1
|
Pan Y, Pan H, Lian C, Wu B, Lin J, Huang G, Cui B. Case Report: Mutations in JAK3 causing severe combined immunodeficiency complicated by disseminated Bacille Calmette-Guérin disease and Pneumocystis pneumonia. Front Immunol 2022; 13:1055607. [PMID: 36466884 PMCID: PMC9712176 DOI: 10.3389/fimmu.2022.1055607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND As a form of severe combined immunodeficiency (SCID), Janus kinase 3 (JAK3) deficiency can be fatal during severe infections in children, especially after inoculation of live-attenuated vaccines. We report a unique case of JAK3 deficiency with two compound heterozygous JAK3 mutations complicated by disseminated Bacille Calmette-Guérin (BCG) disease and Pneumocystis pneumonia. CASE DESCRIPTION A 5-month-old Chinese girl presented with recurring fever and productive cough after BCG vaccination and ineffective antibiotic treatment. Chest CT demonstrated bilateral infiltrations, enlarged mediastinal and axillary lymph nodes, and hypoplasia of the thymus. Mycobacterium tuberculosis and Pneumocystis jirovecii were detected from blood samples by sequencing. Acid-fast bacilli were also found from the sputum aspirate and gastric aspirate. Lymphocyte subset analyses indicated T-B+NK- immunodeficiency, and gene sequencing identified two heterozygous missense mutations (one unreported globally) in the Janus homology 7 (JH7) domain of JAK3. The patient received rifampicin, isoniazid, ethambutol, and trimethoprim/sulfamethoxazole and was discharged after improvements but against advice. OUTCOME The patient died at 13 months of age due to severe infections and hepatic damage. DISCUSSION SCID should be recognized before inoculation of live-attenuated vaccines in children. Newborn screening for SCID is advocated. Further investigations are needed to better understand the pathogenicity of the variants and molecular mechanism of the JH7 domain of JAK3.
Collapse
Affiliation(s)
- Ying Pan
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Pan
- The Outpatient Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
- The Clinical Research Unit, Shantou University Medical College, Shantou, Guangdong, China
| | - Chunan Lian
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Beiyan Wu
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jieying Lin
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guang Huang
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Binglin Cui
- The Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
2
|
Poyraz A, Cansever M, Muderris I, Patiroglu T. Neonatal Lymphopenia Screening Is Important For Early Diagnosis of Severe Combined Immunodeficiency. Am J Perinatol 2021; 40:748-752. [PMID: 34116583 DOI: 10.1055/s-0041-1731044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE T-cell receptor excision circles are expensive for neonatal severe combined immunodeficiency screening in developing countries. We aimed to detect immunodeficiencies presenting with lymphopenia to enable screening in the general population and to improve awareness regarding lymphopenia among clinicians. STUDY DESIGN This study was conducted prospectively. In all newborns included, complete blood count from umbilical cord blood samples was recorded. Absolute lymphopenia was defined as absolute lymphocyte count <3,000/mm3 in umbilical cord blood sample. Complete blood count was repeated at month 1 in cases found to have lymphopenia. RESULTS Overall, 2,000 newborns were included in the study. Absolute lymphopenia was detected in 42 newborns (2.1%), while lymphocyte count was >3,000/mm3 in 1,958 newborns (97.9%). Two infants with persisted lymphopenia at the end of the first month; therefore, further evaluations such as lymphocyte subsets for severe combined immunodeficiency (SCID) were done. In the first infant, the lymphocyte subgroups were detected as compatible with T (-), B (-), natural killer cells (NK) (+) SCID phenotype RAG defect. Sanger sequencing revealed that NM_000448 c.2209C > T (p.R737C) homozygous mutation of RAG1 gene. In the other infant, the lymphocyte subgroups were found as considered with T (-), B (+) NK (-) SCID phenotype JAK3 defect. Both patients underwent hematopoietic stem cell transplantation from human leukocyte antigen-matched family member. CONCLUSION Absolute lymphopenia by complete blood count is a more simpler, relatively noninvasive and inexpensive screening methodfor detection of SCID in newborns compared with T-cell receptor excision circles technique. KEY POINTS · Our study was conducted with a much smaller number of study groups compared with the previous ones.. · However, SCID was found at a higher rate compared with other studies.. · Our study for this disease that is common in our country where consanguineous marriages are common.
Collapse
Affiliation(s)
- Aykut Poyraz
- Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Murat Cansever
- Division of Allergy and Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Ipek Muderris
- Department of Gynecology and Obstetrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Turkan Patiroglu
- Division of Hematology and Oncology, Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| |
Collapse
|
3
|
Bostan E, Akdogan N, Gokoz O. Epidermodysplasia Verruciformis After Hematopoietic Stem Cell Transplantation in a Patient With Severe Combined Immunodeficiency Syndrome. Am J Dermatopathol 2021; 43:e65-e67. [PMID: 33577180 DOI: 10.1097/dad.0000000000001918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Epidermodysplasia verruciformis (EV) is a rare dermatologic disorder that is characterized by skin-colored-to-light brown flat, discrete or confluent papules resembling verruca plana. EV is divided into 2 forms: a classical genetic form and an acquired form. Classical genetic EV is caused by mutations in EVER1 and EVER2 genes. Acquired EV develops in immunocompromised patients such as HIV-positive patients and transplant recipients. Patients with a prior history of hematopoietic stem cell transplantation (HSCT) have tendency to develop generalized verrucosis. We report an extraordinary case of disseminated epidermodysplasia verruciformis seen in a 7-year-old boy diagnosed with severe combined immunodeficiency syndrome who had undergone HSCT. He had plane, brown papules involving his face, forearms, neck, anterior chest, nape, back, and knees. Cutaneous biopsy showed typical characteristic findings of EV: large cells with gray-blue cytoplasm and keratohyaline granules of different sizes in the granular and spinous layers. Herein, we present an unusual case of disseminated EV in a HSCT patient with typical histopathologic findings and treatment options.
Collapse
Affiliation(s)
- Ecem Bostan
- Departments of Dermatology and Venereology, and
| | | | - Ozay Gokoz
- Pathology, Hacettepe University, School of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Fayez EA, Qazvini FF, Mahmoudi SM, Khoei S, Vesaltalab M, Teimourian S. Diagnosis of radiosensitive severe combined immunodeficiency disease (RS-SCID) by Comet Assay, management of bone marrow transplantation. Immunobiology 2020; 225:151961. [PMID: 32517885 DOI: 10.1016/j.imbio.2020.151961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Severe combined immunodeficiency disease (SCID) is a rare inherited severe immunodeficiency, in which functions of T cells and B cells are impaired. SCID is inherited either in X-linked recessive, or autosomal recessive forms, and is either radiosensitive or radioresistant. Artemis (DCLRE1C gene), DNA ligase IV, DNA-PKC, and Cernunnos/XLF proteins are regarded as NHEJ (Non-Homologous End-Joining) proteins that are involved in the repair process of double-strand DNA breaks and their mutations would lead to cellular radiosensitivity. Diagnostic radiosensitivity assays are important for the management of clinical BMT (Bone Marrow Transplantation) conditions, such as what conditioning agents and doses should be used. MATERIALS AND METHODS In this study, five SCID patients and healthy controls were examined. Skin fibroblasts were cultured. After X-irradiation, cells either underwent clonogenic assay or incubated to allow DNA repair and examined by the alkaline comet assay. Finally, DCLRE1C, RAG-1, and RAG-2 genes sequenced. RESULTS By clonogenic assay, three patients were detected as radiosensitive with possible mutations in NHEJ genes such as DCLRE1C gene. The percentage of DNA in the tail measured by comet assay, in all three patients, was significantly different from the two other patients and the control group (p-value < 0.05). By using Sanger sequencing, a mutation in DCLRE1C gene was detected in one of the radiosensitive patients and two mutations in RAG-1, and RAG-2 genes were detected in the two radioresistant patients. CONCLUSION Our findings suggest that comet assay is a fast technique for the diagnosis of the radiosensitive form of SCID and is very suitable for the timely diagnosis of RS-SCID before BMT.
Collapse
Affiliation(s)
- Elham Alipour Fayez
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farajihaye Qazvini
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Marzeyeh Mahmoudi
- Department of Cell and Molecular Biology, Islamic Azad University, Science and Research Branch. Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Vesaltalab
- School of Medicine, Bandar Abbas University of Medical Science, Bandar Abbas, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Rawat A, Arora K, Shandilya J, Vignesh P, Suri D, Kaur G, Rikhi R, Joshi V, Das J, Mathew B, Singh S. Flow Cytometry for Diagnosis of Primary Immune Deficiencies-A Tertiary Center Experience From North India. Front Immunol 2019; 10:2111. [PMID: 31572360 PMCID: PMC6749021 DOI: 10.3389/fimmu.2019.02111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Flow cytometry has emerged as a useful technology that has facilitated our understanding of the human immune system. Primary immune deficiency disorders (PIDDs) are a heterogeneous group of inherited disorders affecting the immune system. More than 350 genes causing various PIDDs have been identified. While the initial suspicion and recognition of PIDDs is clinical, laboratory tools such as flow cytometry and genetic sequencing are essential for confirmation and categorization. Genetic sequencing, however, are prohibitively expensive and not readily available in resource constrained settings. Flow cytometry remains a simple, yet powerful, tool for multi-parametric analysis of cells. While it is confirmatory of diagnosis in certain conditions, in others it helps in narrowing the list of putative genes to be analyzed. The utility of flow cytometry in diagnosis of PIDDs can be divided into four major categories: (a) Enumeration of lymphocyte subsets in peripheral blood. (b) Detection of intracellular signaling molecules, transcription factors, and cytokines. (c) Functional assessment of adaptive and innate immune cells (e.g., T cell function in severe combined immune deficiency and natural killer cell function in familial hemophagocytic lymphohistiocytosis). (d) Evaluation of normal biological processes (e.g., class switching in B cells by B cell immunophenotyping). This review focuses on use of flow cytometry in disease-specific diagnosis of PIDDs in the context of a developing country.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Heiman S, Weil M, Shulman LM, Simon AJ, Lev A, Somech R, Stauber T. Co-appearance of OPV and BCG vaccine-derived complications in two infants with severe combined immunodeficiency. Immunol Res 2019; 66:437-443. [PMID: 29804197 DOI: 10.1007/s12026-018-9007-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infants with severe combined immunodeficiency (SCID) are at risk of developing severe life-threatening infections if they are inadvertently given attenuated live vaccines. Concomitant appearance of two live vaccine-associated complications in one person is rarely reported. In this study, we present two SCID infants, who received BCG and oral polio vaccines according to their local immunization schedule early in life, before the diagnosis of immunodeficiency was made. Their clinical presentation, extensive immunological workup, genetic tests, and clinical disease course are presented. Both patients developed localized and disseminated infections originating from the BCG vaccine (BCGitis and BCGiosis, respectively) and in addition suffered from diarrhea and chronic fecal secretion of vaccine-derived poliovirus. Alarmingly, in case 2, the poliovirus was a type 2 vaccine-derived poliovirus in which both neurovirulence attenuation sites reverted to the neurovirulent genotype. These cases highlight the importance of early recognition of SCID by neonatal screening or thorough family anamnesis, and the need to further defer the timing of administration of attenuated live vaccines.
Collapse
Affiliation(s)
- Sophia Heiman
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Merav Weil
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Lester M Shulman
- Central Virology Laboratory, Public Health Services, Israel Ministry of Health, at Sheba Medical Center, Tel Hashomer, Israel
| | - Amos J Simon
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Stauber
- Pediatric Department A and the Immunology Services, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Barreiros LA, Segundo GRS, Grumach AS, Roxo-Júnior P, Torgerson TR, Ochs HD, Condino-Neto A. A Novel Homozygous JAK3 Mutation Leading to T-B+NK- SCID in Two Brazilian Patients. Front Pediatr 2018; 6:230. [PMID: 30177960 PMCID: PMC6109756 DOI: 10.3389/fped.2018.00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
We report a novel homozygous JAK3 mutation in two female Brazilian SCID infants from two unrelated kindreds. Patient 1 was referred at 2 months of age due to a family history of immunodeficiency and the appearance of a facial rash. The infant was screened for TRECs (T-cell receptor excision circles) and KRECs (kappa-deleting recombination excision circles) for the assessment of newly formed naïve T and B cells respectively, which showed undetectable TRECs and normal numbers of KRECs. Lymphocyte immunophenotyping by flow cytometry confirmed the screening results, revealing a T-B+NK- SCID. The patient underwent successful HSCT. Patient 2 was admitted to an intensive care unit at 8 months of age with severe pneumonia, BCGosis, and oral moniliasis; she also had a positive family history for SCID but newborn screening was not performed at birth. At 10 months of age she was diagnosed as a T-B+NK- SCID and underwent successful HSCT. JAK3 sequencing revealed the same homozygous missense mutation (c.2350G>A) in both patients. This mutation affects the last nucleotide of exon 17 and it is predicted to disrupt the donor splice site. cDNA sequencing revealed skipping of exon 17 missing in both patients, confirming the predicted effect on mRNA splicing. Skipping of exon 17 leads to an out of frame deletion of 151 nucleotides, frameshift and creation of a new stop codon 60 amino acids downstream of the mutation resulting in a truncated protein which is likely nonfunctional.
Collapse
Affiliation(s)
- Lucila A Barreiros
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gesmar R S Segundo
- Department of Pediatrics, Federal University of Uberlandia Medical School, Uberlândia, Brazil
| | - Anete S Grumach
- Clinical Immunology, Faculdade de Medicina ABC, Santo André, Brazil
| | - Pérsio Roxo-Júnior
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, United States
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, United States
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Newborn Screening for Primary Immunodeficiencies: Focus on Severe Combined Immunodeficiency (SCID) and Other Severe T-Cell Lymphopenias. Int J Neonatal Screen 2015. [DOI: 10.3390/ijns1030089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Rivers L, Gaspar HB. Severe combined immunodeficiency: recent developments and guidance on clinical management. Arch Dis Child 2015; 100:667-72. [PMID: 25564533 DOI: 10.1136/archdischild-2014-306425] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/15/2014] [Indexed: 11/04/2022]
Abstract
Severe combined immunodeficiency (SCID) is a rare but important condition. Affected infants are born with profound abnormalities of immune cell function that lead to severe and recurrent infection that are almost always fatal in the first year of life without treatment. Infants with SCID are often initially seen by general paediatricians in the hospital care setting, and the recognition of the cardinal features of the disease and alertness to specific laboratory parameters are important in making an early diagnosis. There is also increasing interest in newborn screening for SCID, which has the potential to significantly improve outcome through early diagnosis and implementation of prophylactic medications. Definitive treatments such as haematopoietic stem cell transplantation and gene therapy have also made major advances over the last decade and again promise to improve the overall outcome for SCID with reduced long-term toxicities. In this review, we highlight some of the major advances in diagnosis and management of the disease, but we also want to emphasise the important role of the general paediatrician in making an early diagnosis and in ongoing management.
Collapse
Affiliation(s)
| | - H Bobby Gaspar
- Infection, Immunity, Inflammation and Physiological Medicine Programme, Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK
| |
Collapse
|
10
|
Locke BA, Dasu T, Verbsky JW. Laboratory diagnosis of primary immunodeficiencies. Clin Rev Allergy Immunol 2014; 46:154-68. [PMID: 24569953 DOI: 10.1007/s12016-014-8412-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary immune deficiency disorders represent a highly heterogeneous group of disorders with an increased propensity to infections and other immune complications. A careful history to delineate the pattern of infectious organisms and other complications is important to guide the workup of these patients, but a focused laboratory evaluation is essential to the diagnosis of an underlying primary immunodeficiency. Initial workup of suspected immune deficiencies should include complete blood counts and serologic tests of immunoglobulin levels, vaccine titers, and complement levels, but these tests are often insufficient to make a diagnosis. Recent advancements in the understanding of the immune system have led to the development of novel immunologic assays to aid in the diagnosis of these disorders. Classically utilized to enumerate lymphocyte subsets, flow cytometric-based assays are increasingly utilized to test immune cell function (e.g., neutrophil oxidative burst, NK cytotoxicity), intracellular cytokine production (e.g., TH17 production), cellular signaling pathways (e.g., phosphor-STAT analysis), and protein expression (e.g., BTK, Foxp3). Genetic testing has similarly expanded greatly as more primary immune deficiencies are defined, and the use of mass sequencing technologies is leading to the identification of novel disorders. In order to utilize these complex assays in clinical care, one must have a firm understanding of the immunologic assay, how the results are interpreted, pitfalls in the assays, and how the test affects treatment decisions. This article will provide a systematic approach of the evaluation of a suspected primary immunodeficiency, as well as provide a comprehensive list of testing options and their results in the context of various disease processes.
Collapse
Affiliation(s)
- Bradley A Locke
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | | |
Collapse
|
11
|
Ocular Involvement in Primary Immunodeficiency Diseases. J Clin Immunol 2013; 34:23-38. [DOI: 10.1007/s10875-013-9974-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/20/2013] [Indexed: 12/18/2022]
|
12
|
Derler I, Fritsch R, Schindl R, Romanin C. CRAC inhibitors: identification and potential. Expert Opin Drug Discov 2013; 3:787-800. [PMID: 23496221 DOI: 10.1517/17460441.3.7.787] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ca(2+) release-activated Ca(2+) (CRAC) channels, a subfamily of store-operated channels, play an essential role in various diseases such as immune disorders and allergic responses. OBJECTIVE The successful treatment of these diseases requires the identification of specific inhibitors. So far, a variety of chemical compounds blocking CRAC have been identified; however, they have all turned out to be less specific. Recently two proteins, STIM1 and ORAI1, have been identified as the essential components that fully reconstitute CRAC currents with a similar biophysical fingerprint. METHOD These two proteins and their activation process represent direct targets for the application of specific CRAC inhibitors. RESULTS/CONCLUSION For drug development, fluorescence microscopy adaptable for high-throughput screening will provide a powerful assay to mechanistically identify potential CRAC inhibitors that act on various stages within the STIM1/ORAI1 activation pathway visualized by fluorescent-tagged proteins.
Collapse
Affiliation(s)
- Isabella Derler
- University of Linz, Institute of Biophysics, A-4040 Linz, Austria +43 732 2468 9272 ; +43 732 2468 9280 ; ;
| | | | | | | |
Collapse
|
13
|
Wirt SE, Porteus MH. Development of nuclease-mediated site-specific genome modification. Curr Opin Immunol 2012; 24:609-16. [PMID: 22981684 DOI: 10.1016/j.coi.2012.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 11/30/2022]
Abstract
Genome engineering is an emerging strategy to treat monogenic diseases that relies on the use of engineered nucleases to correct mutations at the nucleotide level. Zinc finger nucleases can be designed to stimulate homologous recombination-mediated gene targeting at a variety of loci, including genes known to cause the primary immunodeficiencies (PIDs). Recently, these nucleases have been used to correct disease-causing mutations in human cells, as well as to create new animal models for human disease. Although a number of hurdles remain before they can be used clinically, engineered nucleases hold increasing promise as a therapeutic tool, particularly for the PIDs.
Collapse
Affiliation(s)
- Stacey E Wirt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
14
|
Generalized verrucosis: A review of the associated diseases, evaluation, and treatments. J Am Acad Dermatol 2012; 66:292-311. [DOI: 10.1016/j.jaad.2010.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/02/2010] [Accepted: 12/10/2010] [Indexed: 12/23/2022]
|
15
|
van der Burg M, Gennery AR. Educational paper. The expanding clinical and immunological spectrum of severe combined immunodeficiency. Eur J Pediatr 2011; 170:561-71. [PMID: 21479529 PMCID: PMC3078321 DOI: 10.1007/s00431-011-1452-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/10/2011] [Indexed: 12/20/2022]
Abstract
Severe combined immunodeficiency (SCID) is one of the most severe forms of primary immunodeficiency characterized by absence of functional T lymphocytes. It is a paediatric emergency, which is life-threatening when recognized too late. The clinical presentation varies from the classical form of SCID through atypical SCID to Omenn syndrome. In addition, there is a considerable immunological variation, which can hamper the diagnosis. In this educational review, we describe the immunopathological background, clinical presentations and diagnostic process of SCID, as well as the therapeutic possibilities.
Collapse
Affiliation(s)
- Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands.
| | - Andy R. Gennery
- Department of Pediatric Immunology, Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, UK ,Institute of Cellular Medicine, Child Health, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Fahrner M, Muik M, Derler I, Schindl R, Fritsch R, Frischauf I, Romanin C. Mechanistic view on domains mediating STIM1-Orai coupling. Immunol Rev 2009; 231:99-112. [DOI: 10.1111/j.1600-065x.2009.00815.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Derler I, Fahrner M, Carugo O, Muik M, Bergsmann J, Schindl R, Frischauf I, Eshaghi S, Romanin C. Increased hydrophobicity at the N terminus/membrane interface impairs gating of the severe combined immunodeficiency-related ORAI1 mutant. J Biol Chem 2009; 284:15903-15. [PMID: 19366689 PMCID: PMC2708886 DOI: 10.1074/jbc.m808312200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/20/2009] [Indexed: 11/06/2022] Open
Abstract
Patients with severe combined immune deficiency (SCID) suffer from defective T-cell Ca2+ signaling. A loss of Ca2+ entry has been linked at the molecular level to single missense mutation R91W in the store-operated Ca2+ channel ORAI1. However, the mechanistic impact of this mutation on ORAI1 function remains unclear. Confocal Förster resonance energy transfer microscopy revealed that dynamic store-operated coupling of STIM1 to ORAI1 R91W was largely sustained similar to wild-type ORAI1. Characterization of various point mutants at position 91 by whole cell patch clamp recordings displayed that neutral or even negatively charged amino acids did not abolish ORAI1 function. However, substitution by hydrophobic leucine, valine, or phenylalanine resulted in non-functional ORAI1 channels, despite preserved STIM1 coupling. Besides conformational constraints at the N terminus/membrane interface predicted for the hydrophobic mutants, additional key factor(s) were suggested to determine ORAI1 functionality. Calculation of the probability for the 1st transmembrane domain and its hydrophobicity revealed a substantial increase for all hydrophobic substitutions that lead to non-functional ORAI1 R91X mutants in contrast to those with hydrophilic residues. Hence, increased hydrophobicity might lead to disrupted permeation/gating, as an ORAI1 channel with increased pore size and R91W mutation failed to recover activity. In conclusion, the increase in hydrophobicity at the N terminus/membrane interface represents the major cause for yielding non-functional ORAI1 channels.
Collapse
Affiliation(s)
- Isabella Derler
- From the Institute for Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Marc Fahrner
- From the Institute for Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Oliviero Carugo
- Max Perutz Laboratories, Vienna Bio Center, Dr. Bohr Gasse 9, 1030 Wien, Austria, the
- General Chemistry Department, Pavia University, Taramelli 12, 27100 Pavia, Italy, and the
| | - Martin Muik
- From the Institute for Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Judith Bergsmann
- From the Institute for Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Rainer Schindl
- From the Institute for Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Irene Frischauf
- From the Institute for Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Said Eshaghi
- Department of Medical Biochemistry & Biophysics, Division of Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Christoph Romanin
- From the Institute for Biophysics, University of Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| |
Collapse
|
18
|
Abstract
Atopic is the most common of the dermatitides seen in infancy and childhood, but there are numerous other diseases that can mimic the skin findings. These include seborrheic dermatitis, immunodeficiency, and psoriasis in infancy; scabies, tinea corporis infection, perioral, nummular, contact, and molluscum dermatitis in childhood. It is sometimes extremely difficult to differentiate between ichthyosis and AD, and it is also important to differentiate AD from erythrodermic conditions including acrodermatitis enteropathica, biotin deficiency, and Netherton syndrome. A rare condition in children that may mimic AD is mycosis fungoides.
Collapse
Affiliation(s)
- Alfons Krol
- Oregon Health and Sciences University, Portland, 97239, USA.
| | | |
Collapse
|
19
|
Abstract
In this review, selected immunodeficiency disorders are presented in which the cutaneous signs are distinctive and contribute to the diagnosis of the condition. Among these cutaneous abnormalities are alopecia, cutaneous granulomas, cutaneous infections, atopic-like or seborrheic-like dermatitis, petechiae or purpura, silvery pigmentation, poor wound healing, and telangiectasias. Immunodeficiency should be considered in children with a history of infections that are recurrent, respond poorly to antibiotics, are of increased duration and severity, and/or result from unusual organisms. In addition to their high risk of infection, patients with immunodeficiency disorders have a risk of the development of malignancy that is 10,000 times higher than that of healthy age-matched controls. The underlying molecular basis for most genetic immunodeficiencies is now understood, allowing improved genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Amy S Paller
- Department of Pediatrics, Children's Memorial Hospital, Northwestern University's Feinberg School of Medicine, Chicago, IL 60614, USA.
| |
Collapse
|
20
|
Illoh OC. Current applications of flow cytometry in the diagnosis of primary immunodeficiency diseases. Arch Pathol Lab Med 2004; 128:23-31. [PMID: 14692816 DOI: 10.5858/2004-128-23-caofci] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT To review the applications of flow cytometry in the diagnosis and management of primary immunodeficiency disease. DATA SOURCES Articles describing the use of flow cytometry in the diagnosis of several primary immunodeficiency diseases were obtained through the National Library of Medicine database. STUDY SELECTION Publications that described novel and known applications of flow cytometry in primary immunodeficiency disease were selected. Review articles were included. Articles describing the different immunodeficiency diseases and methods of diagnosis were also selected. DATA EXTRACTION Approximately 100 data sources were analyzed, and those with the most relevant information were selected. DATA SYNTHESIS The diagnosis of many primary immunodeficiency diseases requires the use of several laboratory tests. Flow cytometry has become an important part of the workup of individuals suspected to have such a disorder. Knowledge of the pathogenesis of many of these diseases continues to increase, hence we acquire a better understanding of the laboratory tests that may be helpful in diagnosis. CONCLUSIONS Flow cytometry is applicable in the initial workup and subsequent management of several primary immunodeficiency diseases. As our understanding of the pathogenesis and management of these diseases increases, the use of many of these assays may become routine in hospitals.
Collapse
Affiliation(s)
- Orieji C Illoh
- Department of Pathology, University of Virginia Health System, Charlottesville 22908, USA.
| |
Collapse
|