1
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
3
|
Short O-GlcNAcase Is Targeted to the Mitochondria and Regulates Mitochondrial Reactive Oxygen Species Level. Cells 2022; 11:cells11111827. [PMID: 35681522 PMCID: PMC9180253 DOI: 10.3390/cells11111827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. Only two enzymes, OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase), control the attachment and removal of O-GlcNAc on proteins, respectively. Whereas a variant OGT (mOGT) has been proposed as the main isoform that O-GlcNAcylates proteins in mitochondria, identification of a mitochondrial OGA has not been performed yet. Two splice variants of OGA (short and long isoforms) have been described previously. In this work, using cell fractionation experiments, we show that short-OGA is preferentially recovered in mitochondria-enriched fractions from HEK-293T cells and RAW 264.7 cells, as well as mouse embryonic fibroblasts. Moreover, fluorescent microscopy imaging confirmed that GFP-tagged short-OGA is addressed to mitochondria. In addition, using a Bioluminescence Resonance Energy Transfer (BRET)-based mitochondrial O-GlcNAcylation biosensor, we show that co-transfection of short-OGA markedly reduced O-GlcNAcylation of the biosensor, whereas long-OGA had no significant effect. Finally, using genetically encoded or chemical fluorescent mitochondrial probes, we show that short-OGA overexpression increases mitochondrial ROS levels, whereas long-OGA has no significant effect. Together, our work reveals that the short-OGA isoform is targeted to the mitochondria where it regulates ROS homoeostasis.
Collapse
|
4
|
Miura K, Aoyama Y, Natsu Y, Koyama R, Hirano T, Nishio T, Hakamata W. Development of Specific Fluorogenic Substrates for Human β-N-Acetyl-D-hexosaminidase A for Cell-Based Assays. Chem Pharm Bull (Tokyo) 2020; 68:526-533. [PMID: 32475856 DOI: 10.1248/cpb.c20-00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibitors of human β-N-acetyl-D-hexosaminidase (hHEX) A and human O-GlcNAcase (hOGA) reportedly play roles in multiple diseases, suggesting their potential for pharmacological chaperone (PC) therapy of Sandhoff disease (SD) and Tay-Sachs disease (TSD), as lysosomal storage diseases, and Alzheimer's disease and progressive supranuclear palsy, respectively. In particular, hHEXA inhibitors as PCs have been shown to successfully enhance hHEXA levels, leading to the chronic form of SD and TSD. In the diagnosis of enzyme deficiencies in SD and TSD, artificial hHEXA substrates based on 4-methylumbelliferone as a fluorophore are available and generally used; however, they do not have sufficient performance to screen for potential inhibitors for a PC therapy from compound libraries. Further, there are currently few fluorogenic substrates for hHEXA suitable for such requirements and there are no substrates ideal for cell-based inhibitor screening. Here, we clarified the difference in enzyme active site structure between hHEXA and hOGA from their tertiary structures. To develop lysosome-localized hHEXA-specific fluorogenic substrates based on the difference in their active site structures, our developed quinone methide cleavage substrate design platform was applied for the molecular design of substrates. Thereafter, we synthesized via the shortest route and evaluated novel three-color fluorogenic substrates for hHEXA that exhibited excellent specificity and sensitivity in three human cell lines. The designed substrates represent the first-in-a class of new substrates that can be utilized to screen hHEXA inhibitors in adherent human cultured cells.
Collapse
Affiliation(s)
- Kazuki Miura
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Yuka Aoyama
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Yurika Natsu
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Ryosuke Koyama
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Takako Hirano
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Toshiyuki Nishio
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| |
Collapse
|
5
|
Shi J, Ruijtenbeek R, Pieters RJ. Demystifying O-GlcNAcylation: hints from peptide substrates. Glycobiology 2019; 28:814-824. [PMID: 29635275 DOI: 10.1093/glycob/cwy031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
O-GlcNAcylation, analogous to phosphorylation, is an essential post-translational modification of proteins at Ser/Thr residues with a single β-N-acetylglucosamine moiety. This dynamic protein modification regulates many fundamental cellular processes and its deregulation has been linked to chronic diseases such as cancer, diabetes and neurodegenerative disorders. Reversible attachment and removal of O-GlcNAc is governed only by O-GlcNAc transferase and O-GlcNAcase, respectively. Peptide substrates, derived from natural O-GlcNAcylation targets, function in the catalytic cores of these two enzymes by maintaining interactions between enzyme and substrate, which makes them ideal models for the study of O-GlcNAcylation and deglycosylation. These peptides provide valuable tools for a deeper understanding of O-GlcNAc processing enzymes. By taking advantage of peptide chemistry, recent progress in the study of activity and regulatory mechanisms of these two enzymes has advanced our understanding of their fundamental specificities as well as their potential as therapeutic targets. Hence, this review summarizes the recent achievements on this modification studied at the peptide level, focusing on enzyme activity, enzyme specificity, direct function, site-specific antibodies and peptide substrate-inspired inhibitors.
Collapse
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands.,PamGene International BV, HH's-Hertogenbosch, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| |
Collapse
|
6
|
Groves JA, Zachara NE. Characterization of tools to detect and enrich human and mouse O-GlcNAcase. Glycobiology 2017; 27:3863111. [PMID: 28595377 PMCID: PMC5881776 DOI: 10.1093/glycob/cwx051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 11/14/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is an essential regulatory post-translational modification of thousands of nuclear, cytoplasmic, and mitochondrial proteins. O-GlcNAc is dynamically added and removed from proteins by the O-GlcNAc transferase and the O-GlcNAcase (OGA), respectively. Dysregulation of O-GlcNAc-cycling is implicated in the etiology of numerous diseases including tumorigenesis, metabolic dysfunction, and neurodegeneration. To facilitate studies focused on the role of O-GlcNAc and OGA in disease, we sought to identify commercially available antibodies that enable the enrichment of full-length OGA from lysates of mouse and human origin. Here, we report that antibodies from Abcam and Bethyl Laboratories can be used to immunoprecipitate OGA to near-saturation from human and mouse cell lysates. However, Western blotting analysis indicates that both antibodies, as well as three non-commercially available antibodies (345, 346, 352), detect full-length OGA and numerous cross-reacting proteins. These non-specific signals migrate similarly to full-length OGA and are detected robustly, suggesting that the use of appropriate controls is essential to avoid the misidentification of OGA.
Collapse
Affiliation(s)
- Jennifer A Groves
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185,USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185,USA
| |
Collapse
|
7
|
Structures of human O-GlcNAcase and its complexes reveal a new substrate recognition mode. Nat Struct Mol Biol 2017; 24:362-369. [PMID: 28319083 DOI: 10.1038/nsmb.3390] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/16/2017] [Indexed: 02/07/2023]
Abstract
Human O-GlcNAcase (hOGA) is the unique enzyme responsible for the hydrolysis of the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification, an essential protein glycosylation event that modulates the function of numerous cellular proteins in response to nutrients and stress. Here we report crystal structures of a truncated hOGA, which comprises the catalytic and stalk domains, in apo form, in complex with an inhibitor, and in complex with a glycopeptide substrate. We found that hOGA forms an unusual arm-in-arm homodimer in which the catalytic domain of one monomer is covered by the stalk domain of the sister monomer to create a substrate-binding cleft. Notably, the residues on the cleft surface afford extensive interactions with the peptide substrate in a recognition mode that is distinct from that of its bacterial homologs. These structures represent the first model of eukaryotic enzymes in the glycoside hydrolase 84 (GH84) family and provide a crucial starting point for understanding the substrate specificity of hOGA, which regulates a broad range of biological and pathological processes.
Collapse
|
8
|
Abstract
O-GlcNAcylation is the modification of serine and threonine residues with β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. This dynamic modification is attached by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA) and is a critical regulator of various cellular processes. Furthermore, O-GlcNAcylation is dysregulated in many diseases, such as diabetes, cancer, and Alzheimer's disease. However, the precise role of this modification and its cycling enzymes (OGT and OGA) in normal and disease states remains elusive. This is partially due to the difficulty in studying O-GlcNAcylation with traditional genetic and biochemical techniques. In this review, we will summarize recent progress in chemical approaches to overcome these obstacles. We will cover new inhibitors of OGT and OGA, advances in metabolic labeling and cellular imaging, synthetic approaches to access homogeneous O-GlcNAcylated proteins, and cross-linking methods to identify O-GlcNAc-protein interactions. We will also discuss remaining gaps in our toolbox for studying O-GlcNAcylation and questions of high interest that are yet to be answered.
Collapse
Affiliation(s)
- Matthew Worth
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
9
|
Gellai R, Hodrea J, Lenart L, Hosszu A, Koszegi S, Balogh D, Ver A, Banki NF, Fulop N, Molnar A, Wagner L, Vannay A, Szabo AJ, Fekete A. Role of O-linked N-acetylglucosamine modification in diabetic nephropathy. Am J Physiol Renal Physiol 2016; 311:F1172-F1181. [PMID: 27029430 DOI: 10.1152/ajprenal.00545.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022] Open
Abstract
Increased O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is a known contributor to diabetes; however, its relevance in diabetic nephropathy (DN) is poorly elucidated. Here, we studied the process and enzymes of O-GlcNAcylation with a special emphasis on Akt-endothelial nitric oxide synthase (eNOS) and heat shock protein (HSP)72 signaling. Since tubular injury is the prominent site of DN, the effect of hyperglycemia was first measured in proximal tubular (HK2) cells cultured in high glucose. In vivo O-GlcNAcylation and protein levels of O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), phosphorylated (p)Akt/Akt, peNOS/eNOS, and HSP72 were assessed in the kidney cortex of streptozotocin-induced diabetic rats. The effects of various renin-angiotensin-aldosterone system (RAAS) inhibitors were also evaluated. In proximal tubular cells, hyperglycemia-induced OGT expression led to increased O-GlcNAcylation, which was followed by a compensatory increase of OGA. In parallel, peNOS and pAkt levels decreased, whereas HSP72 increased. In diabetic rats, elevated O-GlcNAcylation was accompanied by decreased OGT and OGA. RAAS inhibitors ameliorated diabetes-induced kidney damage and prevented the elevation of O-GlcNAcylation and the decrement of pAkt, peNOS, and HSP72. In conclusion, hyperglycemia-induced elevation of O-GlcNAcylation contributes to the progression of DN via inhibition of Akt/eNOS phosphorylation and HSP72 induction. RAAS blockers successfully inhibit this process, suggesting a novel pathomechanism of their renoprotective action in the treatment of DN.
Collapse
Affiliation(s)
- Renata Gellai
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Judit Hodrea
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Lilla Lenart
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Sandor Koszegi
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dora Balogh
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Agota Ver
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Nora F Banki
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Norbert Fulop
- Teaching Hospital Mór Kaposi, Kaposvar, Hungary; and
| | - Agnes Molnar
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Laszlo Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Vannay
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- MTA-SE Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendulet" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; .,First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Makino A, Dai A, Han Y, Youssef KD, Wang W, Donthamsetty R, Scott BT, Wang H, Dillmann WH. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice. Am J Physiol Cell Physiol 2015; 309:C593-9. [PMID: 26269457 PMCID: PMC4628934 DOI: 10.1152/ajpcell.00069.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Cells, Cultured
- Connexins/metabolism
- Coronary Artery Disease/enzymology
- Coronary Artery Disease/genetics
- Coronary Artery Disease/physiopathology
- Coronary Vessels/drug effects
- Coronary Vessels/enzymology
- Coronary Vessels/physiopathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/physiopathology
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Induction
- Enzyme Inhibitors/pharmacology
- Glycosylation
- Histone Acetyltransferases/antagonists & inhibitors
- Histone Acetyltransferases/biosynthesis
- Histone Acetyltransferases/genetics
- Humans
- Hyaluronoglucosaminidase/antagonists & inhibitors
- Hyaluronoglucosaminidase/biosynthesis
- Hyaluronoglucosaminidase/genetics
- Male
- Mice, Transgenic
- N-Acetylglucosaminyltransferases/metabolism
- Neovascularization, Physiologic
- Protein Processing, Post-Translational
- Signal Transduction
- Vasodilation
- beta-N-Acetylhexosaminidases/antagonists & inhibitors
- beta-N-Acetylhexosaminidases/biosynthesis
- beta-N-Acetylhexosaminidases/genetics
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Ayako Makino
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Department of Medicine, University of California, San Diego, La Jolla, California
| | - Anzhi Dai
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ying Han
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Katia D Youssef
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Weihua Wang
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Reshma Donthamsetty
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Hong Wang
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
11
|
Slámová K, Kulik N, Fiala M, Krejzová-Hofmeisterová J, Ettrich R, Křen V. Expression, characterization and homology modeling of a novel eukaryotic GH84 β-N-acetylglucosaminidase from Penicillium chrysogenum. Protein Expr Purif 2014; 95:204-10. [DOI: 10.1016/j.pep.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 01/09/2023]
|
12
|
Li J, Li Z, Li T, Lin L, Zhang Y, Guo L, Xu Y, Zhao W, Wang P. Identification of a specific inhibitor of nOGA — a caspase-3 cleaved O-GlcNAcase variant during apoptosis. BIOCHEMISTRY (MOSCOW) 2012; 77:194-200. [DOI: 10.1134/s0006297912020113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|