1
|
Pelagiadis I, Kyriakidis I, Katzilakis N, Kosmeri C, Veltra D, Sofocleous C, Glentis S, Kattamis A, Makis A, Stiakaki E. The Diverse Genomic Landscape of Diamond-Blackfan Anemia: Two Novel Variants and a Mini-Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1812. [PMID: 38002903 PMCID: PMC10670567 DOI: 10.3390/children10111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a ribosomopathy characterized by bone marrow erythroid hypoplasia, which typically presents with severe anemia within the first months of life. DBA is typically attributed to a heterozygous mutation in a ribosomal protein (RP) gene along with a defect in the ribosomal RNA (rRNA) maturation or levels. Besides classic DBA, DBA-like disease has been described with variations in 16 genes (primarily in GATA1, followed by ADA2 alias CECR1, HEATR3, and TSR2). To date, more than a thousand variants have been reported in RP genes. Splice variants represent 6% of identifiable genetic defects in DBA, while their prevalence is 14.3% when focusing on pathogenic and likely pathogenic (P/LP) variants, thus highlighting the impact of such alterations in RP translation and, subsequently, in ribosome levels. We hereby present two cases with novel pathogenic splice variants in RPS17 and RPS26. Associations of DBA-related variants with specific phenotypic features and malignancies and the molecular consequences of pathogenic variations for each DBA-related gene are discussed. The determinants of the spontaneous remission, cancer development, variable expression of the same variants between families, and selectivity of RP defects towards the erythroid lineage remain to be elucidated.
Collapse
Affiliation(s)
- Iordanis Pelagiadis
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, School of Medicine, University of Crete, 71003 Heraklion, Greece; (I.P.); (I.K.); (N.K.)
| | - Ioannis Kyriakidis
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, School of Medicine, University of Crete, 71003 Heraklion, Greece; (I.P.); (I.K.); (N.K.)
| | - Nikolaos Katzilakis
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, School of Medicine, University of Crete, 71003 Heraklion, Greece; (I.P.); (I.K.); (N.K.)
| | - Chrysoula Kosmeri
- Department of Pediatrics, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (A.M.)
| | - Danai Veltra
- Laboratory of Medical Genetics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.V.); (C.S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.V.); (C.S.)
| | - Stavros Glentis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, “Aghia Sofia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (A.K.)
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, “Aghia Sofia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (A.K.)
| | - Alexandros Makis
- Department of Pediatrics, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (A.M.)
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, School of Medicine, University of Crete, 71003 Heraklion, Greece; (I.P.); (I.K.); (N.K.)
| |
Collapse
|
2
|
Huang Z, Peng Y, Wei Y, Tan Y. Nonsense-mediated mRNA decay promote C2C12 cell proliferation by targeting PIK3R5. J Muscle Res Cell Motil 2022; 44:11-23. [PMID: 36512272 DOI: 10.1007/s10974-022-09639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Nonsense mediated mRNA decay (NMD) is a highly conserved RNA quality control system, which can specifically clear abnormal mRNA and play an important role in tumorigenesis. Myoblast proliferation plays an important role in the repair of skeletal muscle injury and the development of myosarcoma, and is controlled by a variety of transcription factors and signals. The molecular mechanism by which NMD regulates the proliferation of myoblast cells is not completely clear. In this study, we found that the NMD activity of skeletal muscle is high in 1-week-old mice but decreases gradually with age, corresponding to a weakening capacity for muscle growth and regeneration. Here, we provide evidence that NMD plays an important role in myoblast proliferation and apoptosis. In addition, we found that PIK3R5 is an NMD substrate gene which can inhibit AKT activity and C2C12 cell proliferation. Therefore, NMD can target PIK3R5 to enhance AKT activity, which in turn promotes C2C12 cell proliferation. This study provides new insights into NMD regulatory mechanisms in muscular development and into potential novel therapeutic strategies for muscle atrophy.
Collapse
Affiliation(s)
- Zhenzhou Huang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yishu Peng
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yuhui Wei
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
3
|
Xu L, Su X, Liu Z, Zhou A. Predicted Immune-Related Genes and Subtypes in Systemic Lupus Erythematosus Based on Immune Infiltration Analysis. DISEASE MARKERS 2022; 2022:8911321. [PMID: 35864995 PMCID: PMC9296307 DOI: 10.1155/2022/8911321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/07/2022]
Abstract
Objective The present investigation is aimed at identifying key immune-related genes linked with SLE and their roles using integrative analysis of publically available gene expression datasets. Methods Four gene expression datasets pertaining to SLE, 2 from whole blood and 2 experimental PMBC, were sourced from GEO. Shared differentially expressed genes (DEG) were determined as SLE-related genes. Immune cell infiltration analysis was performed using CIBERSORT, and case samples were subjected to k-means cluster analysis using high-abundance immune cells. Key immune-related SLE genes were identified using correlation analysis with high-abundance immune cells and subjected to functional enrichment analysis for enriched Gene Ontology Biological Processes and KEGG pathways. A PPI network of genes interacting with the key immune-related SLE genes was constructed. LASSO regression analysis was performed to identify the most significant key immune-related SLE genes, and correlation with clinicopathological features was examined. Results 309 SLE-related genes were identified and found functionally enriched in several pathways related to regulation of viral defenses and T cell functions. k-means cluster analysis identified 2 sample clusters which significantly differed in monocytes, dendritic cell resting, and neutrophil abundance. 65 immune-related SLE genes were identified, functionally enriched in immune response-related signaling, antigen receptor-mediated signaling, and T cell receptor signaling, along with Th17, Th1, and Th2 cell differentiation, IL-17, NF-kappa B, and VEGF signaling pathways. LASSO regression identified 9 key immune-related genes: DUSP7, DYSF, KCNA3, P2RY10, S100A12, SLC38A1, TLR2, TSR2, and TXN. Imputed neutrophil percentage was consistent with their expression pattern, whereas anti-Ro showed the inverse pattern as gene expression. Conclusions Comprehensive bioinformatics analyses revealed 9 key immune-related genes and their associated functions highly pertinent to SLE pathogenesis, subtypes, and identified valuable candidates for experimental research.
Collapse
Affiliation(s)
- Lin Xu
- Department of Nephrology, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an 271000, Shandong Province, China
| | - Xiaoyan Su
- Intensive Care Unit, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong Province, China
| | - Zhongcheng Liu
- Department of Neurosurgery, The First People's Hospital of Taian, Tai'an city, Shandong Province, China
| | - Aihong Zhou
- Department of Rheumatology Immunology, The Second Affiliated Hospital of Shandong First Medical University, Shandong Province, China
| |
Collapse
|
4
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
5
|
Canitz J, Kirschbaum F, Tiedemann R. Transcriptome-wide single nucleotide polymorphisms related to electric organ discharge differentiation among African weakly electric fish species. PLoS One 2020; 15:e0240812. [PMID: 33108393 PMCID: PMC7591079 DOI: 10.1371/journal.pone.0240812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.
Collapse
Affiliation(s)
- Julia Canitz
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Crop and Animal Science, Faculty of Life Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Tian J, Pan W, Xu X, Tian X, Zhang M, Hu Q. RETRACTED: NF-κB inhibits the occurrence of type 1 diabetes through microRNA-150-dependent PUMA degradation. Life Sci 2020; 255:117724. [PMID: 32360624 DOI: 10.1016/j.lfs.2020.117724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy) This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 1D,E+H, 2E+H, 3F,H+K, and 4B+E which appear to have a similar phenotype as many other publications, as detailed here: https://pubpeer.com/publications/C6FD5C041268DBBCDA521AEC112FA4 and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The journal requested the corresponding author comment on these concerns and provide the raw Western blot data. However, the authors were not able to satisfactorily fulfill this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Pan
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaoheng Xu
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Tian
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Meng Zhang
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Qibo Hu
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
7
|
He HJ, Bing H, Liu G. TSR2 Induces laryngeal cancer cell apoptosis through inhibiting NF-κB signaling pathway. Laryngoscope 2017; 128:E130-E134. [PMID: 29280495 DOI: 10.1002/lary.27035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/24/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES/HYPOTHESIS Human laryngeal squamous cell carcinoma (LSCC) is a malignancy that was discovered originally in the epithelial tissue of laryngeal mucosa. However, the underlying molecular mechanism is still not clear. In this study, we aimed to investigate the potential molecular mechanisms of TSR2 in the LSCC cell apoptosis. STUDY DESIGN The expression of TSR2 was first analyzed in LSCC tissues. Then functional effects of TSR2 on Hep-2 and AMC-HN-8 cell lines were performed by overexpression pcDNA3.1-TSR2. METHODS We investigated the expression level of TSR2 in LSCC tissues and cells by performing quantitative real-time polymerase chain reaction (qRT-PCR). The pcDNA3.1-TSR2 was constructed to explore the effect of overexpressing TSR2 in Hep-2 cells and AMC-HN-8 cells. We further investigated the effect of overexpressing TSR2 on cell apoptosis-related protein and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 nuclear translocation through Western blot and terminal dUTP nick end-labeling assays. RESULTS We found that TSR2 was downregulated in LSSC tissues and cells compared with the controls, and the overexpression of TSR2 in Hep-2 and AMC-HN-8 cells could promote cell apoptosis and related apoptosis proteins. The Western blot/qRT-PCR data further indicated that overexpression of TSR2 in Hep-2 and AMC-HN-8 cells could lead to a block of NF-κB signaling pathway via decreasing nuclear NF-κB p65 and increasing cytoplasm NF-κB p65. Moreover, overexpression of TSR2 significantly inhibited the phosphorylation of IκBα and IKKα/β. CONCLUSIONS The results indicated that TSR2-induced apoptosis was mediated by inhibiting the NF-κB signaling pathway, which may provide an effective target in gene therapy for LSCC. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E130-E134, 2018.
Collapse
Affiliation(s)
- Hong-Jiang He
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Han Bing
- Department of Ophthalmology, Hospital of Heilongjiang Province, Harbin, China
| | - Guijun Liu
- Heilongjiang University of Chinese Medicine, Heilongjiang Province, China
| |
Collapse
|
8
|
Li N, Song J, Kong L, Li SH, Jiao YN, Yan YH, Yao YJ, Meng YK, Li XF, Tong MM, Zhang N, Kang K, Kang TG, Yang JX. Neuroprotection of TSG Against Mechanical Trauma Injury Through an Anti-inflammatory Mechanism in Human Neuroblastoma SH-SY5Y Cells. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.789.800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation. J Mol Neurosci 2016; 60:115-29. [DOI: 10.1007/s12031-016-0784-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
|