1
|
Chang FM, Chen YH, Hsu PS, Wu TH, Sung IH, Wu MC, Nai YS. RNA metagenomics revealed insights into the viromes of honey bees (Apis mellifera) and Varroa mites (Varroa destructor) in Taiwan. J Invertebr Pathol 2025; 211:108341. [PMID: 40254251 DOI: 10.1016/j.jip.2025.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
The honey bee (Apis mellifera) is a vital pollinator for crops. However, they are infested by an ecto-parasite that has spread worldwide, Varroa mite (Varroa destructor). The Varroa mite is a vector of various western honey bee viruses. In this study, the prevalence of seven honey bee viruses (Deformed wing virus, Lake Sinai virus, Acute bee paralysis virus, Sacbrood virus, Kashmir bee virus, Black queen cell virus, Israeli acute paralysis virus), was screened with the honey bees, which were collected from fourteen apiaries from March 2023 to January 2024, and the Varroa mites, which were collected from two apiaries from July to October 2023 by using RT-PCR. Subsequently, metagenomic analyses were conducted on seven honey bee samples and two Varroa mite samples using next-generation sequencing with poly-A capture and rRNA depletion library construction methods. The results showed that 50% to 85.7% of honey bee viruses in each sample were detected by both methods, with up to three additional viruses identified when combining the two approaches. These findings underscore the importance of integrating both methods for comprehensive virome analysis. According to the virome analysis, 28 honey bee viruses were identified in honey bees and 11 in Varroa mites. Among these, 23 viruses were newly recorded in Taiwanese honey bee populations. Notably, three of the newly recorded viruses, Acute bee paralysis virus, Israeli acute paralysis virus, and Apis mellifera filamentous virus, are known to cause symptoms in honey bees, posing potential risks to their health. Six of these viruses were also detected in Varroa mites, highlighting their role in viral transmission. This study represents the first virome analysis of honey bees and Varroa mites in Taiwan, providing critical insights into honey bee health and establishing a foundation for future health assessment indices and mitigation strategies.
Collapse
Affiliation(s)
- Fang-Min Chang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Yen-Hou Chen
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Shou Hsu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan; Miaoli Distric Agricultural Research and Extension Station, Ministry of Agriculture, Miaoli, Taiwan
| | - Tzu-Hsien Wu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan; Miaoli Distric Agricultural Research and Extension Station, Ministry of Agriculture, Miaoli, Taiwan
| | - I-Hsin Sung
- Department of Plant Medicine, National Chiayi University, Chiayi, Taiwan
| | - Ming-Cheng Wu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan; Department of Entomology, National Chung Hsing University, Taichung, Taiwan.
| | - Yu-Shin Nai
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan; Department of Entomology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Bandoo RA, Kraberger S, Ozturk C, Lund MC, Zhu Q, Cook C, Smith B, Varsani A. Identification of Diverse Bacteriophages Associated with Bees and Hoverflies. Viruses 2025; 17:201. [PMID: 40006956 PMCID: PMC11860568 DOI: 10.3390/v17020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Bacteriophages are the most numerous, ubiquitous, and diverse biological entities on the planet. Prior studies have identified bacteriophages associated with pathogenic and commensal microbiota of honeybees. In this study we expand on what is known about bacteriophages from the lineages Caudoviricetes, Inoviridae, and Microviridae, which are associated with honeybees (Apidae, Apis mellifera), solitary bees of the genus Nomia (Halictidae, Nomia), and hoverflies (Syrphidae). The complete genomes of seven caudoviruses, seven inoviruses, and 288 microviruses were assembled from honeybees (n = 286) and hoverflies in Arizona (n = 2). We used bacterial host predictive software and sequence read mapping programs to infer the commensal and transient bacterial hosts of pollinating insects. Lastly, this study explores the phylogenetic relationships of microviruses sampled from bees, opportunistically sampled pollinating insects such as hoverflies, and blackflies.
Collapse
Affiliation(s)
- Rohan A. Bandoo
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (R.A.B.); (C.O.); (Q.Z.); (B.S.)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
| | - Cahit Ozturk
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (R.A.B.); (C.O.); (Q.Z.); (B.S.)
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (R.A.B.); (C.O.); (Q.Z.); (B.S.)
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
| | - Chelsea Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA;
| | - Brian Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (R.A.B.); (C.O.); (Q.Z.); (B.S.)
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (R.A.B.); (C.O.); (Q.Z.); (B.S.)
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
3
|
Kashchenko G, Taldaev A, Adonin L, Smutin D. Investigating Aerobic Hive Microflora: Role of Surface Microbiome of Apis Mellifera. BIOLOGY 2025; 14:88. [PMID: 39857318 PMCID: PMC11760457 DOI: 10.3390/biology14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
This study investigated the surface microbiome of the honeybee (Apis mellifera), focusing on the diversity and functional roles of its associated microbial communities. While the significance of the microbiome to insect health and behavior is increasingly recognized, research on invertebrate surface microbiota lags behind that of vertebrates. A combined metagenomic and cultivation-based approach was employed to characterize the bacterial communities inhabiting the honeybee exoskeleton. Our findings reveal a complex and diverse microbiota exhibiting significant spatial and environmental heterogeneity. The identification of antimicrobial compound producers, validated through both culture and metagenomic analyses, including potentially novel Actinobacteria species, underscores the potential impact of these microbial communities on honeybee health, behavior, and hive dynamics. This research contributes to a more profound ecological understanding of the honeybee microbiome, particularly in its winter configuration.
Collapse
Affiliation(s)
- Grigory Kashchenko
- Faculty of Geology, Soil Science and Landscape Studies, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
- Dokuchaev Soil Institute, 119017 Moscow, Russia
| | - Amir Taldaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Leonid Adonin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Federal State Budget-Financed Educational Institution of Higher Education, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 193232 St. Petersburg, Russia
| | - Daniil Smutin
- Federal State Budget-Financed Educational Institution of Higher Education, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 193232 St. Petersburg, Russia
- Faculty of Information Technology and Programming, ITMO University, 197101 St. Petersburg, Russia
| |
Collapse
|
4
|
Litov AG, Semenyuk II, Belova OA, Polienko AE, Thinh NV, Karganova GG, Tiunov AV. Extensive Diversity of Viruses in Millipedes Collected in the Dong Nai Biosphere Reserve (Vietnam). Viruses 2024; 16:1486. [PMID: 39339962 PMCID: PMC11437466 DOI: 10.3390/v16091486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Advances in sequencing technologies and bioinformatics have led to breakthroughs in the study of virus biodiversity. Millipedes (Diplopoda, Myriapoda, Arthropoda) include more than 12,000 extant species, yet data on virus diversity in Diplopoda are scarce. This study aimed to explore the virome of the millipedes collected in the Dong Nai Biosphere Reserve in Vietnam. We studied 14 species of millipedes and managed to assemble and annotate the complete coding genomes of 16 novel viruses, the partial coding genomes of 10 more viruses, and several fragmented viral sequences, which may indicate the presence of about 54 more viruses in the studied samples. Among the complete and partial genomes, 27% were putative members of the order Picornavirales. Most of the discovered viruses were very distant from the viruses currently present in the relevant databases. At least eight viruses meet the criteria to be recognized as a new species by the International Committee on Taxonomy of Viruses, and, for two of them, a higher taxonomic status (genus and even family) can be suggested.
Collapse
Affiliation(s)
- Alexander G Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| | - Irina I Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, 119071 Moscow, Russia
- Southern Branch, Russian-Vietnamese Tropical Scientific and Technological Center, Ho Chi Minh City 70001, Vietnam
| | - Oxana A Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexandra E Polienko
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Nguyen Van Thinh
- Southern Branch, Russian-Vietnamese Tropical Scientific and Technological Center, Ho Chi Minh City 70001, Vietnam
| | - Galina G Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| | - Alexei V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, 119071 Moscow, Russia
| |
Collapse
|
5
|
Salkova D, Balkanska R, Shumkova R, Lazarova S, Radoslavov G, Hristov P. Molecular Detection and Phylogenetic Relationships of Honey Bee-Associated Viruses in Bee Products. Vet Sci 2024; 11:369. [PMID: 39195823 PMCID: PMC11360182 DOI: 10.3390/vetsci11080369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
In the last few years, the isolation and amplification of DNA or RNA from the environment (eDNA/eRNA) has proven to be an alternative and non-invasive approach for molecular identification of pathogens and pests in beekeeping. We have recently demonstrated that bee pollen and bee bread represent suitable biological material for the molecular identification of viral RNA. In the present study, we extracted total RNA from different bee products (pollen, n = 25; bee bread, n = 17; and royal jelly, n = 15). All the samples were tested for the presence of six of the most common honey bee-associated viruses-Deformed wing virus (DWV), Acute bee paralysis virus (ABPV), Chronic bee paralysis virus (CBPV), Sacbrood virus (SBV), Kashmir bee virus (KBV), and Black queen cell virus (BQCV)-using a reverse transcription polymerase chain reaction (RT-PCR). We successfully detected six records of DWV (10.5%, 6/57), four of ABPV (7.0%, 4/57), three of Israeli acute paralysis virus (IAPV) (5.3%, 3/57), and two of BQCV (3.5%, 2/57). Using ABPV primers, we also successfully detected the presence of IAPV. The obtained viral sequences were analyzed for phylogenetic relationships with the highly similar sequences (megablast) available in the GenBank database. The Bulgarian DWV isolates revealed a high homology level with strains from Syria and Turkey. Moreover, we successfully detected a DWV strain B for the first time in Bulgaria. In contrast to DWV, the ABPV isolates formed a separate clade in the phylogenetic tree. BQCV was closely grouped with Russian isolates, while Bulgarian IAPV formed its own clade and included a strain from China. In conclusion, the present study demonstrated that eRNA can be successfully used for molecular detection of honey bee-associated viruses in bee products. The method can assist the monitoring of the health status of honey bee colonies at the local, regional, and even national levels.
Collapse
Affiliation(s)
- Delka Salkova
- Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Ralitsa Balkanska
- Department “Special Branches”, Institute of Animal Science, Kostinbrod, Agricultural Academy, 1113 Sofia, Bulgaria;
| | - Rositsa Shumkova
- Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria;
| | - Stela Lazarova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.L.); (G.R.)
| | - Georgi Radoslavov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.L.); (G.R.)
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.L.); (G.R.)
| |
Collapse
|
6
|
Kadlečková D, Saláková M, Erban T, Tachezy R. Discovery and characterization of novel DNA viruses in Apis mellifera: expanding the honey bee virome through metagenomic analysis. mSystems 2024; 9:e0008824. [PMID: 38441971 PMCID: PMC11019937 DOI: 10.1128/msystems.00088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
To date, many viruses have been discovered to infect honey bees. In this study, we used high-throughput sequencing to expand the known virome of the honey bee, Apis mellifera, by identifying several novel DNA viruses. While the majority of previously identified bee viruses are RNA, our study reveals nine new genomes from the Parvoviridae family, tentatively named Bee densoviruses 1 to 9. In addition, we characterized a large DNA virus, Apis mellifera filamentous-like virus (AmFLV), which shares limited protein identities with the known Apis mellifera filamentous virus. The complete sequence of AmFLV, obtained by a combination of laboratory techniques and bioinformatics, spans 152,678 bp. Linear dsDNA genome encodes for 112 proteins, of which 49 are annotated. Another large virus we discovered is Apis mellifera nudivirus, which belongs to a group of Alphanudivirus. The virus has a length of 129,467 bp and a circular dsDNA genome, and has 106 protein encoding genes. The virus contains most of the core genes of the family Nudiviridae. This research demonstrates the effectiveness of viral binning in identifying viruses in honey bee virology, showcasing its initial application in this field.IMPORTANCEHoney bees contribute significantly to food security by providing pollination services. Understanding the virome of honey bees is crucial for the health and conservation of bee populations and also for the stability of the ecosystems and economies for which they are indispensable. This study unveils previously unknown DNA viruses in the honey bee virome, expanding our knowledge of potential threats to bee health. The use of the viral binning approach we employed in this study offers a promising method to uncovering and understanding the vast viral diversity in these essential pollinators.
Collapse
Affiliation(s)
- Dominika Kadlečková
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Průmyslová, Czechia
| | - Martina Saláková
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Průmyslová, Czechia
| | - Tomáš Erban
- Crop Research Institute, Drnovská, Prague, Czechia
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Průmyslová, Czechia
| |
Collapse
|
7
|
Damayo JE, McKee RC, Buchmann G, Norton AM, Ashe A, Remnant EJ. Virus replication in the honey bee parasite, Varroa destructor. J Virol 2023; 97:e0114923. [PMID: 37966226 PMCID: PMC10746231 DOI: 10.1128/jvi.01149-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.
Collapse
Affiliation(s)
- James E. Damayo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca C. McKee
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gabriele Buchmann
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Institute of Plant Genetics, Heinrich-Heine University, Duesseldorf, Germany
| | - Amanda M. Norton
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Academic Support Unit, Research and Advanced Instrumentation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Emily J. Remnant
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Guo G, Wang M, Zhou D, He X, Han P, Chen G, Zeng J, Liu Z, Wu Y, Weng S, He J. Virome Analysis Provides an Insight into the Viral Community of Chinese Mitten Crab Eriocheir sinensis. Microbiol Spectr 2023; 11:e0143923. [PMID: 37358426 PMCID: PMC10433957 DOI: 10.1128/spectrum.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023] Open
Abstract
Recent advances in viromics have led to the discovery of a great diversity of RNA viruses and the identification of a large number of viral pathogens. A systematic exploration of viruses in Chinese mitten crab (Eriocheir sinensis), one of the most important aquatic commercial species, is still lacking. Here, we characterized the RNA viromes of asymptomatic, milky disease (MD)-affected, and hepatopancreatic necrosis syndrome (HPNS)-affected Chinese mitten crabs collected from 3 regions in China. In total, we identified 31 RNA viruses belonging to 11 orders, 22 of which were first reported here. By comparing viral composition between samples, we observed high variation in viral communities across regions, with most of the viral species being region-specific. We proposed to establish several novel viral families or genera based on the phylogenetic relationships and genome structures of viruses discovered in this study, expanding our knowledge of viral diversity in brachyuran crustaceans. IMPORTANCE High-throughput sequencing and meta-transcriptomic analysis provide us with an efficient tool to discover unknown viruses and explore the composition of viral communities in specific species. In this study, we investigated viromes in asymptomatic and diseased Chinese mitten crabs collected from three distant locations. We observed high regional variation in the composition of viral species, highlighting the importance of multi-location sampling. In addition, we classified several novel and ICTV-unclassified viruses based on their genome structures and phylogenetic relationships, providing a new perspective on current viral taxa.
Collapse
Affiliation(s)
- Guangyu Guo
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Muhua Wang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dandan Zhou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xinyi He
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiyun Han
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gongrui Chen
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Zeng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi Liu
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yinqing Wu
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Kwon M, Jung C, Kil EJ. Metagenomic analysis of viromes in honey bee colonies ( Apis mellifera; Hymenoptera: Apidae) after mass disappearance in Korea. Front Cell Infect Microbiol 2023; 13:1124596. [PMID: 36761901 PMCID: PMC9905416 DOI: 10.3389/fcimb.2023.1124596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
After the nationwide, massive winter losses of honey bees in Korea during the winter of 2021, samplings were conducted from live honey bees in colonies and dead honey bees nearby colonies in the same bee-farms in six regions in Korea. Each sample was subjected to virome analysis using high-throughput sequencing technology. The number of viral reads was the lowest in the live honey bee group sample with 370,503 reads and the highest in the dead honey bee group sample with 42,659,622 reads. Viral contigs were matched with the viral genomes of the black queen cell virus, deformed wing virus, Israeli acute paralysis virus, and sacbrood virus, all of which have been previously reported in Korea. However, Apis rhabdovirus 5, bee macula-like virus, Varroa orthomyxovirus-1, Hubei partiti-like virus 34, Lake Sinai virus 2, 3, and 4, and the Ditton virus, were also discovered in this study, which are the first records in Korea. Plant viral sequences resembling those of Arabidopsis latent virus 1, and a novel viral sequence was also discovered. In the present study 55 complete viral genome sequences were identified. This study is the first virome analysis of domestic honey bees and provides the latest information on the diversity of honey bee viruses in Korea.
Collapse
Affiliation(s)
- Minhyeok Kwon
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Chuleui Jung
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
- *Correspondence: Eui-Joon Kil,
| |
Collapse
|
10
|
Ruml T. The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes? Viruses 2022; 14:v14061303. [PMID: 35746773 PMCID: PMC9231214 DOI: 10.3390/v14061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| |
Collapse
|