1
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
2
|
Wheeler K, Gosmanov C, Sandoval MJ, Yang Z, McCall LI. Frontiers in Mass Spectrometry-Based Spatial Metabolomics: Current Applications and Challenges in the Context of Biomedical Research. Trends Analyt Chem 2024; 175:117713. [PMID: 40094101 PMCID: PMC11905388 DOI: 10.1016/j.trac.2024.117713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metabolites are critical products and mediators of cellular and tissue function, and key signals in cell-to-cell, organ-to-organ and cross-organism communication. Many of these interactions are spatially segregated. Thus, spatial metabolomics can provide valuable insight into healthy tissue function and disease pathogenesis. Here, we review major mass spectrometry-based spatial metabolomics techniques and the biological insights they have enabled, with a focus on brain and microbiota function and on cancer, neurological diseases and infectious diseases. These techniques also present significant translational utility, for example in cancer diagnosis, and for drug development. However, spatial mass spectrometry techniques still encounter significant challenges, including artifactual features, metabolite annotation, open data, and ethical considerations. Addressing these issues represent the future challenges in this field.
Collapse
Affiliation(s)
- Kate Wheeler
- Department of Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Camil Gosmanov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
| |
Collapse
|
3
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
4
|
Parent KN. The phage fought the cells, and the phage won: a satellite symposium at the ASV 2023 annual meeting. J Virol 2023; 97:e0142023. [PMID: 37991366 PMCID: PMC10734453 DOI: 10.1128/jvi.01420-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
This satellite symposium was focused on the molecular arms race between bacteria and their predators, the bacteriophages: who's the friend and who's the foe? This Gem recounts highlights of the talks and presents food for thought and additional reflections on the current state of the field.
Collapse
Affiliation(s)
- Kristin N. Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Ness M, Holmes AL, Wu C, Hossain E, Ibberson CB, McCall LI. Metabolomic Analysis of Polymicrobial Wound Infections and an Associated Adhesive Bandage. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1847-1857. [PMID: 37289200 PMCID: PMC10524476 DOI: 10.1021/jasms.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Concerns about ion suppression, spectral contamination, or interference have led to avoidance of polymers in mass spectrometry (MS)-based metabolomics. This avoidance, however, has left many biochemical fields underexplored, including wounds, which are often treated with adhesive bandages. Here, we found that despite previous concerns, the addition of an adhesive bandage can still result in biologically informative MS data. Initially, a test LC-MS analysis was performed on a mixture of known chemical standards and a polymer bandage extract. Results demonstrated successful removal of many polymer-associated features through a data processing step. Furthermore, the bandage presence did not interfere with metabolite annotation. This method was then implemented in the context of murine surgical wound infections covered with an adhesive bandage and inoculated with Staphylococcus aureus, Pseudomonas aeruginosa, or a 1:1 mix of these pathogens. Metabolites were extracted and analyzed by LC-MS. On the bandage side, we observed a greater impact of infection on the metabolome. Distance analysis showed significant differences between all conditions and demonstrated that coinfected samples were more similar to S. aureus-infected samples compared to P. aeruginosa-infected samples. We also found that coinfection was not merely a summative effect of each monoinfection. Overall, these results represent an expansion of LC-MS-based metabolomics to a novel, previously under-investigated class of samples, leading to actionable biological information.
Collapse
Affiliation(s)
- Monica Ness
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, USA, 73019
| | - Avery L. Holmes
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, OK, USA, 73019
| | - Chaoyi Wu
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, USA, 73019
| | - Ekram Hossain
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, USA, 73019
| | - Carolyn B. Ibberson
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, OK, USA, 73019
| | - Laura-Isobel McCall
- University of Oklahoma, Department of Chemistry and Biochemistry, Norman, OK, USA, 73019
- University of Oklahoma, Department of Microbiology and Plant Biology, Norman, OK, USA, 73019
- University of Oklahoma, Laboratories of Molecular Anthropology and Microbiome Research, Norman, OK, USA, 73019
| |
Collapse
|
6
|
Bradley JS, Hajama H, Akong K, Jordan M, Stout D, Rowe RS, Conrad DJ, Hingtgen S, Segall AM. Bacteriophage Therapy of Multidrug-resistant Achromobacter in an 11-Year-old Boy With Cystic Fibrosis Assessed by Metagenome Analysis. Pediatr Infect Dis J 2023; 42:754-759. [PMID: 37343220 DOI: 10.1097/inf.0000000000004000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is a genetic disease associated with lung disease characterized by chronic pulmonary infection, increasingly caused by multiple drug-resistant pathogens after repeated antibiotic exposure, limiting antibiotic treatment options. Bacteriophages can provide a pathogen-specific bactericidal treatment used with antibiotics to improve microbiologic and clinical outcomes in CF. METHODS Achromobacter species isolates from sputum of a chronically infected person with CF, were assessed for susceptibility to bacteriophages: 2 highly active, purified bacteriophages were administered intravenously every 8 hours, in conjunction with a 14-day piperacillin/tazobactam course for CF exacerbation. Sputum and blood were collected for metagenome analysis during treatment, with sputum analysis at 1-month follow-up. Assessments of clinical status, pulmonary status and laboratory evaluation for safety were conducted. RESULTS Bacteriophage administration was well-tolerated, with no associated clinical or laboratory adverse events. Metagenome analysis documented an 86% decrease in the relative proportion of Achromobacter DNA sequence reads in sputum and a 92% decrease in blood, compared with other bacterial DNA reads, comparing pretreatment and posttreatment samples. Bacteriophage DNA reads were detected in sputum after intravenous administration during treatment, and at 1-month follow-up. Reversal of antibiotic resistance to multiple antibiotics occurred in some isolates during treatment. Stabilization of lung function was documented at 1-month follow-up. CONCLUSIONS Bacteriophage/antibiotic treatment decreased the host pulmonary bacterial burden for Achromobacter assessed by metagenome analysis of sputum and blood, with ongoing bacteriophage replication documented in sputum at 1-month follow-up. Prospective controlled studies are needed to define the dose, route of administration and duration of bacteriophage therapy for both acute and chronic infection in CF.
Collapse
Affiliation(s)
- John S Bradley
- From the Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, and Rady Children's Hospital
| | - Hamza Hajama
- Department of Biology and Viral Information Institute, San Diego State University
| | - Kathryn Akong
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, and Rady Children's Hospital
| | - Mary Jordan
- Rady Children's Hospital San Diego Clinical Research
| | - Dayna Stout
- Rady Children's Hospital San Diego Clinical Research
| | - Ryan S Rowe
- Department of Biology and Viral Information Institute, San Diego State University
| | - Douglas J Conrad
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Sara Hingtgen
- Rady Children's Hospital San Diego Clinical Research
| | - Anca M Segall
- Department of Biology and Viral Information Institute, San Diego State University
| |
Collapse
|
7
|
Chandler JD, Esther CR. Metabolomics of airways disease in cystic fibrosis. Curr Opin Pharmacol 2022; 65:102238. [PMID: 35649321 PMCID: PMC10068587 DOI: 10.1016/j.coph.2022.102238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022]
Abstract
While discovery metabolomic studies have identified many potential biomarkers of cystic fibrosis (CF) airways disease, relatively few have been validated. We review the recent literature to identify the most promising metabolomic findings as those repeatedly observed over multiple studies. Reproducible metabolomic findings include increased airway amino acids and small peptides in CF airways, as well as changes in phospholipids and sphingolipids. Other commonly altered pathways include adenosine metabolism, polyamine synthesis, and oxidative stress. These pathways represent potential biomarkers and therapeutic targets, though findings require reevaluation in the era of highly effective modulator therapies. Analysis of airway biomarkers in exhaled breath holds promise for non-invasive detection, though technical challenges will need to be overcome.
Collapse
Affiliation(s)
- Joshua D Chandler
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Aiosa N, Sinha A, Jaiyesimi OA, da Silva RR, Branda SS, Garg N. Metabolomics Analysis of Bacterial Pathogen Burkholderia thailandensis and Mammalian Host Cells in Co-culture. ACS Infect Dis 2022; 8:1646-1662. [PMID: 35767828 DOI: 10.1021/acsinfecdis.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tier 1 HHS/USDA Select Agent Burkholderia pseudomallei is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by B. pseudomallei and Burkholderia thailandensis, a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes. Thus, metabolomics complements transcriptomics and proteomics by providing a chemical readout of a biological phenotype, which serves as a snapshot of an organism's physiological state. However, the poor signal from bacterial metabolites in the context of infection poses a challenge in their detection and robust annotation. In this study, we coupled mammalian cell culture-based metabolomics with feature-based molecular networking of mono- and co-cultures to annotate the pathogen's secondary metabolome during infection of mammalian cells. These methods enabled us to identify several key secondary metabolites produced by B. thailandensis during infection of airway epithelial and macrophage cell lines. Additionally, the use of in silico approaches provided insights into shifts in host biochemical pathways relevant to defense against infection. Using chemical class enrichment analysis, for example, we identified changes in a number of host-derived compounds including immune lipids such as prostaglandins, which were detected exclusively upon pathogen challenge. Taken together, our findings indicate that co-culture of B. thailandensis with mammalian cells alters the metabolome of both pathogen and host and provides a new dimension of information for in-depth analysis of the host-pathogen interactions underlying Burkholderia infection.
Collapse
Affiliation(s)
- Nicole Aiosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Anupama Sinha
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Ricardo R da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café─Vila Monte Alegre, 14040-903 Ribeirão Preto-SP, Brazil
| | - Steven S Branda
- Systems Biology, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Spatial Metabolomics Reveals Localized Impact of Influenza Virus Infection on the Lung Tissue Metabolome. mSystems 2022; 7:e0035322. [PMID: 35730946 PMCID: PMC9426520 DOI: 10.1128/msystems.00353-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The influenza virus (IAV) is a major cause of respiratory disease, with significant infection increases in pandemic years. Vaccines are a mainstay of IAV prevention but are complicated by IAV’s vast strain diversity and manufacturing and vaccine uptake limitations. While antivirals may be used for treatment of IAV, they are most effective in early stages of the infection, and several virus strains have become drug resistant. Therefore, there is a need for advances in IAV treatment, especially host-directed therapeutics. Given the spatial dynamics of IAV infection and the relationship between viral spatial distribution and disease severity, a spatial approach is necessary to expand our understanding of IAV pathogenesis. We used spatial metabolomics to address this issue. Spatial metabolomics combines liquid chromatography-tandem mass spectrometry of metabolites extracted from systematic organ sections, 3D models, and computational techniques to develop spatial models of metabolite location and their role in organ function and disease pathogenesis. In this project, we analyzed serum and systematically sectioned lung tissue samples from uninfected or infected mice. Spatial mapping of sites of metabolic perturbations revealed significantly lower metabolic perturbation in the trachea compared to other lung tissue sites. Using random forest machine learning, we identified metabolites that responded differently in each lung position based on infection, including specific amino acids, lipids and lipid-like molecules, and nucleosides. These results support the implementation of spatial metabolomics to understand metabolic changes upon respiratory virus infection. IMPORTANCE The influenza virus is a major health concern. Over 1 billion people become infected annually despite the wide distribution of vaccines, and antiviral agents are insufficient to address current clinical needs. In this study, we used spatial metabolomics to understand changes in the lung and serum metabolome of mice infected with influenza A virus compared to uninfected controls. We determined metabolites altered by infection in specific lung tissue sites and distinguished metabolites perturbed by infection between lung tissue and serum samples. Our findings highlight the utility of a spatial approach to understanding the intersection between the lung metabolome, viral infection, and disease severity. Ultimately, this approach will expand our understanding of respiratory disease pathogenesis.
Collapse
|
10
|
Einarsson GG, Vanaudenaerde BM, Spence CD, Lee AJ, Boon M, Verleden GM, Elborn JS, Dupont LJ, Van Raemdonck D, Gilpin DF, Vos R, Verleden SE, Tunney MM. Microbial Community Composition in Explanted Cystic Fibrosis and Control Donor Lungs. Front Cell Infect Microbiol 2022; 11:764585. [PMID: 35368453 PMCID: PMC8966769 DOI: 10.3389/fcimb.2021.764585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
To date, investigations of the microbiota in the lungs of people with Cystic Fibrosis (PWCF) have primarily focused on microbial community composition in luminal mucus, with fewer studies observing the microbiota in tissue samples from explanted lung tissue. Here, we analysed both tissue and airway luminal mucus samples extracted from whole explanted lungs of PWCF and unused donor lungs. We determined if the lung microbiota in end-stage CF varied within and between patients, was spatially heterogeneous and related to localized structural damage. Microbial community composition was determined by Illumina MiSeq sequencing and related to the CF-Computed Tomography (CT) score and features of end-stage lung disease on micro-CT. Ninety-eight CF tissue (n=11 patients), 20 CF luminal mucus (n=8 patients) and 33 donor tissue (n=4 patients) samples were analysed. Additionally, we compared 20 paired CF tissue and luminal mucus samples that enabled a direct “geographical” comparison of the microbiota in these two niches. Significant differences in microbial communities were apparent between the 3 groups. However, overlap between the three groups, particularly between CF and donor tissue and CF tissue and CF luminal mucus was also observed. Microbial diversity was lower in CF luminal mucus compared to CF tissue, with dominance higher in luminal mucus. For both CF and donor tissue, intra- and inter-patient variability in ecological parameters was observed. No relationships were observed between ecological parameters and CF-CT score, or features of end-stage lung disease. The end-stage CF lung is characterised by a low diversity microbiota, differing within and between individuals. No clear relationship was observed between regional microbiota variation and structural lung damage.
Collapse
Affiliation(s)
- Gisli G. Einarsson
- Halo Research Group, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Gisli G. Einarsson,
| | - Bart M. Vanaudenaerde
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Christopher D. Spence
- Halo Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrew J. Lee
- Halo Research Group, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Mieke Boon
- Department of Pediatics, Cystic Fibrosis Center, UZ Leuven, Leuven, Belgium
| | - Geert M. Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - J. Stuart Elborn
- Halo Research Group, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Lieven J. Dupont
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Deirdre F. Gilpin
- Halo Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Robin Vos
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Stijn E. Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp (UA), Wilrijk, Belgium
- Department of Thoracic & Vascular Surgery, University Hospital Antwerp (UZA), Edegem, Belgium
- Department of Pneumology, University Hospital Antwerp (UZA), Edegem, Belgium
| | - Michael M. Tunney
- Halo Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Harris MB, Lesani M, Liu Z, McCall LI. Molecular networking in infectious disease models. Methods Enzymol 2022; 663:341-375. [PMID: 35168796 PMCID: PMC10040239 DOI: 10.1016/bs.mie.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Small molecule metabolites are the product of many enzymatic reactions. Metabolomics thus opens a window into enzyme activity and function, integrating effects at the post-translational, proteome, transcriptome and genome level. In addition, small molecules can themselves regulate enzyme activity, expression and function both via substrate availability mechanisms and through allosteric regulation. Metabolites are therefore at the nexus of infectious diseases, regulating nutrient availability to the pathogen, immune responses, tropism, and host disease tolerance and resilience. Analysis of metabolomics data is however complex, particularly in terms of metabolite annotation. An emerging valuable approach to extend metabolite annotations beyond existing compound libraries and to identify infection-induced chemical changes is molecular networking. In this chapter, we discuss the applications of molecular networking in the context of infectious diseases specifically, with a focus on considerations relevant to these biological systems.
Collapse
Affiliation(s)
- Morgan B Harris
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
12
|
Woodley FW, Gecili E, Szczesniak RD, Shrestha CL, Nemastil CJ, Kopp BT, Hayes D. Sweat metabolomics before and after intravenous antibiotics for pulmonary exacerbation in people with cystic fibrosis. Respir Med 2022; 191:106687. [PMID: 34864373 PMCID: PMC8810598 DOI: 10.1016/j.rmed.2021.106687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/06/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND People with cystic fibrosis (PWCF) suffer from acute unpredictable reductions in pulmonary function associated with a pulmonary exacerbation (PEx) that may require hospitalization. PEx symptoms vary between PWCF without universal diagnostic criteria for diagnosis and response to treatment. RESEARCH QUESTION We characterized sweat metabolomes before and after intravenous (IV) antibiotics in PWCF hospitalized for PEx to determine feasibility and define biological alterations by IV antibiotics for PEx. STUDY DESIGN AND METHODS PWCF with PEx requiring hospitalization for IV antibiotics were recruited from clinic. Sweat samples were collected using the Macroduct® Sweat Collection System at admission prior to initiation of IV antibiotics and after completion prior to discharge. Samples were analyzed for metabolite changes using ultra-high-performance liquid chromatography/tandem accurate mass spectrometry. RESULTS Twenty-six of 29 hospitalized PWCF completed the entire study. A total of 326 compounds of known identity were detected in sweat samples. Of detected metabolites, 147 were significantly different between pre-initiation and post-completion of IV antibiotics for PEx (average treatment 14 days). Global sweat metabolomes changed from before and after IV antibiotic treatment. We discovered specific metabolite profiles predictive of PEx status as well as enriched biologic pathways associated with PEx. However, metabolomic changes were similar in PWCF who failed to return to baseline pulmonary function and those who did not. INTERPRETATION Our findings demonstrate the feasibility of non-invasive sweat metabolomic profiling in PWCF and the potential for sweat metabolomics as a prospective diagnostic and research tool to further advance our understanding of PEx in PWCF.
Collapse
Affiliation(s)
- Frederick W. Woodley
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emrah Gecili
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rhonda D. Szczesniak
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA,Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chandra L. Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher J. Nemastil
- Division of Pulmonary Medicine, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin T. Kopp
- Division of Pulmonary Medicine, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA,Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Don Hayes
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Tümmler B. What Makes Pseudomonas aeruginosa a Pathogen? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:283-301. [DOI: 10.1007/978-3-031-08491-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Abstract
Eukaryotes and their environments serve as petri dishes, hosting an abundant and a rich prokaryotic microbiome. The assemblage of a eukaryotic host and its microbiome is referred to as a holobiont. The holobiont’s microbiome interacts within itself, with the environment, and with the host at the chemical level through production of specialized metabolites resulting in homeostasis or dysbiosis. These interactions are triggered by a multitude of factors, such as community composition, age, presence of nutrients, xenobiotics, and change in physical conditions, such as temperature and oxygen. Understanding how holobionts respond and adapt to diverse triggers is necessary to uncover mechanisms of resilience or susceptibility to dysbiosis and to modulate the collective functioning of microbiome in health and disease. This article highlights the challenges associated with uncovering chemical contributions of individual holobiont members and the applicability of metabolomics-based approaches to uncover chemical signatures of microbial processes in the natural environment.
Collapse
|
15
|
Impact of artificial sputum media formulation on Pseudomonas aeruginosa secondary metabolite production. J Bacteriol 2021; 203:e0025021. [PMID: 34398662 PMCID: PMC8508215 DOI: 10.1128/jb.00250-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In vitro culture media are being developed to understand how host site-specific nutrient profiles influence microbial pathogenicity and ecology. To mimic the cystic fibrosis (CF) lung environment, a variety of artificial sputum media (ASM) have been created. However, the composition of these ASM vary in the concentration of key nutrients, including amino acids, lipids, DNA, and mucin. In this work, we used feature-based molecular networking (FBMN) to perform comparative metabolomics of Pseudomonas aeruginosa, the predominant opportunistic pathogen infecting the lungs of people with CF, cultured in nine different ASM. We found that the concentration of aromatic amino acids and iron from mucin added to the media contributes to differences in the production of P. aeruginosa virulence-associated secondary metabolites. IMPORTANCE Different media formulations aiming to replicate in vivo infection environments contain different nutrients, which affects interpretation of experimental results. Inclusion of undefined components, such as commercial porcine gastric mucin (PGM), in an otherwise chemically defined medium can alter the nutrient content of the medium in unexpected ways and influence experimental outcomes.
Collapse
|
16
|
Abstract
The healthy lung was long thought of as sterile, but recent advances using molecular sequencing approaches have detected bacteria at low levels. Healthy lung bacteria largely reflect communities present in the upper respiratory tract that enter the lung via microaspiration, which is balanced by mechanical and immune clearance and likely involves limited local replication. The nature and dynamics of the lung microbiome, therefore, differ from those of ecological niches with robust self-sustaining microbial communities. Aberrant populations (dysbiosis) have been demonstrated in many pulmonary diseases not traditionally considered microbial in origin, and potential pathways of microbe-host crosstalk are emerging. The question now is whether and how dysbiotic microbiota contribute to initiation or perpetuation of injury. The fungal microbiome and virome are less well studied. This Review highlights features of the lung microbiome, unique considerations in studying it, examples of dysbiosis in selected disease, emerging concepts in lung microbiome-host interactions, and critical areas for investigation.
Collapse
|
17
|
Parab AR, Thomas D, Lostracco-Johnson S, Siqueira-Neto JL, McKerrow JH, Dorrestein PC, McCall LI. Dysregulation of Glycerophosphocholines in the Cutaneous Lesion Caused by Leishmania major in Experimental Murine Models. Pathogens 2021; 10:593. [PMID: 34068119 PMCID: PMC8152770 DOI: 10.3390/pathogens10050593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is the most common disease form caused by a Leishmania parasite infection and considered a neglected tropical disease (NTD), affecting 700,000 to 1.2 million new cases per year in the world. Leishmania major is one of several different species of the Leishmania genus that can cause CL. Current CL treatments are limited by adverse effects and rising resistance. Studying disease metabolism at the site of infection can provide knowledge of new targets for host-targeted drug development. In this study, tissue samples were collected from mice infected in the ear or footpad with L. major and analyzed by untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). Significant differences in overall metabolite profiles were noted in the ear at the site of the lesion. Interestingly, lesion-adjacent, macroscopically healthy sites also showed alterations in specific metabolites, including selected glycerophosphocholines (PCs). Host-derived PCs in the lower m/z range (m/z 200-799) showed an increase with infection in the ear at the lesion site, while those in the higher m/z range (m/z 800-899) were decreased with infection at the lesion site. Overall, our results expanded our understanding of the mechanisms of CL pathogenesis through host metabolism and may lead to new curative measures against infection with Leishmania.
Collapse
Affiliation(s)
- Adwaita R. Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Sharon Lostracco-Johnson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
18
|
Liquid Chromatography Mass Spectrometry Detection of Antibiotic Agents in Sputum from Persons with Cystic Fibrosis. Antimicrob Agents Chemother 2021; 65:AAC.00927-20. [PMID: 33139284 DOI: 10.1128/aac.00927-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.
Collapse
|
19
|
Wisniewski BL, Shrestha CL, Zhang S, Thompson R, Gross M, Groner JA, Uppal K, Ramilo O, Mejias A, Kopp BT. Metabolomics profiling of tobacco exposure in children with cystic fibrosis. J Cyst Fibros 2020; 19:791-800. [PMID: 32487493 PMCID: PMC7492400 DOI: 10.1016/j.jcf.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inflammation is integral to early disease progression in children with CF. The effect of modifiable environmental factors on infection and inflammation in persons with CF is poorly understood. Our prior studies determined that secondhand smoke exposure (SHSe) is highly prevalent in young children with CF. SHSe is associated with increased inflammation, heightened bacterial burden, and worsened clinical outcomes. However, the specific metabolite and signaling pathways that regulate responses to SHSe in CF are relatively unknown. METHODS High-resolution metabolomics was performed on plasma samples from infants (n = 25) and children (n = 40) with CF compared to non-CF controls (n = 15). CF groups were stratified according to infant or child age and SHSe status. RESULTS Global metabolomic profiles segregated by age and SHSe status. SHSe in CF was associated with changes in pathways related to steroid biosynthesis, fatty acid metabolism, cysteine metabolism, and oxidative stress. CF infants with SHSe demonstrated enrichment for altered metabolite localization to the small intestine, liver, and striatum. CF children with SHSe demonstrated metabolite enrichment for organs/tissues associated with oxidative stress including mitochondria, peroxisomes, and the endoplasmic reticulum. In a confirmatory analysis, SHSe was associated with changes in biomarkers of oxidative stress and cellular adhesion including MMP-9, MPO, and ICAM-1. CONCLUSIONS SHSe in young children and infants with CF is associated with altered global metabolomics profiles and specific biochemical pathways, including enhanced oxidative stress. SHSe remains an important but understudied modifiable variable in early CF disease.
Collapse
Affiliation(s)
- Benjamin L Wisniewski
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Chandra L Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Shuzhong Zhang
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA
| | - Rohan Thompson
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Myron Gross
- Minnesota CHEAR Exposure Assessment Hub, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Judith A Groner
- Section of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Karan Uppal
- National Exposure Assessment Laboratory at Emory, Emory University, Atlanta, GA, USA
| | - Octavio Ramilo
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA; Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Asuncion Mejias
- Division of Infectious Diseases, Nationwide Children's Hospital, Columbus, OH, USA; Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin T Kopp
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, W510, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
20
|
Bernatchez JA, McCall LI. Insights gained into respiratory infection pathogenesis using lung tissue metabolomics. PLoS Pathog 2020; 16:e1008662. [PMID: 32663224 PMCID: PMC7360053 DOI: 10.1371/journal.ppat.1008662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
21
|
van Teijlingen Bakker N, Pearce EJ. Cell-intrinsic metabolic regulation of mononuclear phagocyte activation: Findings from the tip of the iceberg. Immunol Rev 2020; 295:54-67. [PMID: 32242952 PMCID: PMC10911050 DOI: 10.1111/imr.12848] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
We have only recently started to appreciate the extent to which immune cell activation involves significant changes in cellular metabolism. We are now beginning to understand how commitment to specific metabolic pathways influences aspects of cellular biology that are the more usual focus of immunological studies, such as activation-induced changes in gene transcription, post-transcriptional regulation of transcription, post-translational modifications of proteins, cytokine secretion, etc. Here, we focus on metabolic reprogramming in mononuclear phagocytes downstream of stimulation with inflammatory signals (such as LPS and IFNγ) vs alternative activation signals (IL-4), with an emphasis on work on dendritic cells and macrophages from our laboratory, and related studies from others. We cover aspects of glycolysis and its branching pathways (glycogen synthesis, pentose phosphate, serine synthesis, hexose synthesis, and glycerol 3 phosphate shuttle), the tricarboxylic acid pathway, fatty acid synthesis and oxidation, and mitochondrial biology. Although our understanding of the metabolism of mononuclear phagocytes has progressed significantly over the last 10 years, major challenges remain, including understanding the effects of tissue residence on metabolic programming related to cellular activation, and the translatability of findings from mouse to human biology.
Collapse
Affiliation(s)
- Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
22
|
Bisht K, Baishya J, Wakeman CA. Pseudomonas aeruginosa polymicrobial interactions during lung infection. Curr Opin Microbiol 2020; 53:1-8. [PMID: 32062024 DOI: 10.1016/j.mib.2020.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
Abstract
Chronic infections often contain complex polymicrobial communities that are recalcitrant to antibiotic treatment. The pathogens associated with these infectious communities are often studied in pure culture for their ability to cause disease. However, recent studies have begun to focus on the role of polymicrobial interactions in disease outcomes. Pseudomonas aeruginosa can colonize patients with chronic lung diseases for years and sometimes even decades. During these prolonged infections, P. aeruginosa encounters a plethora of other microbes including bacteria, fungi, and viruses. The interactions between these microbes can vary greatly, ranging from antagonistic to synergistic depending on specific host and microbe-associated contexts. These additional layers of complexity associated with chronic P. aeruginosa infections must be considered in future studies in order to fully understand the physiology of infection. Such studies focusing on the entire infectious community rather than individual species may ultimately lead to more effective therapeutic design for persistent polymicrobial infections.
Collapse
Affiliation(s)
- Karishma Bisht
- Texas Tech University, Department of Biological Sciences, Lubbock TX, USA
| | - Jiwasmika Baishya
- Texas Tech University, Department of Biological Sciences, Lubbock TX, USA
| | | |
Collapse
|