1
|
Zhou J, Li TL, Wei B, Ruan YF, Wang YQ, Liu JY, Song MM, Shen YX. Oral colon-targeted delivery of recombinant human MANF for alleviation of ulcerative colitis. Int J Pharm X 2025; 9:100320. [PMID: 40115964 PMCID: PMC11925120 DOI: 10.1016/j.ijpx.2025.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025] Open
Abstract
Midbrain astrocyte-derived neurotrophic factor (MANF) is a secreted protein induced by endoplasmic reticulum stress. Previous studies have indicated that intravenous administration of 1 mg/kg/day recombinant human MANF protein with His tag (His-MANF) for 3 days can ameliorate acute ulcerative colitis in mice. However, long-term intravenous therapy has many disadvantages. In this paper, His-MANF protein was successfully encapsulated into alginate and hyaluronic acid hybrid hydrogel microcapsules in one step using the gas shear method and then coated by Eudragit S100 to construct an oral colon-targeted delivery system (MSH@E). The MSH@E microcapsules exhibited controlled and sustained release behavior and colon-targeting properties. Both fluorescent imaging and immunohistochemistry staining results showed that His-MANF protein could accumulate in the colitis colon for a longer residence time after oral delivery. In vivo studies demonstrated that oral administration of MSH@E microcapsules could alleviate DSS-induced colitis in mice without systemic toxicity. Importantly, even if the oral His-MANF dose was half of the intravenous His-MANF dose, oral delivery was still much more effective than intravenous injection, suggesting the development of the oral colon-targeted delivery system (MSH@E) has great significance and makes a breakthrough from intravenous to oral administration for His-MANF treatment of ulcerative colitis (UC).
Collapse
Affiliation(s)
- Jie Zhou
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China
- Anhui Provincial Institute of Translational Medicine, 230032 Hefei, Anhui, PR China
| | - Tian-Le Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China
| | - Bo Wei
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China
- Anhui Provincial Institute of Translational Medicine, 230032 Hefei, Anhui, PR China
| | - Yue-Feng Ruan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China
- Anhui Provincial Institute of Translational Medicine, 230032 Hefei, Anhui, PR China
| | - Ye-Qin Wang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China
- Anhui Provincial Institute of Translational Medicine, 230032 Hefei, Anhui, PR China
| | - Jiao-Yan Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China
| | - Meng-Meng Song
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, 230032 Hefei, Anhui, PR China
- Anhui Provincial Institute of Translational Medicine, 230032 Hefei, Anhui, PR China
| |
Collapse
|
2
|
Wang L, Shao L, Gao YC, Liu J, Li XD, Zhou J, Li SF, Song YL, Liu B, Zhang W, Huang WH. Panax notoginseng Saponins Alleviate Inflammatory Bowel Disease via Alteration of Gut Microbiota-Bile Acid Metabolism. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:567-596. [PMID: 40165428 DOI: 10.1142/s0192415x25500223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bile acid metabolism mediated by gut microbiota is significantly related to immunity regulation that plays an important role in the development and treatment of inflammatory bowel disease (IBD). Our previous study has demonstrated that Panax notoginseng saponins (PNS) alleviate colitis due to the regulation of T helper 17/Regulatory T cells (Th17/Treg) balance via gut microbiota. However, the effects and mechanism of PNS on colitis pertinent to bile acid metabolism mediated by gut microbiota remain elusive. This study aims to investigate the anti-colitis mechanism of PNS by regulating the Th17/Treg balance pertinent to gut microbiota-bile acid metabolism. Results showed that PNS significantly decreased the relative abundance of Allobaculum, Dubosiella, Muribaculum, and Alistipes, and up-regulated the relative contents of conjugated bile acids, such as TCA and TCDCA. Fecal microbiota transplantation (FMT) showed that the gut microbiota remodeled by PNS had a regulatory effect on bile acid metabolism, and up-regulated the relative contents of TCA and TCDCA, which alleviated IBD and promoted Treg cell expression in vivo and in vitro. Taken together, PNS could reshape the profiling of gut microbiota to generate more TCA and TCDCA, which improve the balance of Th17/Treg to exert anti-IBD effects.
Collapse
Affiliation(s)
- Lin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410128, P. R. China
| | - Yong-Chao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Jing Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Xu-Dong Li
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Jie Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Shuang-Feng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Yue-Lin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, P. R. China
| |
Collapse
|
3
|
Ma Y, Yang H, Wang X, Huang Y, Li Y, Pan G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118968. [PMID: 39427739 DOI: 10.1016/j.jep.2024.118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a globally increasing disease. Despite continuous efforts, the clinical application of treatment drugs has not achieved satisfactory success and faces limitations such as adverse drug reactions. Numerous investigations have found that the pathogenesis of IBD is connected with disturbances in bile acid circulation and metabolism. Traditional Chinese medicine targeting bile acids (BAs) has shown significant therapeutic effects and advantages in treating inflammatory bowel disease. AIM OF THIS REVIEW IThis article reviews the role of bile acids and their receptors in IBD, as well as research progress on IBD therapeutic drugs based on bile acids. It explores bile acid metabolism and its interaction with the intestinal microbiota, summarizes clinical drugs for treating IBD including single herbal medicine, traditional herbal prescriptions, and analyzes the mechanisms of action in treating IBD. MATERIALS AND METHODS IThe electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature up to January 2024, using keywords "bile acid", "bile acid receptor", "inflammatory bowel disease", "intestinal microbiota" and "targeted drugs". RESULTS IImbalance in bile acid levels can lead to intestinal inflammation, while IBD can disrupt the balance of microbes, result in alterations in the bile acid pool's composition and amount. This change can damage of intestinal mucosa healing ability. Bile acids are vital for keeping the gut barrier function intact, regulating gene expression, managing metabolic equilibrium, and influencing the properties and roles of the gut's microbial community. Consequently, focusing on bile acids could offer a potential treatment strategy for IBD. CONCLUSION IIBD can induce intestinal homeostasis imbalance and changes in BA pool, leading to fluctuations in levels of relevant metabolic enzymes, transporters, and nuclear receptors. Therefore, by regulating the balance of BA and key signaling molecules of bile acids, we can treat IBD. Traditional Chinese medicine has great potential and promising prospects in treating IBD. We should focus on the characteristics and advantages of Chinese medicine, promote the development and clinical application of innovative Chinese medicine, and ultimately make Chinese medicine targeting bile acids the mainstream treatment for IBD.
Collapse
Affiliation(s)
- Yueyue Ma
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Haoze Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
4
|
Farid MS, Shafique B, Xu R, Łopusiewicz Ł, Zhao C. Potential interventions and interactions of bioactive polyphenols and functional polysaccharides to alleviate inflammatory bowel disease - A review. Food Chem 2025; 462:140951. [PMID: 39213975 DOI: 10.1016/j.foodchem.2024.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel disease is a multifaceted condition that is influenced by nutritional, microbial, environmental, genetic, psychological, and immunological factors. Polyphenols and polysaccharides have gained recognition for their therapeutic potential. This review emphasizes the biological effects of polyphenols and polysaccharides, and explores their antioxidant, anti-inflammatory, and microbiome-modulating properties in the management of inflammatory bowel disease (IBD). However, polyphenols encounter challenges, such as low stability and low bioavailability in the colon during IBD treatment. Hence, polysaccharide-based encapsulation is a promising solution to achieve targeted delivery, improved bioavailability, reduced toxicity, and enhanced stability. This review also discusses the significance of covalent and non-covalent interactions, and simple and complex encapsulation between polyphenols and polysaccharides. The administration of these compounds in appropriate quantities has proven beneficial in preventing the development of Crohn's disease and ulcerative colitis, ultimately leading to the management of IBD. The use of polyphenols and polysaccharides has been found to reduce histological scores and colon injury associated with IBD, increase the abundance of beneficial microbes, inhibit the development of colitis-associated cancer, promote the production of microbial end-products, such as short-chain fatty acids (SCFAs), and improve anti-inflammatory properties. Despite the combined effects of polyphenols and polysaccharides observed in both in vitro and in vivo studies, further human clinical trials are needed to comprehend their effectiveness on inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Bakhtawar Shafique
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rui Xu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Łukasz Łopusiewicz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, 59 Okopowa Str. Warszawa, 01-043, Poland; Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Li J, Shao M, Liu H, Guo P, Liu F, Ma M, Li Q. Lithium Coupled with C6-Carboxyl Improves the Efficacy of Oligoguluronate in DSS-Induced Ulcerative Colitis in C57BL/6J Mice. Mar Drugs 2024; 22:573. [PMID: 39728147 DOI: 10.3390/md22120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Oligoguluronate lithium (OGLi) was prepared for the purpose of enhancing the anti-ulcerative colitis (UC) activities of OG, in which lithium (Li+) is coupled with the C6-carboxyl of G residue. The therapeutic effects of OGLi on dextran sulfate (DSS)-induced UC mice were investigated, and oligoguluronate sodium (OGNa) and lithium carbonate (LC) were used as contrasts. The effects of OGLi, OGNa and LC on the treatment of UC mice were studied by monitoring body weight change and evaluating colon length, the disease activity index (DAI), histopathological examination and gut microbiota regulation. The results showed that compared with OGNa and LC, OGLi significantly reduced the clinical symptoms and histopathological changes associated with UC in the acute model. It was worth noting that OGLi significantly changed the gut microbiota characteristics of the DSS-treated mice and corrected the typical dysbacteriosis of DSS-induced UC. This intervention resulted in increasing the abundance of norank_f_Muribaculaceae and Ileibacterium spp. while reducing the levels of Escherichia-Shigella spp. and Romboutsia spp. The OGLi could significantly increase the diversity of intestinal microorganisms in the short term. All of these discoveries demonstrate that lithium collaboratively enhances the anti-UC efficacy of OG, which will help to create OG-based drugs for the treatment of UC.
Collapse
Affiliation(s)
- Jiayi Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meng Shao
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Hao Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Peng Guo
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Fei Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Mingfeng Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Quancai Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
6
|
Bai SH, Chandnani A, Cao S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024; 12:2910. [PMID: 39767816 PMCID: PMC11673883 DOI: 10.3390/biomedicines12122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that affects about 7 million people worldwide, and new therapies are needed. Understanding the complex roles that bile acids (BAs) play in IBD may lead to the development of novel IBD treatments independent of direct immunosuppression. This review discusses the latest discoveries in the roles BAs play in IBD pathogenesis and explores how these discoveries offer promising new therapeutic targets to treat IBD and improve patient outcomes. Several therapies discussed include specific BA receptor (BAR) agonists, dietary therapies, supplements, probiotics, and mesenchymal stem cell therapies that have all been shown to decrease IBD disease activity.
Collapse
Affiliation(s)
| | | | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.H.B.); (A.C.)
| |
Collapse
|
7
|
Yang Y, Qiao Y, Liu G, Chen W, Zhang T, Liu J, Fan W, Tong M. A Novel Synbiotic Protects Against DSS-Induced Colitis in Mice via Anti-inflammatory and Microbiota-Balancing Properties. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10393-2. [PMID: 39508961 DOI: 10.1007/s12602-024-10393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-inflammatory disease. Gut microbes, intestinal immunity, and gut barrier function play a critical role in IBD. Growing evidence suggests that synbiotic may offer therapeutic benefits for individuals with colitis, suggesting an alternative therapy against colitis. With this in mind, we creatively prepared a new synbiotic combination consisting of a probiotic strain (Limosilactobacillus reuteri) along with one prebiotic chitooligosaccharides (COS). The protective effects of the synbiotic on DSS-induced colitis and the underlying mechanisms were investigated. We demonstrated that the synbiotic ameliorated colitis in mice, as evidenced by a significant remission in body weight loss and colon shortening, and a decreased disease activity index (DAI). Notably, synbiotic reduced the intestinal inflammation and injury by synergistically decreasing inflammatory factors, inhibiting TLR4/Myd88/NF-κB/NLRP3 signaling, preventing macrophage infiltration, and enhancing the integrity of the intestinal barrier. Moreover, synbiotic selectively promoted the growth of beneficial bacteria (e.g., Akkermansia, Lactobacillus) but decreased the pathogenic bacteria (e.g., Helicobacter). BugBase's analysis supported its ameliorated role in reducing pathogenic bacteria. Collectively, our findings revealed the novel synbiotic had a potential to treat colitis, which was associated with its anti-inflammatory and microbiota-balancing properties. This study will contribute to the development of functional synbiotic products for IBD therapy and will provide valuable insights into their mechanisms.
Collapse
Affiliation(s)
- Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China
| | - Yuyu Qiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China
| | - Ge Liu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China
| | - Weihao Chen
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China
| | - Ting Zhang
- Department of Ruminant Nutrition, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jing Liu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China.
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and, Shanxi Key Laboratory of Cellular Physiology , Taiyuan, 030001, China.
| |
Collapse
|
8
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Xu L, Gao G, Zhou Z, Wei Z, Sun W, Li Y, Jiang X, Gu J, Li X, Pi Y. Fermented Purslane ( Portulaca oleracea L.) Supplementation Enhances Growth and Immune Function Parallel to the Regulation of Gut Microbial Butyrate Production in Weaned Piglets. Microorganisms 2024; 12:1403. [PMID: 39065171 PMCID: PMC11278901 DOI: 10.3390/microorganisms12071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Weaning is a challenging period for piglets, characterized by stress-related growth checks, compromised immunity, and gut dysbiosis. Purslane (Portulaca oleracea L.), known for its rich content of antioxidants, has potential as a functional feed ingredient. This study investigates the effects of feeding fermented purslane (FP) on the growth performance, immune function, intestinal microbiota, and metabolic profiles of weaned piglets. Forty-eight weaned piglets were randomly divided into two groups, with eight pens in each group and three pigs in each pen: a control diet (CON group) and a diet supplemented with 0.20% FP (FP group). The experiment lasted 28 days. The results show that FP supplementation did not affect the average daily feed intake (ADFI) but significantly increased the average daily gain (ADG) during the initial 14 days post-weaning. FP supplementation decreased diarrhea occurrence, with a pronounced reduction from days 10 to 13 (p < 0.05). Immunologically, the FP group had a trend towards reduced serum IgA levels on day 14 (p < 0.10). Importantly, the serum concentrations of the pro-inflammatory cytokine IL-6 were significantly reduced on both days 14 and 28 post-weaning. The antioxidative analysis showed increased serum superoxide dismutase (SOD) and decreased catalase (CAT) activities on day 14 (p < 0.05). In addition, FP supplementation significantly decreased serum diamine oxidase (DAO) activity and D-lactate levels by day 28, indicating a potential improvement in gut integrity. Fecal microbiota assessment demonstrated a distinctive clustering of microbial communities between the FP and CON groups, with an increase in the abundance of Clostridium_sensu_stricto_1, Tyzzerella, and Prevotellaceae_NK3B31_group and a decrease in Lactobacillus, Bacillus, and Subdoligranulum in the FP group (p < 0.05). Functional predictions suggested that the relative abundance of microbial butyrate synthesis enzymes (EC 2.7.2.7 and EC 2.3.1.19) was significantly enhanced by FP treatment. This modulation was further corroborated by elevated fecal butyrate levels (p < 0.05). In summary, dietary supplementation with FP promotes early-growth performance and has beneficial effects on immune function and intestinal health in weaned piglets. The enhancements may be attributed to distinct microbiota compositional changes and targeted modulation of microbial butyrate metabolism, which are crucial for piglet post-weaning adaptation and overall health.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Zian Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (J.G.)
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Jingang Gu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (J.G.)
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.X.); (G.G.); (Z.W.); (W.S.); (Y.L.); (X.J.)
| |
Collapse
|
10
|
Cheng Y, Wang S, Zhu W, Xu Z, Xiao L, Wu J, Meng Y, Zhang J, Cheng C. Deoxycholic acid inducing chronic atrophic gastritis with colonic mucosal lesion correlated to mucosal immune dysfunction in rats. Sci Rep 2024; 14:15798. [PMID: 38982226 PMCID: PMC11233621 DOI: 10.1038/s41598-024-66660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
The present study aimed to explore the underlying mechanism of bile reflux-inducing chronic atrophic gastritis (CAG) with colonic mucosal lesion. The rat model of CAG with colonic mucosal lesion was induced by free-drinking 20 mmol/L sodium deoxycholate to simulate bile reflux and 2% cold sodium salicylate for 12 weeks. In comparison to the control group, the model rats had increased abundances of Bacteroidetes and Firmicutes but had decreased abundances of Proteobacteria and Fusobacterium. Several gut bacteria with bile acids transformation ability were enriched in the model group, such as Blautia, Phascolarctobacter, and Enterococcus. The cytotoxic deoxycholic acid and lithocholic acid were significantly increased in the model group. Transcriptome analysis of colonic tissues presented that the down-regulated genes enriched in T cell receptor signaling pathway, antigen processing and presentation, Th17 cell differentiation, Th1 and Th2 cell differentiation, and intestinal immune network for IgA production in the model group. These results suggest that bile reflux-inducing CAG with colonic mucosal lesion accompanied by gut dysbacteriosis, mucosal immunocompromise, and increased gene expressions related to repair of intestinal mucosal injury.
Collapse
Affiliation(s)
- Yuqin Cheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shuaishuai Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Wenfei Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zijing Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ling Xiao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jianping Wu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yufen Meng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Junfeng Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Chun Cheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
11
|
Ma XQ, Wang B, Wei W, Tan FC, Su H, Zhang JZ, Zhao CY, Zheng HJ, Feng YQ, Shen W, Yang JB, Li FL. Alginate oligosaccharide assimilation by gut microorganisms and the potential role in gut inflammation alleviation. Appl Environ Microbiol 2024; 90:e0004624. [PMID: 38563787 PMCID: PMC11107165 DOI: 10.1128/aem.00046-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.
Collapse
Affiliation(s)
- Xiao-Qing Ma
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Bing Wang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wei
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fang-Cheng Tan
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hang Su
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jun-Zhe Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chen-Yang Zhao
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yan-Qin Feng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jin-Bo Yang
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fu-Li Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| |
Collapse
|
12
|
Kim MJ, Jung DR, Lee JM, Kim I, Son H, Kim ES, Shin JH. Microbial dysbiosis index for assessing colitis status in mouse models: A systematic review and meta-analysis. iScience 2024; 27:108657. [PMID: 38205250 PMCID: PMC10777064 DOI: 10.1016/j.isci.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Although countless gut microbiome studies on colitis using mouse models have been carried out, experiments with small sample sizes have encountered reproducibility limitations because of batch effects and statistical errors. In this study, dextran-sodium-sulfate-induced microbial dysbiosis index (DiMDI) was introduced as a reliable dysbiosis index that can be used to assess the state of microbial dysbiosis in DSS-induced mouse models. Meta-analysis of 189 datasets from 11 independent studies was performed to construct the DiMDI. Microbial dysbiosis biomarkers, Muribaculaceae, Alistipes, Turicibacter, and Bacteroides, were selected through four different feature selection methods and used to construct the DiMDI. This index demonstrated a high accuracy of 82.3% and showed strong robustness (88.9%) in the independent cohort. Therefore, DiMDI may be used as a standard for assessing microbial imbalance in DSS-induced mouse models and may contribute to the development of reliable colitis microbiome studies in mouse experiments.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ikwhan Kim
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
13
|
Li N, Ma P, Li Y, Shang X, Nan X, Shi L, Han X, Liu J, Hong Y, Li Q, Cui J, Li J, Peng G. Gut microbiota-derived 12-ketolithocholic acid suppresses the IL-17A secretion from colonic group 3 innate lymphoid cells to prevent the acute exacerbation of ulcerative colitis. Gut Microbes 2023; 15:2290315. [PMID: 38062857 PMCID: PMC10730201 DOI: 10.1080/19490976.2023.2290315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Intestinal microbiota dysbiosis and metabolic disruption are well-known as the primary triggers of ulcerative colitis (UC). However, their role in regulating the group 3 innate lymphoid cells (ILC3s), which are essential for intestinal health, remains unexplored during the development of disease severity. Here, our results showed that the microbiota structure of patients with severe UC (SUCs) differed from those with mild UC (MiUCs), moderate UC (MoUCs), and healthy controls (HCs). Microbes producing secondary bile acids (SBAs) and SBAs decreased with the aggravation of UC, and a strong positive correlation existed between them. Next, fecal microbiota transfer was used to reproduce the human-derived microbiota in mice and decipher the microbiota-mediated inflammatory modulation during an increase in disease severity. Mice receiving SUC-derived microbiota exhibited enhancive inflammation, a lowered percentage of ILC3s, and the down-regulated expressions of bile acid receptors, including vitamin D receptor (VDR) and pregnane X receptor (PXR), in the colon. Similar to clinical results, SBA-producing microbes, deoxycholic acids (DCA), and 12-ketolithocholic acids (12-KLCA) were diminished in the intestine of these recipients. Finally, we compared the therapeutic potential of DCA and 12-KLCA in preventing colitis and the regulatory mechanisms mediated by ILC3s. 12-KLCA but not DCA represented a strong anti-inflammatory effect associated with the higher expression of VDR and the lower secretion of IL-17A from colonic ILC3s. Collectively, these findings provide new signatures for monitoring the acute deterioration of UC by targeting gut microbiota and bile acid metabolism and demonstrate the therapeutic and preventive potential of a novel microbiota-derived metabolite, 12-KLCA.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Peiguang Ma
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yalan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xuekai Shang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinmei Nan
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lei Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiao Han
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiajing Liu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yanfei Hong
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qiuyi Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiaqi Cui
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Junxiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Liao J, Liu Y, Yao Y, Zhang J, Wang H, Zhao J, Chen W, Lu W. Clostridium butyricum Strain CCFM1299 Reduces Obesity via Increasing Energy Expenditure and Modulating Host Bile Acid Metabolism. Nutrients 2023; 15:4339. [PMID: 37892414 PMCID: PMC10609426 DOI: 10.3390/nu15204339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridium butyricum is a butyrate-producing microorganism which has beneficial effects on various diseases, including obesity. In our previous study, the anti-obesity Clostridium butyricum strain CCFM1299 (C20_1_1) was selected, but its anti-obesity mechanism was not clarified. Herein, CCFM1299 was orally administrated to high-fat-diet-treated C57BL/6J mice for 12 weeks to uncover the way the strain alleviates obesity. The results indicated that CCFM1299 alleviated obesity through increasing the energy expenditure and increasing the expression of genes related to thermogenesis in brown adipose tissue (BAT). Moreover, strain CCFM1299 could also affect the expression of immune-related genes in epididymal white adipose tissue (eWAT). This immunomodulatory effect might be achieved through its influence on the complement system, as the expression of the complement factor D (CFD) gene decreased significantly. From the view of metabolites, CCFM1299 administration increased the levels of ursodeoxycholic acid (UDCA) in feces and taurohyodeoxycholic acid (THDCA) in serum. Together, the anti-obesity potential of CCFM1299 might be attributed to the increase in energy consumption, the regulation of immune-related gene expression in eWAT, and the alteration of bile acid metabolism in the host. These provided new insights into the potential application of anti-obesity microbial preparations and postbiotics.
Collapse
Affiliation(s)
- Jingyi Liao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yaoliang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
15
|
Wang X, Shen C, Wang X, Tang J, Wu Z, Huang Y, Shao W, Geng K, Xie H, Pu Z. Schisandrin protects against ulcerative colitis by inhibiting the SGK1/NLRP3 signaling pathway and reshaping gut microbiota in mice. Chin Med 2023; 18:112. [PMID: 37674245 PMCID: PMC10481484 DOI: 10.1186/s13020-023-00815-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND According to the Chinese Pharmacopoeia, the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese medicine that can be used to treat diarrhea. Despite the increasing research on the anti-inflammatory and anti-oxidant aspects of SC, the studies on the anti-ulcerative colitis of Schisandrin (SCH), the main constituent of SC, are relatively few. METHODS The mice used in the study were randomly distributed into 6 groups: control, model, 5-ASA, and SCH (20, 40, 80 mg/kg/d). The mice in the model group were administered 3% (w/v) dextran sulfate sodium (DSS) through drinking water for 7 days, and the various parameters of disease activity index (DAI) such as body weight loss, stool consistency, and gross blood were measured. ELISA was used to detect inflammatory factors, and bioinformatics combined with transcriptome analysis was done to screen and verify relevant targets. 16S rDNA high-throughput sequencing was used to analyze the composition of the gut microbiota(GM), while mass spectrometry was done to analyze the changes in the content of bile acids (BAs) in the intestine. RESULTS Mice treated with SCH experienced significant weight gain, effectively alleviating the severity of colitis, and decreasing the levels of inflammatory factors such as TNF-α, IL-1β, IL-18, IL-6, and other related proteins (NLRP3, Caspase-1, SGK1) in UC mice. Furthermore, the analysis of GM and BAs in mice revealed that SCH increased the relative abundance of Lactobacilli spp, reduced the relative abundance of Bacteroides, and promoted the conversion of primary BAs to secondary BAs. These effects contributed to a significant improvement in the DSS-induced GM imbalance and the maintenance of intestinal homeostasis. CONCLUSION It seems that there is a close relationship between the SCH mechanism and the regulation of SGK1/NLRP3 pathway and the restoration of GM balance. Therefore, it can be concluded that SCH could be a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Xiaohu Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Chaozhuang Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Jin Tang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Zijing Wu
- Department of Pharmacy, Bengbu First People's Hospital, Bengbu, 233000, China
| | - Yunzhe Huang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| | - Zhichen Pu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
16
|
Hernández-Gallegos MA, Solorza-Feria J, Cornejo-Mazón M, Velázquez-Martínez JR, Rodríguez-Huezo ME, Gutiérrez-López GF, Hernández-Sánchez H. Protective Effect of Alginate Microcapsules with Different Rheological Behavior on Lactiplantibacillus plantarum 299v. Gels 2023; 9:682. [PMID: 37754363 PMCID: PMC10529054 DOI: 10.3390/gels9090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Alginate encapsulation is a well-known technique used to protect microorganisms from adverse conditions. However, it is also known that the viscosity of the alginate is dependent on its composition and degree of polymerization and that thermal treatments, such as pasteurization and sterilization, can affect the structure of the polymer and decrease its protection efficiency. The goal of this study was to evaluate the protective effect of encapsulation, using alginates of different viscosities treated at different temperatures, on Lactiplantibacillus plantarum 299v under in vitro gastrointestinal conditions and cold storage at 4 °C and -15 °C, respectively. Steady- and dynamic-shear rheological tests were used to characterize the polymers. Thermal treatments profoundly affected the rheological characteristics of alginates with high and low viscosity. However, the solutions and gels of the low-viscosity alginate were more affected at a temperature of 117 °C. The capsules elaborated with high-viscosity alginate solution and pasteurized at 63 °C for 30 min provided better protection to the cells of L. plantarum 299v under simulated gastrointestinal and cold storage conditions.
Collapse
Affiliation(s)
- Minerva Aurora Hernández-Gallegos
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu esq. M. Stampa, UP Adolfo López Mateos, Ciudad de México CP 07738, Mexico; (M.A.H.-G.); (G.F.G.-L.)
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Estatal Libre Villahermosa-Comalcalco Km 27 S/N, Ranchería, Jalpa de Méndez CP 86205, Mexico
| | - Javier Solorza-Feria
- Centro de Desarrollo de Productos Bióticos del IPN, Km 8.5 carr. Yautepec-Jojutla, Yautepec CP 62731, Mexico;
| | - Maribel Cornejo-Mazón
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Santo Tomás, Ciudad de México CP 11340, Mexico;
| | - José Rodolfo Velázquez-Martínez
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa Km. 25, Teapa CP 86291, Mexico;
| | - María Eva Rodríguez-Huezo
- División Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Ecatepec, Estado de México CP 55010, Mexico;
| | - Gustavo F. Gutiérrez-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu esq. M. Stampa, UP Adolfo López Mateos, Ciudad de México CP 07738, Mexico; (M.A.H.-G.); (G.F.G.-L.)
| | - Humberto Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu esq. M. Stampa, UP Adolfo López Mateos, Ciudad de México CP 07738, Mexico; (M.A.H.-G.); (G.F.G.-L.)
| |
Collapse
|
17
|
Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023; 12:1888. [PMID: 37508557 PMCID: PMC10377837 DOI: 10.3390/cells12141888] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Chen H, Kan Q, Zhao L, Ye G, He X, Tang H, Shi F, Zou Y, Liang X, Song X, Liu R, Luo J, Li Y. Prophylactic effect of Tongxieyaofang polysaccharide on depressive behavior in adolescent male mice with chronic unpredictable stress through the microbiome-gut-brain axis. Biomed Pharmacother 2023; 161:114525. [PMID: 36921537 DOI: 10.1016/j.biopha.2023.114525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Major depression disorder is more common among adolescents and is a primary reason for suicide in adolescents. Some antidepressants are ineffective and may possess side effects. Therefore, developing an adolescent antidepressant is the need of the hour. We designed the stress model of adolescent male mice induced by chronic unpredictable stress (CUS). The mice were treated using Tongxieyaofang neutral polysaccharide (TXYF-NP), Tongxieyaofang acidic polysaccharide (TXYF-AP), TXYF-AP + TXYF-NP and fructooligosaccharide + galactooligosaccharides to determine their body weight, behavior, and serum hormone levels. RT-qPCR was used to detect the gene expression of Crhr1, Nr3c1, and Nr3c2 in the hypothalamus and hippocampus and the gene expression of glutamic acid and γ-aminobutyric acid-related receptors in the hippocampus. RT-qPCR, Western blot, and ELISA detected tryptophan metabolism in the colon, serum, and hippocampus. 16s rDNA helped sequence colon microflora, and non-targeted metabolomics enabled the collection of metabolic profiles of colon microflora. In adolescent male mice, CUS induced depression-like behavior, hypothalamic-pituitary-adrenal axis hyperactivity, hippocampal tissue damage, abnormal expression of its related receptors, and dysregulation of tryptophan metabolism. The 16s rDNA and non-targeted metabolomics revealed that CUS led to colon microflora disorder and bile acid metabolism abnormality. Tongxieyaofang polysaccharide could improve the bacterial community and bile acid metabolism disorder by upregulating the relative abundance of Lactobacillus gasseri, Lachnospiraceae bacterium 28-4, Bacteroides and Ruminococcaceae UCG-014 while preventing CUS-induced changes. TXYF-P can inhibit depression-like behavior due to CUS by regulating colonic microflora and restoring bile acid metabolism disorder. Thus, based on the different comparisons, TXYF-NP possessed the best effect.
Collapse
Affiliation(s)
- Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Qibin Kan
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Rui Liu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China
| | - Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China.
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
19
|
Isolation of Alginate-Degrading Bacteria from the Human Gut Microbiota and Discovery of Bacteroides xylanisolvens AY11-1 as a Novel Anti-Colitis Probiotic Bacterium. Nutrients 2023; 15:nu15061352. [PMID: 36986080 PMCID: PMC10053142 DOI: 10.3390/nu15061352] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Alginate has been documented to prevent the development and progression of ulcerative colitis by modulating the gut microbiota. However, the bacterium that may mediate the anti-colitis effect of alginate has not been fully characterized. We hypothesized that alginate-degrading bacteria might play a role here since these bacteria could utilize alginate as a carbon source. To test this hypothesis, we isolated 296 strains of alginate-degrading bacteria from the human gut. Bacteroides xylanisolvens AY11-1 was observed to have the best capability for alginate degradation. The degradation and fermentation of alginate by B. xylanisolvens AY11-1 produced significant amounts of oligosaccharides and short-chain fatty acids. Further studies indicated that B. xylanisolvens AY11-1 could alleviate body weight loss and contraction of colon length, reduce the incidences of bleeding and attenuate mucosal damage in dextran sulfate sodium (DSS)-fed mice. Mechanistically, B. xylanisolvens AY11-1 improved gut dysbiosis and promoted the growth of probiotic bacteria, including Blautia spp. And Prevotellaceae UCG-001, in diseased mice. Additionally, B. xylanisolvens AY11-1 showed no oral toxicity and was well-tolerated in male and female mice. Altogether, we illustrate for the first time an anti-colitis effect of the alginate-degrading bacterium B. xylanisolvens AY11-1. Our study paves the way for the development of B. xylanisolvens AY11-1 as a next-generation probiotic bacterium.
Collapse
|