1
|
Chen G, Yin L, Zhang H. Isolation and characterization of goose astrovirus genotype 1 causing enteritis in goslings from Sichuan Province, China. BMC Vet Res 2025; 21:259. [PMID: 40205381 PMCID: PMC11983725 DOI: 10.1186/s12917-025-04482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/07/2025] [Indexed: 04/11/2025] Open
Abstract
Since 2017, goose astrovirus (GoAstV) has been widely prevalent in various provinces of China, causing economic losses in the goose industry, with outbreak mortality rates ranging from 10 to 60%. Notably, a goose farm in Sichuan Province has faced an outbreak of infectious disease in 1-3 weeks old goslings, with a mortality rate of approximately 30%. Viral metagenomic analysis of fecal samples identified Goose astrovirus genotype 1 (GoAstV-1), and PCR analysis confirmed the presence of GoAstV-1. Furthermore, we successfully isolated a GoAstV-C1 strain using goose embryos named AAstV/Goose/CHN/2023/C1 (GenBank No. PP108251), and its viral titer was calculated as 10^4.834 ELD50/0.5 mL using the Reed-Muench method. The genome size of GoAstV-C1 was about 7,261 nucleotides through amplifying with Sanger sequencing and assembling with SeqMan software. Phylogenetic analysis revealed that GoAstV-1 strains are classified into three major subtypes: A, B, and C, with the GoAstV-C1 strain identified as a unique variant within subtype B, characterized by distinct genetic divergence features. Experimental inoculation of one-day-old goslings with the virus resulted in a mortality rate of 5 out of 15 (p-value = 0.0421) and a significant reduction in weight gain compared to controls (p-value = 0.005). Pathological examination revealed that GoAstV-C1 infection caused severe damage to the liver, spleen, and kidneys. Interestingly, unlike most GoAstV, which leads to characteristic gout symptoms, our isolates GoAstV-C1 caused obvious intestinal damage characterized by necrosis, inflammatory infiltration, and crypt architectural disruption. We indicated that GoAstV-C1 displays a unique intestinal tropism rather than characteristic gout symptoms and elucidated genomic features and evolutionary relationships of GoAstV strains. These findings help advance our knowledge of the epidemiology and pathogenicity of GoAstV-1, and the predicted structure of capsid protein could serve as a potential target for designing novel antiviral drugs or vaccines against GoAstV-1.
Collapse
Affiliation(s)
- Guo Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China
- Key Laboratory of Veterinary Medicine of Universities in Sichuan, Chengdu, 610041, PR China
| | - Lingdan Yin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China
- Key Laboratory of Veterinary Medicine of Universities in Sichuan, Chengdu, 610041, PR China
| | - Huanrong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, PR China.
- Key Laboratory of Veterinary Medicine of Universities in Sichuan, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Tu Z, Wang T, Xu Y, Sun H, Peng P, Qin S, Tu C. Identification and genetic analysis of new ephemeroviruses in wild boars in China. Virol Sin 2025; 40:186-191. [PMID: 39961416 DOI: 10.1016/j.virs.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Ephemeroviruses (EVs) are arthropod-borne rhabdoviruses and were isolated exclusively from cattle and haematophagous arthropods until two new ephemeroviruses were first identified from domestic pigs most recently. Here we report the identification of newer EVs in wild boar by meta-transcriptomic (MTT) sequencing. Further screening by specific RT-nPCR of tissue samples of 459 free-ranging wild boars collected between 2018 and 2023 from 26 provinces across China confirmed five positive wild boars in four provinces. Interestingly, two ticks especially collected from two positive wild boars were also EV positive. Finally, four complete genome sequences of wild boar ephemeroviruses (WbEVs) were obtained with two strains belonging to a new EV species, and the rest two falling into porcine ephemerovirus 2 (PoEV2) species identified from domestic pigs. Our study has further extended EV host range and demonstrated natural circulations of divergent EVs in wild boars, in which ticks may play roles. Biological implications of EV infection in wild boars should be interesting topics for future investigations.
Collapse
Affiliation(s)
- Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China
| | - Tong Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Yu Xu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, PR China
| | - Heting Sun
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, PR China
| | - Peng Peng
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, PR China
| | - Siyuan Qin
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, PR China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
3
|
Piewbang C, Yi L, Zahro AN, Poonsin P, Panyathi P, Kasantikul T, Kosoltanapiwat N, He B, Techangamsuwan S. Natural fatal infection of Tembusu virus in bottlenose dolphins in Thailand. Sci Rep 2025; 15:9917. [PMID: 40121312 PMCID: PMC11929833 DOI: 10.1038/s41598-025-93477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Interspecies transmission of viruses poses significant risks to animal and human health. Tembusu virus (TMUV), an emerging flavivirus, is primarily associated with avian diseases. This study reports the first documented natural infection of TMUV in mammals, specifically zoo dolphins in Thailand, offering insights into its evolution, transmission dynamics, and zoonotic potential. In July 2023, three bottlenose dolphins developed neurological symptoms and died. Postmortem analyses, including histopathology, immunohistochemistry, high-throughput sequencing, and transmission electron microscopy, confirmed TMUV infection. Viral loads were high in brain and lung tissues, followed by kidney and spleen whereas the TMUV antigen was identified in only brain tissue. TMUV was localized in neurons and astroglia cells, and immunohistochemistry revealed CD3-positive T lymphocyte perivascular cuffing in the brain. Phylogenetic analysis placed the dolphin TMUV strains within cluster 3, related to strains found in mosquitoes in China. Retrospective analysis of dolphin samples from 2019 confirmed persistent TMUV circulation. Viral isolation on Vero cells showed characteristic cytopathic effects, and transmission electron microscopy revealed enveloped virions. This study highlights the virus's ability to infect diverse hosts, including mammals. The findings underscore the need for continuous surveillance and a One Health approach to mitigate emerging viral threats.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Le Yi
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Aisyah Nikmatuz Zahro
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Panida Poonsin
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Panitnan Panyathi
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanit Kasantikul
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Biao He
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Wang T, Guo Y, Xu Y, Sun H, Peng P, Qin S, Zhu G, Tu C, Tu Z. Geographical distribution and characterization of Jingmen tick virus in wild boars in China. Virol Sin 2025; 40:137-140. [PMID: 39753193 PMCID: PMC11963027 DOI: 10.1016/j.virs.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/14/2025] Open
Abstract
•JMTV RNA was identified in 9 out of 26 provinces with an average wild boar infection rate of 5.45% (25/459). •Phylogenetic analysis indicated that JMTV strains could be divided into two groups, but have a complex evolutionary history. •Wild boars are a potential reservoir host for JMTV.
Collapse
Affiliation(s)
- Tong Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yu Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yu Xu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Heting Sun
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Peng Peng
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Siyuan Qin
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China.
| |
Collapse
|
5
|
Yan X, Liu Y, Hu T, Huang Z, Li C, Guo L, Liu Y, Li N, Zhang H, Sun Y, Yi L, Wu J, Feng J, Zhang F, Jiang T, Tu C, He B. A compendium of 8,176 bat RNA viral metagenomes reveals ecological drivers and circulation dynamics. Nat Microbiol 2025; 10:554-568. [PMID: 39833544 DOI: 10.1038/s41564-024-01884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/13/2024] [Indexed: 01/22/2025]
Abstract
Bats are natural hosts for many emerging viruses for which spillover to humans is a major risk, but the diversity and ecology of bat viruses is poorly understood. Here we generated 8,176 RNA viral metagenomes by metatranscriptomic sequencing of organ and swab samples from 4,143 bats representing 40 species across 52 locations in China. The resulting database, the BtCN-Virome, expands bat RNA virus diversity by over 3.4-fold. Some viruses in the BtCN-Virome are traced to mammals, birds, arthropods, mollusks and plants. Diet, infection dynamics and environmental parameters such as humidity and forest coverage shape virus distribution. Compared with those in the wild, bats dwelling in human settlements harboured more diverse viruses that also circulated in humans and domestic animals, including Nipah and Lloviu viruses not previously reported in China. The BtCN-Virome provides important insights into the genetic diversity, ecological drivers and circulation dynamics of bat viruses, highlighting the need for surveillance of bats near human settlements.
Collapse
Affiliation(s)
- Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Tingsong Hu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province, China
| | - Zhenglanyi Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin Province, China
| | - Chenxi Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Lei Guo
- Division of Wildlife and Plant Conservation, State Forestry and Grassland Administration, Changchun, Jilin Province, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, Yunnan Province, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin Province, China
| | - Fuqiang Zhang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province, China.
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin Province, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
6
|
Sun Y, Zhang R, Wang H, Sun Z, Yi L, Tu C, Yang Y, He B. Viromics-based precision diagnosis of reproductive abnormalities in cows reveals a reassortant Akabane disease virus. BMC Vet Res 2024; 20:539. [PMID: 39614255 DOI: 10.1186/s12917-024-04400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND At the end of 2021, an epidemic of reproductive abnormalities in cows occurred in Jilin Province, China, posing an urgent need for a rapid diagnosis. RESULTS To identify the cause of the disease, a total of 172 samples were collected from 21 dead calves and 45 aborting or pregnant cows in 10 farms across the province. Routine PCR or RT-PCR detection did not find any common abortion-related agents. We then employed the viromics-based precision diagnosis method to analyze these samples, and the read-based annotation showed signals of an Akabane disease virus (AKAV) in some libraries. To further identify the virus, nested RT-PCR detection revealed that 52.3% (11/21) of dead calves and 26.6% (12/45) of cows were positive for the virus. Phylogenetic analysis of the partial fragments showed that the S segment of the virus was 100% identical to the Chinese strain TJ2016, but its M and L segments shared 94.3% and 96.5% identities with an Israeli strain. CONCLUSIONS The viromic and molecular results suggested that these animals were infected with a reassortant AKAV. Coupled with the clinical signs, the virus should be responsible for the epizootic, highlighting that molecular and serological surveys of the virus in cows during early pregnancy, as well as ecological investigation in its arthropod vectors, are necessary.
Collapse
Affiliation(s)
- Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Ru Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Huiyu Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Zheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yanling Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
7
|
Huang Z, Wang Z, Liu Y, Ke C, Feng J, He B, Jiang T. The links between dietary diversity and RNA virus diversity harbored by the great evening bat (Ia io). MICROBIOME 2024; 12:246. [PMID: 39578858 PMCID: PMC11585108 DOI: 10.1186/s40168-024-01950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Predator‒prey interactions and their dynamic changes provide frequent opportunities for viruses to spread among organisms and thus affect their virus diversity. However, the connections between dietary diversity and virus diversity in predators have seldom been studied. The avivorous bats, Ia io, show a seasonal pattern of dietary diversity. Although most of them primarily prey on insects in summer, they mainly prey on nocturnally migrating birds in spring and autumn. RESULTS In this study, we characterized the RNA virome of three populations of I. io in Southwest China during summer and autumn using viral metatranscriptomic sequencing. We also investigated the relationships between dietary diversity and RNA virus diversity by integrating DNA metabarcoding and viral metatranscriptomic sequencing techniques at the population level of I. io. We found 55 known genera belonging to 35 known families of RNA viruses. Besides detecting mammal-related viruses, which are the usual concern, we also found a high abundance of insect-related viruses and some bird-related viruses. We found that insect-related viruses were more abundant in summer, while the bird-related viruses were predominantly detected in autumn, which might be caused by the seasonal differences in prey selection by I. io. Additionally, a significant positive correlation was identified between prey diversity and total virus diversity. The more similar the prey composition, the more similar the total virus composition and the higher the count of potential new viruses. We also found that the relative abundance of Picornaviridae increased with increasing prey diversity and body mass. CONCLUSIONS In this study, significant links were found between RNA virus diversity and dietary diversity of I. io. The results implied that dynamic changes in predator-prey interactions may facilitate frequent opportunities for viruses to spread among organisms. Video Abstract.
Collapse
Affiliation(s)
- Zhenglanyi Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China
| | - Zhiqiang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China
| | - Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China
| | - Can Ke
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China.
| |
Collapse
|
8
|
Wang Y, Xu P, Han Y, Zhao W, Zhao L, Li R, Zhang J, Zhang S, Lu J, Daszak P, Jin Q, Wu Z. Unveiling bat-borne viruses: a comprehensive classification and analysis of virome evolution. MICROBIOME 2024; 12:235. [PMID: 39543683 PMCID: PMC11566218 DOI: 10.1186/s40168-024-01955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Bats (Order Chiroptera) are an important reservoir of emerging zoonotic microbes, including viruses of public health concern such as henipaviruses, lyssaviruses, and SARS-related coronaviruses. Despite the continued discovery of new viruses in bat populations, a significant proportion of these viral agents remain uncharacterized, highlighting the imperative for additional research aimed at elucidating their evolutionary relationship and taxonomic classification. RESULTS In order to delve deeper into the viral reservoir hosted by bats, the present study employed Next Generation Sequencing (NGS) technology to analyze 13,105 swab samples obtained from various locations in China. Analysis of 378 sample pools revealed the presence of 846 vertebrate-associated viruses. Subsequent thorough examination, adhering to the International Committee on Taxonomy of Viruses (ICTV) criteria for virus classification, identified a total of 120 putative viral species with the potential to emerge as novel viruses, comprising a total of 294 viral strains. Phylogenetic analysis of conserved genomic regions indicated the novel virus exhibited a diverse array of viral lineages and branches, some of which displayed close genetic relationships to known human and livestock pathogens, such as poxviruses and pestiviruses. CONCLUSIONS This study investigates the breadth of DNA and RNA viruses harbored by bats, delineating several novel evolutionary lineages and offering significant contributions to virus taxonomy. Furthermore, the identification of hitherto unknown viruses with relevance to human and livestock health underscores the importance of this study in encouraging infectious disease monitoring and management efforts in both public health and veterinary contexts. Video Abstract.
Collapse
Affiliation(s)
- Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lamei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Rui Li
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, P. R. China
| | | | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
9
|
Li C, Hu Y, Liu Y, Li N, Yi L, Tu C, He B. The tissue virome of black-spotted frogs reveals a diversity of uncharacterized viruses. Virus Evol 2024; 10:veae062. [PMID: 39175838 PMCID: PMC11341201 DOI: 10.1093/ve/veae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Amphibians are an essential class in the maintenance of global ecosystem equilibrium, but they face serious extinction risks driven by climate change and infectious diseases. Unfortunately, the virus diversity harbored by these creatures has been rarely investigated. By profiling the virus flora residing in different tissues of 100 farmed black-spotted frogs (Rana nigromaculata) using a combination of DNA and RNA viromic methods, we captured 28 high-quality viral sequences covering at least 11 viral families. Most of these sequences were remarkably divergent, adding at least 10 new species and 4 new genera within the families Orthomyxoviridae, Adenoviridae, Nodaviridae, Phenuiviridae, and Picornaviridae. We recovered five orthomyxovirus segments, with three distantly neighboring two Chinese fish-related viruses. The recombination event of frog virus 3 occurred among the frog and turtle strains. The relative abundance and molecular detection revealed different tissue tropisms of these viruses, with the orthomyxovirus and adenoviruses being enteric and probably also neurotropic, but the new astrovirus and picornavirus being hepatophilic. These results expand the spectrum of viruses harbored by anurans, highlighting the necessity to continuously monitor these viruses and to investigate the virus diversity in a broader area with more diverse amphibian species.
Collapse
Affiliation(s)
- Chenxi Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Yazhou Hu
- Fisheries College, Hunan Agriculture University, No. 1 Nongda Road, Furong District, Changsha, Hunan Province 410128, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, No. 12 Wenhui Road, Hanjiang District, Yangzhou, Jiangsu Province 225009, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 573 Yujinxiang Street, Jingyue District, Changchun, Jilin Province 130122, China
| |
Collapse
|
10
|
Wang T, Du H, Feng N, Liu Y, Xu Y, Sun H, Peng P, Qin S, Zhang X, Liu Y, Yu M, Liang H, He B, Zhu G, Tu C, Tu Z. First complete genomic sequence analysis of canine distemper virus in wild boar. Virol Sin 2024; 39:702-704. [PMID: 38768711 PMCID: PMC11402443 DOI: 10.1016/j.virs.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/29/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
- Tong Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Haiying Du
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yuhang Liu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yu Xu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Heting Sun
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Peng Peng
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Siyuan Qin
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Xiaotian Zhang
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Yan Liu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Mingyuan Yu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Hongrui Liang
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Changchun Tu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| |
Collapse
|
11
|
Meng X, Sun J, Yao M, Sun Y, Xu H, Liu C, Chen H, Guo J, Nie X, He L, Zhao Z, Li N, Wang Z, Wang J. Isolation and Identification of Severe Fever with Thrombocytopenia Syndrome Virus from Farmed Mink in Shandong, China. Transbound Emerg Dis 2024; 2024:9604673. [PMID: 40303144 PMCID: PMC12016913 DOI: 10.1155/2024/9604673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2025]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus, recently named Bandavirus dabieense, belongs to the genus Bandavirus of family Phenuiviridae, and it causes SFTS in humans with clinical symptoms including fever, thrombocytopenia, gastrointestinal symptoms, and leukocytopenia. However, there are few reports on the pathogenesis of SFTSV in animals. This study first isolated the SFTSV strain SD22-2 from sick-farmed mink. Viral metagenomics was used to detect SFTSV nucleotide in the clinical specimens obtained from symptomatic minks. Then, we isolated the virus using Vero and DH82 cells, and Real-Time Quantitative PCR (RT-qPCR), indirect immunofluorescence assay, transmission electron microscopy, and Western blotting identified it. Meanwhile, phylogenetic analysis based on partial L, M, and S segment sequences indicated that the mink-origin SFTSV strain SD22-2 belonged to genotype D and was genetically close to the HB2016-003 strain isolated from humans. Taken together, we isolated and identified an SFTSV from farmed mink that may be the reservoir hosts of SFTSV. We should pay more attention to farmed minks and biosecurity practices, and active surveillance at fur farms must be reviewed and enhanced.
Collapse
Affiliation(s)
- Xiangshu Meng
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jian Sun
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Weihai Ocean Vocational College, Rongcheng, China
| | - Mengfan Yao
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Han Xu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chao Liu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Han Chen
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jie Guo
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaoxuan Nie
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Longbin He
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affliated Hospital, Henan University, Kaifeng, Henan, China
| | - Jianke Wang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Guo G, Wang M, Zhou D, He X, Han P, Chen G, Zeng J, Liu Z, Wu Y, Weng S, He J. Virome Analysis Provides an Insight into the Viral Community of Chinese Mitten Crab Eriocheir sinensis. Microbiol Spectr 2023; 11:e0143923. [PMID: 37358426 PMCID: PMC10433957 DOI: 10.1128/spectrum.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023] Open
Abstract
Recent advances in viromics have led to the discovery of a great diversity of RNA viruses and the identification of a large number of viral pathogens. A systematic exploration of viruses in Chinese mitten crab (Eriocheir sinensis), one of the most important aquatic commercial species, is still lacking. Here, we characterized the RNA viromes of asymptomatic, milky disease (MD)-affected, and hepatopancreatic necrosis syndrome (HPNS)-affected Chinese mitten crabs collected from 3 regions in China. In total, we identified 31 RNA viruses belonging to 11 orders, 22 of which were first reported here. By comparing viral composition between samples, we observed high variation in viral communities across regions, with most of the viral species being region-specific. We proposed to establish several novel viral families or genera based on the phylogenetic relationships and genome structures of viruses discovered in this study, expanding our knowledge of viral diversity in brachyuran crustaceans. IMPORTANCE High-throughput sequencing and meta-transcriptomic analysis provide us with an efficient tool to discover unknown viruses and explore the composition of viral communities in specific species. In this study, we investigated viromes in asymptomatic and diseased Chinese mitten crabs collected from three distant locations. We observed high regional variation in the composition of viral species, highlighting the importance of multi-location sampling. In addition, we classified several novel and ICTV-unclassified viruses based on their genome structures and phylogenetic relationships, providing a new perspective on current viral taxa.
Collapse
Affiliation(s)
- Guangyu Guo
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Muhua Wang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dandan Zhou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xinyi He
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiyun Han
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gongrui Chen
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Zeng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi Liu
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yinqing Wu
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Wang G, He Y, Yan X, Sun Y, Yi L, Tu C, He B. Virome Profiling of Chickens with Hepatomegaly Rupture Syndrome Reveals Coinfection of Multiple Viruses. Viruses 2023; 15:1249. [PMID: 37376549 DOI: 10.3390/v15061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Liver diseases seriously challenge the health of chickens raised on scaled farms and cause tremendous economic losses to farm owners. The causative agents for liver diseases are still elusive, even though various pathogens, such as the hepatitis E virus, have been reported. In the winter of 2021, a liver disease was observed on a chicken farm in Dalian, China, which increased chicken mortality by up to 18%. We conducted panvirome profiling of the livers, spleens, kidneys, and recta of 20 diseased chickens. The viromic results revealed coinfection of multiple viruses, including pathogenic ones, in these organs. The viruses were highly identical to those detected in other provinces, and the vaccine and field strains of avian encephalomyelitis virus (AEV) and chicken infectious anemia virus (CIAV) cocirculated on the farm. In particular, the liver showed higher abundance of AEV and multiple fowl adenoviruses than other organs. Furthermore, the liver also contracted avian leukemia virus and CIAV. Experimental animals with infected liver samples developed minor to medium lesions of the liver and showed a virus abundance profile for AEV across internal organs similar to that in the original samples. These results suggest that coinfection with multiple pathogenic viruses influences the occurrence and development of infectious liver disease. The results also highlight that strong farm management standards with strict biosafety measures are needed to minimize the risk of pathogenic virus introduction to the farm.
Collapse
Affiliation(s)
- Guoshuai Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yaqi He
- Beijing Centre Biology Co., Ltd., Beijing 102600, China
| | - Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| |
Collapse
|
14
|
Liu Y, Guo L, Wang G, Gao F, Tu Z, Xu D, Sun L, Yi L, Zhu G, Tu C, He B. DNA virome of ticks in the Northeast and Hubei provinces of China reveals diverse single-stranded circular DNA viruses. Parasit Vectors 2023; 16:61. [PMID: 36759895 PMCID: PMC9912487 DOI: 10.1186/s13071-023-05684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Ticks are medically important vectors capable of transmitting a variety of pathogens to and between host species. Although the spectrum of tick-borne RNA viruses has been frequently investigated, the diversity of tick-borne DNA viruses remains largely unknown. METHODS A total of 1571 ticks were collected from forests and infested animals, and the diversity of the viruses they harbored was profiled using a DNA-specific virome method. The viromic data were phylogenetically analyzed and validated by PCR assays. RESULTS Although diverse and abundant prokaryotic viruses were identified in the collected ticks, only eukaryotic DNA viruses with single-stranded circular genomes covering the anelloviruses and circular replication-associated (Rep) protein-encoding single-stranded (CRESS) DNA viruses were recovered from ticks. Anelloviruses were detected only in two tick pools, but CRESS DNA viruses were prevalent across these ticks except in one pool of Dermacentor spp. ticks. Phylogenetic analyses revealed that these tick-borne CRESS DNA viruses were related to viruses recovered from animal feces, tissues and even environmental samples, suggesting that their presence may be largely explained by environmental factors rather than by tick species and host blood meals. CONCLUSIONS Based on the results, tick-borne eukaryotic DNA viruses appear to be much less common than eukaryotic RNA viruses. Investigations involving a wider collection area and more diverse tick species are required to further support this speculation.
Collapse
Affiliation(s)
- Yuhang Liu
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu China ,grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Lei Guo
- grid.454880.50000 0004 0596 3180Division of Wildlife and Plant Conservation, State Forestry and Grassland Administration, Changchun, Jilin China
| | - Guoshuai Wang
- grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Fei Gao
- Section of Wildlife Conservation, Greater Xing’an Mountains Forestry Group Corporation, Jiagedaqi, Heilongjiang China
| | - Zhongzhong Tu
- grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Deming Xu
- Forestry Bureau of Linjiang City, Linjiang, Jilin China
| | - Lanshun Sun
- Provincial Wildlife Disease Monitoring Station of Shuanghe, Xunke, Heilongjiang China
| | - Le Yi
- grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Guoqiang Zhu
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu China
| | - Changchun Tu
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu China ,grid.410727.70000 0001 0526 1937Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Biao He
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China. .,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.
| |
Collapse
|
15
|
Sun Y, Sun L, Sun S, Tu Z, Liu Y, Yi L, Tu C, He B. Virome Profiling of an Eastern Roe Deer Reveals Spillover of Viruses from Domestic Animals to Wildlife. Pathogens 2023; 12:pathogens12020156. [PMID: 36839428 PMCID: PMC9959412 DOI: 10.3390/pathogens12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Eastern roe deer (Capreolus pygargus) is a small ruminant and is widespread across China. This creature plays an important role in our ecological system. Although a few studies have been conducted to investigate pathogens harbored by this species, our knowledge of the virus diversity is still very sparse. In this study, we conducted the whole virome profiling of a rescue-failed roe deer, which revealed a kobuvirus (KoV), a bocaparvovirus (BoV), and multiple circular single-stranded viruses. These viruses were mainly recovered from the rectum, but PCR detection showed systematic infection of the KoV. Particularly, the KoV and BoV exhibited closely genetic relationships with bovine and canine viruses, respectively, highly suggesting the spillover of viruses from domestic animals to wildlife. Although these viruses were unlikely to have been responsible for the death of the animal, they provide additional data to understand the virus spectrum harbored by roe deer. The transmission of viruses between domestic animals and wildlife highlights the need for extensive investigation of wildlife viruses.
Collapse
Affiliation(s)
- Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Lanshun Sun
- Provincial Wildlife Disease Monitoring Station of Shuanghe, Xunke 164400, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.T.); (B.H.)
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.T.); (B.H.)
| |
Collapse
|
16
|
Zhou D, Liu S, Guo G, He X, Xing C, Miao Q, Chen G, Chen X, Yan H, Zeng J, Zheng Z, Deng H, Weng S, He J. Virome Analysis of Normal and Growth Retardation Disease-Affected Macrobrachium rosenbergii. Microbiol Spectr 2022; 10:e0146222. [PMID: 36445118 PMCID: PMC9769563 DOI: 10.1128/spectrum.01462-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important aquaculture species in China. Growth retardation disease (GRD) is a common contagious disease in M. rosenbergii, resulting in slow growth and precocious puberty in prawns, and has caused growing economic losses in the M. rosenbergii industry. To investigate the viral diversity of M. rosenbergii and identify potentially high-risk viruses linked to GRD, virome analysis of the GRD-affected and normal M. rosenbergii was carried out using next-generation sequencing (NGS). A total of 327 contigs (>500 bp) were related to viral sequences belonging to 23 families/orders and a group of unclassified viruses. The majority of the viral contigs in M. rosenbergii belonged to the order Picornavirales, with the Solinviviridae family being the most abundant in both the diseased and normal groups. Furthermore, 16 RNA viral sequences with nearly complete genomes were characterized and phylogenetically analyzed, belonging to the families Solinviviridae, Flaviviridae, Polycipiviridae, Marnaviridae, and Dicistroviridae as well as three new clades of the order Picornavirales. Notably, the cross-species transmission of a picorna-like virus was observed between M. rosenbergii and plants. The "core virome" seemed to be present in the diseased and normal prawns. Still, a clear difference in viral abundance was observed between the two groups. These results showed that the broad diversity of viruses is present in M. rosenbergii and that the association between viruses and disease of M. rosenbergii needs to be further investigated. IMPORTANCE Growth retardation disease (GRD) has seriously affected the development and economic growth of the M. rosenbergii aquaculture industry. Our virome analysis showed that diverse viral sequences were present in M. rosenbergii, significantly expanding our knowledge of viral diversity in M. rosenbergii. Some differences in viral composition were noted between the diseased and normal prawns, indicating that some viruses become more abundant in occurrences or outbreaks of diseases. In the future, more research will be needed to determine which viruses pose a risk for M. rosenbergii. Our study provides important baseline information contributing to disease surveillance and risk assessment in M. rosenbergii aquaculture.
Collapse
Affiliation(s)
- Dandan Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Guangyu Guo
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyi He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Qijin Miao
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gongrui Chen
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Chen
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Yan
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiamin Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenwen Zheng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Elimination of Foreign Sequences in Eukaryotic Viral Reference Genomes Improves the Accuracy of Virome Analysis. mSystems 2022; 7:e0090722. [PMID: 36286492 PMCID: PMC9765019 DOI: 10.1128/msystems.00907-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Widespread in public databases, foreign contaminant sequences pose a substantial obstacle in genomic analyses. Such contamination in viral genome databases is also notorious but more complicated and often causes questionable results in various applications, particularly in virome-based virus detection. Here, we conducted comprehensive screening and identification of the foreign sequences hidden in the largest eukaryotic viral genome collections of GenBank and UniProt using a scrutiny pipeline, which enables us to rigorously detect those problematic viral sequences (PVSs) with origins in hosts, vectors, and laboratory components. As a result, a total of 766 nucleotide PVSs and 276 amino acid PVSs with lengths up to 6,605 bp were determined, which were widely distributed in 39 families with many involving highly public health-concerning viruses, such as hepatitis C virus, Crimean-Congo hemorrhagic fever virus, and filovirus. The majority of these PVSs are genomic fragments of hosts including humans and bacteria. However, they cannot simply be regarded as foreign contaminants, since parts of them are results of natural occurrence or artificial engineering of viruses. Nevertheless, they severely disturb such sequence-based analyses as genome annotation, taxonomic assignment, and virome profiling. Therefore, we provide a clean version of the eukaryotic viral reference data set by the removal of these PVSs, which allows more accurate virome analysis with less time consumed than with other comprehensive databases. IMPORTANCE High-throughput sequencing-based viromics highly depends on reference databases, but foreign contamination is widespread in public databases and often leads to confusing and even wrong conclusions in genomic analysis and viromic profiling. To address this issue, we systematically detected and identified the contamination in the largest viral sequence collections of GenBank and UniProt based on a stringent scrutiny pipeline. We found hundreds of PVSs that are related to hosts, vectors, and laboratory components. By the removal of them, the resulting data set greatly improves the accuracy and efficiency of eukaryotic virome profiling. These results refresh our knowledge of the type and origin of PVSs and also have warning implications for viromic analysis. Viromic practitioners should be aware of these problems caused by PVSs and need to realize that a careful review of bioinformatic results is necessary for a reliable conclusion.
Collapse
|
18
|
Virome Profiling of an Amur leopard cat Reveals Multiple Anelloviruses and a Bocaparvovirus. Vet Sci 2022; 9:vetsci9110640. [DOI: 10.3390/vetsci9110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
As a small top predator, Amur leopard cat (Prionailurus bengalensis euptilurus) is widely distributed in northeast Asia and plays an important role in the control of small rodent populations and in the maintenance of ecological equilibrium. However, the viruses harbored by this creature have been rarely investigated. Here, we report the DNA and RNA eukaryotic virome profiling of an injured Amur leopard cat followed by PCR validation, which revealed diverse anelloviruses in multiple organs and a bocaparvovirus in the lymph, but no RNA viruses. These anelloviruses have diverse genomic structures and are classified into four phylogroups with viruses of various felines, while the bocaparvovirus is extremely similar to those recovered from diarrheal domestic cats, illustrating the transmission of the virus between domestic animals and wildlife. These data provide the first insight into the genetic diversity of Amur leopard cat viruses, highlighting the need for further investigation of wild animals.
Collapse
|
19
|
Yan X, Sheng J, Zhang C, Li N, Yi L, Zhao Z, Feng Y, Tu C, He B. Detection and Characterization of a Reassortant Mammalian Orthoreovirus Isolated from Bats in Xinjiang, China. Viruses 2022; 14:1897. [PMID: 36146702 PMCID: PMC9504886 DOI: 10.3390/v14091897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian orthoreoviruses (MRVs) are increasingly reported to cause various diseases in humans and other animals, with many possibly originating from bats, highlighting the urgent need to investigate the diversity of bat-borne MRVs (BtMRVs). Here, we report the detection and characterization of a reassortant MRV that was isolated from a bat colony in Xinjiang, China. The BtMRV showed a wide host and organ tropism and can efficiently propagate the cell lines of different animals. It caused mild damage in the lungs of the experimentally inoculated suckling mice and was able to replicate in multiple organs for up to three weeks post-inoculation. Complete genome analyses showed that the virus was closely related to MRVs in a wide range of animals. An intricate reassortment network was revealed between the BtMRV and MRVs of human, deer, cattle, civet and other bat species. Specifically, we found a bat-specific clade of segment M1 that provides a gene source for the reassortment of human MRVs. These data provide important insights to understand the diversity of MRVs and their natural circulation between bats, humans, and other animals. Further investigation and surveillance of MRV in bats and other animals are needed to control and prevent potential MRV-related diseases.
Collapse
Affiliation(s)
- Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Chang Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zihan Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|