomonas aeruginosa strains in a mice diabetic wound model. Virus Genes 2024; 60:80-96. [PMID: 38079060 DOI: 10.1007/s11262-023-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 02/15/2024]
Abstract
Diabetic patients are more susceptible to developing wound infections resulting in poor and delayed wound healing. Bacteriophages, the viruses that target-specific bacteria, can be used as an alternative to antibiotics to eliminate drug-resistant bacterial infections. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are among the most frequently identified pathogens in diabetic foot ulcers (DFUs). The aim of this study was assessment of bacteriophage and gentamicin combination effects on bacterial isolates from DFU infections. Specific bacteriophages were collected from sewage and animal feces samples and the phages were enriched using S. aureus and P. aeruginosa cultures. The lytic potential of phage isolates was assessed by the clarity of plaques. We isolated and characterized four lytic phages: Stp2, Psp1, Stp1, and Psp2. The phage cocktail was optimized and investigated in vitro. We also assessed the effects of topical bacteriophage cocktail gel on animal models of DFU. Results revealed that the phage cocktail significantly reduced the mortality rate in diabetic infected mice. We determined that treatment with bacteriophage cocktail effectively decreased bacterial colony counts and improved wound healing in S. aureus and P. aeruginosa infections, especially when administrated concomitantly with gentamicin. The application of complementary therapy using a phage cocktail and gentamicin, could offer an attractive approach for the treatment of wound diabetic bacterial infections.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Samawah, Al Muthann, Iraq
| | - Kazem Javanmardi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Ali Mobasher
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shima Jafari
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
17
|
Oliveira A, Dias C, Oliveira R, Almeida C, Fuciños P, Sillankorva S, Oliveira H. Paving the way forward: Escherichia coli bacteriophages in a One Health approach. Crit Rev Microbiol 2024; 50:87-104. [PMID: 36608263 DOI: 10.1080/1040841x.2022.2161869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Escherichia coli is one of the most notorious pathogens for its ability to adapt, colonize, and proliferate in different habitats through a multitude of acquired virulence factors. Its presence affects the food-processing industry and causes food poisoning, being also a major economic burden for the food, agriculture, and health sectors. Bacteriophages are emerging as an appealing strategy to mitigate bacterial pathogens, including specific E. coli pathovars, without exerting a deleterious effect on humans and animals. This review globally analyzes the applied research on E. coli phages for veterinary, food, and human use. It starts by describing the pathogenic E. coli pathotypes and their relevance in human and animal context. The idea that phages can be used as a One Health approach to control and interrupt the transmission routes of pathogenic E. coli is sustained through an exhaustive revision of the recent literature. The emerging phage formulations, genetic engineering and encapsulation technologies are also discussed as a means of improving phage-based control strategies, with a particular focus on E. coli pathogens.
Collapse
Affiliation(s)
- Ana Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo Oliveira
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Pablo Fuciños
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
18
|
Jiang A, Liu Z, Lv X, Zhou C, Ran T, Tan Z. Prospects and Challenges of Bacteriophage Substitution for Antibiotics in Livestock and Poultry Production. BIOLOGY 2024; 13:28. [PMID: 38248459 PMCID: PMC10812986 DOI: 10.3390/biology13010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
The overuse and misuse of antibiotics in the livestock and poultry industry has led to the development of multi-drug resistance in animal pathogens, and antibiotic resistance genes (ARGs) in bacteria transfer from animals to humans through the consumption of animal products, posing a serious threat to human health. Therefore, the use of antibiotics in livestock production has been strictly controlled. As a result, bacteriophages have attracted increasing research interest as antibiotic alternatives, since they are natural invaders of bacteria. Numerous studies have shown that dietary bacteriophage supplementation could regulate intestinal microbial composition, enhance mucosal immunity and the physical barrier function of the intestinal tract, and play an important role in maintaining intestinal microecological stability and normal body development of animals. The effect of bacteriophages used in animals is influenced by factors such as species, dose, and duration. However, as a category of mobile genetic elements, the high frequency of gene exchange of bacteriophages also poses risks of transmitting ARGs among bacteria. Hence, we summarized the mechanism and efficacy of bacteriophage therapy, and highlighted the feasibility and challenges of bacteriophage utilization in farm animal production, aiming to provide a reference for the safe and effective application of bacteriophages as an antibiotic alternative in livestock and poultry.
Collapse
Affiliation(s)
- Aoyu Jiang
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zixin Liu
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaokang Lv
- College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China;
| | - Chuanshe Zhou
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
19
|
Wang C, Zhao J, Lin Y, Yuan L, El-Telbany M, Maung AT, Abdelaziz MNS, Masuda Y, Honjoh KI, Miyamoto T. Isolation, characterization of Enterococcus phages and their application in control of E. faecalis in milk. J Appl Microbiol 2023; 134:lxad250. [PMID: 37944001 DOI: 10.1093/jambio/lxad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/02/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
AIMS Isolation and characterization of Enterococcus phages and application of phage cocktail to control E. faecalis in milk. METHODS AND RESULTS For phage isolations, double layer agar method was used. Host range of the phages were determined by the spot test. Twelve phages with varying host ranges were isolated. Phages PEF1, PEF7b, and PEF9 with different host ranges and lytic activities were selected for phage cocktails. Compared to two-phages cocktails tested, the cocktail containing all the three phages displayed stronger antibacterial and biofilm removal activities. The cocktail treatment reduced viable E. faecalis in biofilm by 6 log within 6 h at both 30°C and 4°C. In milk, the cocktail gradually reduced the viable count of E. faecalis and the count reached below the lower limit of detection at 48 h at 4°C. CONCLUSION The strong bactericidal and biofilm removal activities of the phage cocktail suggest the potential of this cocktail as a natural biocontrol agent for combating E. faecalis in milk.
Collapse
Affiliation(s)
- Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Lu Yuan
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Khong E, Oh J, Jimenez JM, Liu R, Dunham S, Monsibais A, Rhoads A, Ghatbale P, Garcia A, Cobián Güemes AG, Blanc AN, Chiu M, Kuo P, Proost M, Kline A, Aslam S, Schooley RT, Whiteson K, Fraley SI, Pride DT. A simple solid media assay for detection of synergy between bacteriophages and antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554535. [PMID: 37662290 PMCID: PMC10473724 DOI: 10.1101/2023.08.23.554535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The emergence of antibiotic resistant bacteria (ARB) has necessitated the development of alternative therapies to deal with this global threat. Bacteriophages (viruses that target bacteria) that kill ARB are one such alternative. While phages have been used clinically for decades with inconsistent results, a number of recent advances in phage selection, propagation and purification have enabled a reevaluation of their utility in contemporary clinical medicine. In most phage therapy cases, phages are administered in combination with antibiotics to ensure that patients receive the standard-of-care treatment. Some phages may work cooperatively with antibiotics to eradicate ARB, as often determined using non-standardized broth assays. We sought to develop a solid media-based assay to assess cooperativity between antibiotics and phages to offer a standardized platform for such testing. We modeled the interactions that occur between antibiotics and phages on solid medium to measure additive, antagonistic, and synergistic interactions. We then tested the method using different bacterial isolates, and identified a number of isolates where synergistic interactions were identified. These interactions were not dependent on the specific organism, phage family, or antibiotic used. A priori susceptibility to the antibiotic or the specific phage were not requirements to observe synergistic interactions. Our data also confirm the potential for the restoration of vancomycin to treat Vancomycin Resistant Enterococcus (VRE) when used in combination with phages. Solid media assays for the detection of cooperative interactions between antibiotics and phages can be an accessible technique adopted by clinical laboratories to evaluate antibiotic and phage choices in phage therapy.
Collapse
|
21
|
Fungo GBN, Uy JCW, Porciuncula KLJ, Candelario CMA, Chua DPS, Gutierrez TAD, Clokie MRJ, Papa DMD. "Two Is Better Than One": The Multifactorial Nature of Phage-Antibiotic Combinatorial Treatments Against ESKAPE-Induced Infections. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:55-67. [PMID: 37350995 PMCID: PMC10282822 DOI: 10.1089/phage.2023.0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Phage-antibiotic synergy (PAS) has been extensively explored over the past decade, with the aim of developing more effective treatments against multidrug-resistant organisms. However, it remains unclear how to effectively combine these two approaches. To address this uncertainty, we assessed four main aspects of PAS interactions in this review, seeking to identify commonalities of combining treatments within and between bacterial species. We examined all literature on PAS efficacy toward ESKAPE pathogens and present an analysis of the data in papers focusing on: (1) order of treatment, (2) dose of both phage and antibiotics, (3) mechanism of action, and (4) viability of transfer from in vivo or animal model trials to clinical applications. Our analysis indicates that there is little consistency within phage-antibiotic therapy regimens, suggesting that highly individualized treatment regimens should be used. We propose a set of experimental studies to address these research gaps. We end our review with suggestions on how to improve studies on phage-antibiotic combination therapy to advance this field.
Collapse
Affiliation(s)
- Gale Bernice N. Fungo
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - John Christian W. Uy
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Kristiana Louise J. Porciuncula
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Chiarah Mae A. Candelario
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Deneb Philip S. Chua
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Tracey Antaeus D. Gutierrez
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Donna May D. Papa
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
22
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Egido JE, Toner-Bartelds C, Costa AR, Brouns SJJ, Rooijakkers SHM, Bardoel BW, Haas PJ. Monitoring phage-induced lysis of gram-negatives in real time using a fluorescent DNA dye. Sci Rep 2023; 13:856. [PMID: 36646746 PMCID: PMC9842612 DOI: 10.1038/s41598-023-27734-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Bacteriophages (phages) are viruses that specifically attack bacteria. Their use as therapeutics, which constitutes a promising alternative to antibiotics, heavily relies on selecting effective lytic phages against the pathogen of interest. Current selection techniques are laborious and do not allow for direct visualization of phage infection dynamics. Here, we present a method that circumvents these limitations. It can be scaled for high-throughput and permits monitoring of the phage infection in real time via a fluorescence signal readout. This is achieved through the use of a membrane-impermeant nucleic acid dye that stains the DNA of damaged or lysed bacteria and new phage progeny. We have tested the method on Pseudomonas aeruginosa and Klebsiella pneumoniae and show that an increase in fluorescence reflects phage-mediated killing. This is confirmed by other techniques including spot tests, colony plating, flow cytometry and metabolic activity measurements. Furthermore, we illustrate how our method may be used to compare the activity of different phages and to screen the susceptibility of clinical isolates to phage. Altogether, we present a fast, reliable way of selecting phages against Gram-negative bacteria, which may be valuable in optimizing the process of selecting phages for therapeutic use.
Collapse
Affiliation(s)
- Julia E Egido
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Catherine Toner-Bartelds
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
- Fagenbank, Delft, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
- Fagenbank, Delft, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Efficacy of Repeated Applications of Bacteriophages on Salmonella enterica-Infected Alfalfa Sprouts during Germination. Pathogens 2022; 11:pathogens11101156. [PMID: 36297213 PMCID: PMC9610501 DOI: 10.3390/pathogens11101156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nontyphoidal Salmonella enterica is one of the leading pathogens for foodborne outbreaks in a multitude of food commodities, including alfalfa sprouts, which are commonly consumed raw. The food industry has commonly used chlorinated washes, but such methods may not be perceived as natural; this can be a detriment as a large portion of sprouts are designated for the organic market. A natural and affordable antimicrobial method that has been acquiring popularity is the use of bacteriophages. This study compared the efficacy of repeated daily applications and a single application of two separate bacteriophage cocktails (SE14, SE20, SF6 and SE14, SF5, SF6) against four Salmonella enterica (S. enterica) strains on germinating alfalfa sprout seeds from days 0 to 7. The results show S. Enteritidis to be the most susceptible to both cocktails with ~2.5 log CFU/mL decrease on day 0 with cocktail SE14, SF5, and SF6. S. enterica populations on all strains continued to grow even with repeated daily bacteriophage applications but in a significantly decreased rate (p < 0.05) compared with a single bacteriophage application. The extent of the reduction was dependent on the S. enterica strain, but the results do show benefits to using repeated bacteriophage applications during sprout germination to reduce S. enterica populations compared with a single bacteriophage application.
Collapse
|