1
|
Ma L, Tian X, Xi F, He Y, Li D, Sun J, Yuan T, Li K, Fan L, Zhang C, Yang G, Yu T. Ablation of Tas1r1 Reduces Lipid Accumulation Through Reducing the de Novo Lipid Synthesis and Improving Lipid Catabolism in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10248-10258. [PMID: 35968935 DOI: 10.1021/acs.jafc.2c02077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amino acid sensing plays an important role in regulating lipid metabolism by sensing amino acid nutrient disturbance. T1R1 (umami taste receptor, type 1, member 1) is a membrane G protein-coupled receptor that senses amino acids. Tas1r1-knockout (KO) mice were used to explore the function of umami receptors in lipid metabolism. Compared with wild-type (WT) mice, Tas1r1-KO mice showed decreased fat mass (P < 0.05) and adipocyte size, lower liver triglyceride (7.835 ± 0.809 vs 12.463 ± 0.916 mg/g WT, P = 0.013) and total cholesterol levels (0.542 ± 0.109 vs 1.472 ± 0.044 mmol/g WT, P < 0.001), and reduced lipogenesis gene expressions in adipose and liver tissues. Targeted liver amino acid metabolomics showed that the amino acid content of Tas1r1-KO mice was significantly decreased, which was consistent with the branched-chain ketoacid dehydrogenase protein levels. Proteomics analysis showed that the upregulated proteins were enriched in lipid and steroid metabolism pathways, and parallel reaction monitoring results illustrated that Tas1r1 ablation promoted lipid catabolism through oxysterol 7 α-hydroxylase and insulin-like growth factor binding protein 2. In summary, Tas1r1 disruption in mice could reduce lipid accumulation by reducing de novo lipid synthesis and improving lipid catabolism.
Collapse
Affiliation(s)
- Lu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuekai Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengxue Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingchun Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tiantian Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Collage of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Sweet Taste Signaling: The Core Pathways and Regulatory Mechanisms. Int J Mol Sci 2022; 23:ijms23158225. [PMID: 35897802 PMCID: PMC9329783 DOI: 10.3390/ijms23158225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Sweet taste, a proxy for sugar-derived calories, is an important driver of food intake, and animals have evolved robust molecular and cellular machinery for sweet taste signaling. The overconsumption of sugar-derived calories is a major driver of obesity and other metabolic diseases. A fine-grained appreciation of the dynamic regulation of sweet taste signaling mechanisms will be required for designing novel noncaloric sweeteners with better hedonic and metabolic profiles and improved consumer acceptance. Sweet taste receptor cells express at least two signaling pathways, one mediated by a heterodimeric G-protein coupled receptor encoded by taste 1 receptor members 2 and 3 (TAS1R2 + TAS1R3) genes and another by glucose transporters and the ATP-gated potassium (KATP) channel. Despite these important discoveries, we do not fully understand the mechanisms regulating sweet taste signaling. We will introduce the core components of the above sweet taste signaling pathways and the rationale for having multiple pathways for detecting sweet tastants. We will then highlight the roles of key regulators of the sweet taste signaling pathways, including downstream signal transduction pathway components expressed in sweet taste receptor cells and hormones and other signaling molecules such as leptin and endocannabinoids.
Collapse
|
3
|
Morita A, Omoya Y, Ito R, Ishibashi Y, Hiramoto K, Ohnishi S, Yoshikawa N, Kawanishi S. Glycyrrhizin and its derivatives promote hepatic differentiation via sweet receptor, Wnt, and Notch signaling. Biochem Biophys Rep 2021; 28:101181. [PMID: 34934826 PMCID: PMC8654616 DOI: 10.1016/j.bbrep.2021.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The acute liver disease is involved in aberrant release of high-mobility group box 1 (HMGB1). Glycyrrhizin (GL), a traditional Chinese medicine for liver disease, binds to HMGB1, thereby inhibits tissue injury. However the mode of action of GL for chronic liver disease remains unclear. We investigated the effects of glycyrrhizin (GL) and its derivatives on liver differentiation using human iPS cells by using a flow cytometric analysis. GL promoted hepatic differentiation at the hepatoblast formation stage. The GL derivatives, 3-O-mono-glucuronyl 18β-glycyrrhetinic acid (Mono) and 3-O-[glucosyl (1 → 2)-glucuronyl] 18β-glycyrrhetinic acid increased AFP+ cell counts and albumin+ cell counts. Glucuronate conjugation seemed to be a requirement for hepatic differentiation. Mono exhibited the most significant hepatic differentiation effect. We evaluated the effects of (±)-2-(2,4-dichlorophenoxy) propionic acid (DP), a T1R3 antagonist, and sucralose, a T1R3 agonist, on hepatic differentiation, and found that DP suppressed Mono-induced hepatic differentiation, while sucralose promoted hepatic differentiation. Thus, GL promoted hepatic differentiation via T1R3 signaling. In addition, Mono increased β-catenin+ cell count and decreased Hes5+ cell count suggesting the involvement of Wnt and Notch signaling in GL-induced hepatic differentiation. In conclusion, GL exerted a hepatic differentiation effect via sweet receptor (T1R3), canonical Wnt, and Notch signaling.
Collapse
Key Words
- AFP, α-fetoprotein
- Api, 3-O-[apiosyl (1 → 2)-glucuronyl] βGA
- CBX, carbenoxolone, 3-O-hemisuccinyl βGA
- CK-19, cytokeratin 19
- DMSO, dimethyl sulfoxide
- DP, (±)-2-(2,4-dichlorophenoxy) propionic acid
- GL, glycyrrhizin
- Glc, 3-O-[glucosyl (1 → 2)-glucuronyl] βGA
- Glycyrrhizin
- HMGB1, high-mobility group box1
- HNF-4α, hepatocyte nuclear factor 4α
- Hepatic differentiation
- Hes, hairy and enhancer of split
- LSG, licorice saponin G
- LSH, licorice saponin H
- Liver regeneration
- Mono, 3-O-mono-glucuronyl βGA
- Sweet receptor
- T1R3
- αGA, 18α-glycyrrhetinic acid
- βGA, 18β-glycyrrhetinic acid
Collapse
Affiliation(s)
- Akihiro Morita
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Yuta Omoya
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Rie Ito
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Yuya Ishibashi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Shiho Ohnishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie, 515-0041, Japan
| | - Shosuke Kawanishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| |
Collapse
|
4
|
Yang ZM, Wang Y, Chen SY. Astragalus polysaccharide alleviates type 2 diabetic rats by reversing the glucose transporters and sweet taste receptors/GLP-1/GLP-1 receptor signaling pathways in the intestine-pancreatic axis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids. PLoS One 2020; 15:e0235913. [PMID: 32673349 PMCID: PMC7365461 DOI: 10.1371/journal.pone.0235913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/25/2020] [Indexed: 11/25/2022] Open
Abstract
In mammals, inter- and intraspecies differences in consumption of sweeteners largely depend on allelic variation of the Tas1r3 gene (locus Sac) encoding the T1R3 protein, a sweet taste receptor subunit. To assess the influence of Tas1r3 polymorphisms on feeding behavior and metabolism, we examined the phenotype of F1 male hybrids obtained from crosses between the following inbred mouse strains: females from 129SvPasCrl (129S2) bearing the recessive Tas1r3 allele and males from either C57BL/6J (B6), carrying the dominant allele, or the Tas1r3-gene knockout strain C57BL/6J-Tas1r3tm1Rfm (B6-Tas1r3-/-). The hybrids 129S2B6F1 and 129S2B6-Tas1r3-/-F1 had identical background genotypes and different sets of Tas1r3 alleles. The effect of Tas1r3 hemizygosity was analyzed by comparing the parental strain B6 (Tas1r3 homozygote) and hemizygous F1 hybrids B6 × B6-Tas1r3-/-. Data showed that, in 129S2B6-Tas1r3-/-F1 hybrids, the reduction of glucose tolerance, along with lower consumption of and lower preference for sweeteners during the initial licking responses, is due to expression of the recessive Tas1r3 allele. Hemizygosity of Tas1r3 did not influence these behavioral and metabolic traits. However, the loss of the functional Tas1r3 allele was associated with a small decline in the long-term intake and preference for sweeteners and reduction of plasma insulin and body, liver, and fat mass.
Collapse
|
6
|
Wang F, Song X, Zhou L, Liang G, Huang F, Jiang G, Zhang L. The downregulation of sweet taste receptor signaling in enteroendocrine L-cells mediates 3-deoxyglucosone-induced attenuation of high glucose-stimulated GLP-1 secretion. Arch Physiol Biochem 2018; 124:430-435. [PMID: 29277113 DOI: 10.1080/13813455.2017.1419366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Sweet taste receptors (STRs) involve in regulating the release of glucose-stimulated glucagon-like peptide-1 (GLP-1). Our in vivo and in vitro studies found that 3-deoxyglucosone (3DG) inhibited glucose-stimulated GLP-1 secretion. OBJECTIVE This study investigated the role of STRs in 3DG-induced inhibition of high glucose-stimulated GLP-1 secretion. METHODS STC-1 cells were incubated with lactisole or 3DG for 1 h under 25 mM glucose conditions. Western blotting was used to study the expression of STRs signaling molecules and ELISA was used to analyse GLP-1 and cyclic adenosine monophosphate (cAMP) levels. RESULTS Lactisole inhibited GLP-1 secretion. Exposure to 25 mM glucose increased the expressions of STRs subunits when compared with 5.6 mM glucose. 3DG decreased GLP-1 secretion and STRs subunits expressions, with affecting other components of STRs pathway, including the downregulation of transient receptor potential cation channel subfamily M member 5 (TRPM5) expression and the reduction of intracellular cAMP levels. CONCLUSION 3DG attenuates high glucose-stimulated GLP-1 secretion by reducing STR subunit expression and downstream signaling components.
Collapse
Affiliation(s)
- Fei Wang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Xiudao Song
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Liang Zhou
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Guoqiang Liang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Fei Huang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Guorong Jiang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| | - Lurong Zhang
- a Suzhou Academy of Wumen Chinese Medicine , Suzhou Hospital of Traditional Chinese Medicine , Suzhou , P. R. China
| |
Collapse
|
7
|
Murovets VO, Lukina EA, Zolotarev VA. The Effect of Tas1r3 Gene Polymorphism on Preference and Consumption of Sucrose and Low-Calorie Sweeteners in Interstrain Hybrid Mice of the First Filial Generation. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018030079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Leaf Extract from Lithocarpus polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice. PLoS One 2016; 11:e0166557. [PMID: 27893760 PMCID: PMC5125604 DOI: 10.1371/journal.pone.0166557] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to investigate the effects of leaf extract from Lithocarpus polystachyus Rehd. on type II diabetes mellitus (T2DM) and the active ingredients of this effect. In addition, this study determined, for the first time, the underlying molecular and pharmacological mechanisms of the extracts on hyperglycemia using long-term double high diet-fed and streptozotocin (STZ) induced type II diabetic mice. In the present study, leaf extract, phloridzin and trilobatin were assessed in vivo (gavage) and in vitro (non-invasive micro-test technique, NMT) in experimental T2DM mice. The biochemical parameters were measured including blood glucose and blood lipid level, liver biochemical indexes, and hepatic glycogen. The relative expression of glycometabolism-related genes was detected. The effect of leaf extracts on physiological glucose flux in liver tissue from control and T2DM mice was also investigated. Body weight of experimental T2DM mice increased significantly after the first week, but stabilized over the subsequent three weeks; body weight of all other groups did not change during the four weeks’ study. After four weeks, all treatment groups decreased blood glucose, and treatment with leaf extract had numerous positive effects: a) promoted in glucose uptake in liver, b) increased synthesis of liver glycogen, c) reduced oxidative stress, d) up-regulation of glucokinase (GK), glucose transporter 2 (GLUT2), insulin receptor (IR) and insulin receptor substrate (IRS) expression in liver, e) down-regulation of glucose-6-phosphatase (G-6-P) expression, and f) ameliorated blood lipid levels. Both treatment with trilobatin or phloridzin accelerated liver glycogen synthesis, decreased oxidative stress and increased expression of GK. IRS and phosphoenolpyruvate carboxykinase (PEPCK) were both up-regulated after treatment with trilobatin. Expression of GLUT2, PEPCK and G-6-P were also increased in liver tissue after treatment with phloridzin. Our data indicate that leaf extract from L. polystachyus Rehd. has a preferable hypoglycemic effects than trilobatin or phloridzin alone. Leaf extract significantly increased glucose uptake and hepatic glycogen synthesis while also inducing a decline of hepatic gluconeogenesis and oxidative stress in T2DM mice. From this study, we draw conclusions that L. polystachyus promoted glycogen synthesis in T2DM mice, and that the active compounds were not only the trilobatin or phloridzin.
Collapse
|
9
|
Zhang L, Song X, Zhou L, Liang G, Xu H, Wang F, Huang F, Jiang G. Accumulation of intestinal tissue 3-deoxyglucosone attenuated GLP-1 secretion and its insulinotropic effect in rats. Diabetol Metab Syndr 2016; 8:78. [PMID: 27956941 PMCID: PMC5129672 DOI: 10.1186/s13098-016-0194-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Our recent findings support the idea that 3-deoxyglucosone (3DG), a dietary composition, has been suggested as an independent factor for the development of prediabetes. Secretion of glucagon-like peptide-1 (GLP-1) has been suggested to be impaired in T2DM and in conditions associated with hyperglycemia. Since low oral bioavailability of 3DG has been indicated in a single administration study, in the present study we examined if 3DG is capable of accumulating in intestinal tissue of rats after 2-week administration of 3DG, and the 3DG treatment affects GLP-1 secretion and glucose tolerance. METHODS Rats were administered by gastric gavage for 2 weeks. We measured 3DG contents of intestinal tissues (by HPLC), plasma levels of total GLP-1 (by ELISA), insulin and glucagon (both by radioimmunoassay) and blood glucose concentrations. The expressions of the sweet receptor subunits (TAS1R2, TAS1R3) and its downstream molecule TRPM5 in duodenum and colon tissues of rats were quantified by WB. We examined GLP-1 secretion in enteroendocrine STC-1 cells exposured to 3DG. RESULTS 3DG treatment for 2 weeks increased 3DG content of intestinal tissues, fasting blood glucose concentration, and reduced plasma concentrations of GLP-1 and insulin at fasting and 15 and 180 min after the glucose load and oral glucose tolerance in conjunction with increased plasma glucagon concentrations. The expressions of TAS1R2, TAS1R3 and TRPM5 were shown to be reduced whereas 3DG treatment did not affect plasma dipeptidyl peptidase-4 activity, indicating an impaired GLP-1 secretion in 3DG-treated rats. This idea was further supported by the fact that exposure to 3DG directly decrease GLP-1 secretion in STC-1. CONCLUSION It is the first demonstration that 3DG was capable of accumulating in intestinal tissue and thereby decreased secretion of GLP-1 and insulin in a similar manner. 3DG-treated rats developed impaired glucose regulation (IGR) with obviously pancreatic islet cell dysfunction. It is further concluded that a decrease in the biological function of GLP-1 resulting from the decreased GLP-1 secretion is the most likely mechanism for the impaired insulin secretion, which ultimately promoted the development of IGR. These results will also contribute to a better understanding of the significance for restoring physiological GLP-1 secretion.
Collapse
Affiliation(s)
- Lurong Zhang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, No. 18, Yangsu Road, Suzhou, 215003 Jiangsu People’s Republic of China
| | - Xiudao Song
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, No. 18, Yangsu Road, Suzhou, 215003 Jiangsu People’s Republic of China
| | - Liang Zhou
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, No. 18, Yangsu Road, Suzhou, 215003 Jiangsu People’s Republic of China
| | - Guoqiang Liang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, No. 18, Yangsu Road, Suzhou, 215003 Jiangsu People’s Republic of China
| | - Heng Xu
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, No. 18, Yangsu Road, Suzhou, 215003 Jiangsu People’s Republic of China
| | - Fei Wang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, No. 18, Yangsu Road, Suzhou, 215003 Jiangsu People’s Republic of China
| | - Fei Huang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, No. 18, Yangsu Road, Suzhou, 215003 Jiangsu People’s Republic of China
| | - Guorong Jiang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, No. 18, Yangsu Road, Suzhou, 215003 Jiangsu People’s Republic of China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To highlight recent developments in the field of gastroduodenal mucosal defense with emphasis on lumen-gut interactions. RECENT FINDINGS There has been a growing interest in the physiological functions of luminal chemosensors present from tongue to colon that detect organic molecules in the luminal content associated with nutrient ingestion, usually associated with specialized cells, in particular the enteroendocrine cells. These receptors transduce the release of peptide hormones, in particular proglucagon-derived products such as the glucagon-like peptides (GLPs), which have profound effects on gut function and on metabolism. Luminal chemosensors transduce GLP release in response to changes in the cellular environment, as part of the mechanism of nutrient chemosensing. GLP-2 has important trophic effects on the intestinal mucosa, including increasing the proliferation rate of stem cells and reducing transmucosal permeability to ions and small molecules, in addition to increasing the rate of duodenal bicarbonate secretion. GLP-1, although traditionally considered an incretin that enhances the effect of insulin on peripheral tissues, also has trophic effects on the intestinal epithelium. SUMMARY A better understanding of the mechanisms that mediate GLP release can further illuminate the importance of nutrient chemosensing as an important component of the mechanism that mediates the trophic effects of luminal nutrients. GLP-1 and GLP-2 are already in clinical use for the treatment of diabetes and intestinal failure. Improved understanding of the control of their release and their end-organ effects will identify new clinical indications and interventions that enhance their release.
Collapse
|
11
|
Glendinning JI, Stano S, Holter M, Azenkot T, Goldman O, Margolskee RF, Vasselli JR, Sclafani A. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. Am J Physiol Regul Integr Comp Physiol 2015; 309:R552-60. [PMID: 26157055 PMCID: PMC4591378 DOI: 10.1152/ajpregu.00056.2015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022]
Abstract
Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, New York;
| | - Sarah Stano
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Marlena Holter
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Tali Azenkot
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Olivia Goldman
- Department of Biology, Barnard College, Columbia University, New York, New York
| | | | - Joseph R Vasselli
- Obesity Research Center, Department of Medicine, Columbia University, New York, New York; and
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, New York
| |
Collapse
|
12
|
Murovets VO, Bachmanov AA, Zolotarev VA. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene. PLoS One 2015; 10:e0130997. [PMID: 26107521 PMCID: PMC4479554 DOI: 10.1371/journal.pone.0130997] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/27/2015] [Indexed: 01/12/2023] Open
Abstract
The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.
Collapse
Affiliation(s)
- Vladimir O. Murovets
- Department of physiology of digestion, Pavlov Institute of Physiology, Saint-Petersburg, Russia
| | | | - Vasiliy A. Zolotarev
- Department of physiology of digestion, Pavlov Institute of Physiology, Saint-Petersburg, Russia
- * E-mail:
| |
Collapse
|