1
|
Yang L, Chen Y, Guo F, Wang B, Ying Z, Kuang Y, Zeng X, Ma L, Yu H, Fu P. Transcription factor ATF3 aggravates kidney fibrosis by maintaining the state of histone H3 lysine 27 acetylation. Chin Med J (Engl) 2025:00029330-990000000-01416. [PMID: 39920894 DOI: 10.1097/cm9.0000000000003425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a global health issue, with renal fibrosis being a common pathway in CKD development. Histone modification plays crucial roles in transcriptional regulation, but their pathological functions and mechanisms in CKD are not well understood. METHODS We utilized chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-seq) and RNA-seq to evaluate the states and functions of H3 lysine 27 acetylation (H3K27ac) and H3 lysine 4 trimethylation (H3K4me3) in kidney of CKD mice. We identified epigenetic factors regulating H3K27ac through motif analysis. Expression of activating transcription factor 3 (ATF3) in CKD mouse models and patients' kidneys was validated via immunofluorescence staining or Western blot. We further generated the Atf3 deficient (Atf3-/-) mice to explore its effect in kidney function and fibrosis. ChIP-seq of H3K27ac from Atf3-/- CKD mice was employed to validate ATF3's regulatory effects. We explored how ATF3 maintains the state of H3K27ac by integrating the data sources from multiple databases. RESULTS The states of H3K27ac and H3K4me3 were changed during CKD, and positively correlated with differential gene expression. ATF3 was highly expressed in kidney of both patients and mice with CKD, and co-localized with H3K27ac in genome, epigenetically regulating H3K27ac state. Atf3 deficient in CKD mice significantly ameliorated kidney dysfunction and fibrotic phenotype, and reduced H3K27ac levels at the ATF3 binding sites. Mechanically, ATF3 may recruit the histone acetyltransferases (HATs) network to maintain the H3K27ac state during CKD. CONCLUSION ATF3 promotes kidney injury and fibrosis in CKD by maintaining the state of H3k27ac via recruiting HATs network.
Collapse
Affiliation(s)
- Lina Yang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yilong Chen
- Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041,China
| | - Fan Guo
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bo Wang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiye Ying
- Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041,China
| | - Yalan Kuang
- Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041,China
| | - Xiaoxi Zeng
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041,China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haopeng Yu
- Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041,China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Shi X, He L, Wang Y, Wu Y, Lin D, Chen C, Yang M, Huang S. Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review. Front Cardiovasc Med 2024; 11:1488207. [PMID: 39534498 PMCID: PMC11554481 DOI: 10.3389/fcvm.2024.1488207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Sick sinus syndrome (SSS) is a grave medical condition that can precipitate sudden death. The pathogenesis of SSS remains incompletely understood. Existing research postulates that the fundamental mechanism involves increased fibrosis of the sinoatrial node and its surrounding tissues, as well as disturbances in the coupled-clock system, comprising the membrane clock and the Ca2+ clock. Mitochondrial dysfunction exacerbates regional tissue fibrosis and disrupts the functioning of both the membrane and calcium clocks. This plays a crucial role in the underlying pathophysiology of SSS, including mitochondrial energy metabolism disorders, mitochondrial oxidative stress damage, calcium overload, and mitochondrial quality control disorders. Elucidating the mitochondrial mechanisms involved in the pathophysiology of SSS and further investigating the disease's mechanisms is of great significance.
Collapse
Affiliation(s)
- Xinxin Shi
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongming Lin
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chao Chen
- Department of Cardiology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ming Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Qi Y, Zhao Y, Xia J, Hu B, Li X, Li Q, Yang Z, Yao W, Hao C. Jun and JunB members of the AP-1 complex are potential therapeutic targets for silicosis. Int J Biol Macromol 2024; 277:134024. [PMID: 39032899 DOI: 10.1016/j.ijbiomac.2024.134024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Silicosis is a systemic disease with predominantly diffuse fibrosis of the lungs due to prolonged inhalation of free SiO2 dust during the manufacturing process, for which there is no effective treatment. In this study, we used a combined epigenetic and transcriptomic approach to reveal the chromatin-opening features of silicosis and identify the key transcription factor activator protein 1 (AP-1) that responds to silicosis fibrosis. Therapeutic administration of an AP-1 inhibitor inhibits the PI3K/AKT signaling pathway, reduces fibrosis marker proteins, and significantly ameliorates lung fibrosis in a mouse model of silicosis. In addition, it was observed that the expression of Jun and JunB was significantly up-regulated in a TGF-β1-induced in vitro transdifferentiation model of NIH/3T3 cells, and Co-IP confirmed that a protein complex could be formed between Jun and JunB. Mechanistically, silencing of Jun and JunB expression reversed the activation of the PI3K/AKT signaling pathway and the upregulation of fibrosis marker proteins in NIH/3 T3 cells after TGF-β1 stimulation. Taken together, Jun/JunB is expected to be a potential therapeutic target for silicosis fibrosis.
Collapse
Affiliation(s)
- Yuanmeng Qi
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - YouLiang Zhao
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - JiaRui Xia
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Botao Hu
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Xiaoying Li
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Qimeng Li
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Zhenzhen Yang
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China
| | - Wu Yao
- Department of Occupational and Environment Health, College of Public Health, Zhengzhou University, 450001, Henan, China.
| | - Changfu Hao
- Department of Child and Adolescence Health, College of Public Health, Zhengzhou University, 450001, Henan, China.
| |
Collapse
|
4
|
Li J, Zhang J, Zhang B, Chen G, Huang M, Xu B, Zhu D, Chen J, Duan Y, Gao W. ATF3 is involved in rSjP40-mediated inhibition of HSCs activation in Schistosoma japonicum-infected mice. J Cell Mol Med 2024; 28:e18458. [PMID: 39031798 PMCID: PMC11190947 DOI: 10.1111/jcmm.18458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024] Open
Abstract
Schistosomiasis is a parasitic disease characterized by liver fibrosis, a process driven by the activation of hepatic stellate cells (HSCs) and subsequent collagen production. Previous studies from our laboratory have demonstrated the ability of Schistosoma japonicum protein P40 (SjP40) to inhibit HSCs activation and exert an antifibrotic effect. In this study, we aimed to elucidate the molecular mechanism underlying the inhibitory effect of recombinant SjP40 (rSjP40) on HSCs activation. Using a cell model in which rSjP40 inhibited LX-2 cell activation, we performed RNA-seq analyses and identified ATF3 as the most significantly altered gene. Further investigation revealed that rSjP40 inhibited HSCs activation partly by suppressing ATF3 activation. Knockdown of ATF3 in mouse liver significantly alleviated S. japonicum-induced liver fibrosis. Moreover, our results indicate that ATF3 is a direct target of microRNA-494-3p, a microRNA associated with anti-liver fibrosis effects. rSjP40 was found to downregulate ATF3 expression by upregulating microRNA-494-3p in LX-2 cells. This downregulation led to the inhibition of the expression of liver fibrosis proteins α-SMA and COL1A1, ultimately alleviating liver fibrosis caused by S. japonicum.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuPeople's Republic of China
| | - Jiali Zhang
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
- Department of Laboratory MedicinePeople's Hospital of Haimen DistrictNantongJiangsuPeople's Republic of China
| | - Bei Zhang
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Guo Chen
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Min Huang
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Boyin Xu
- Department of Infection ControlAffiliated Hospital of Nantong UniversityNantongJiangsuPeople's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Wenxi Gao
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
- Laboratory Center, School of Educational SciencesNantong UniversityNantongJiangsuPeople's Republic of China
| |
Collapse
|
5
|
Schmidt KE, Höving AL, Nowak K, an Mey N, Kiani Zahrani S, Nemeita B, Riedel L, Majewski A, Kaltschmidt B, Knabbe C, Kaltschmidt C. Serum Induces the Subunit-Specific Activation of NF-κB in Proliferating Human Cardiac Stem Cells. Int J Mol Sci 2024; 25:3593. [PMID: 38612406 PMCID: PMC11012129 DOI: 10.3390/ijms25073593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often linked to ageing and are the major cause of death worldwide. The declined proliferation of adult stem cells in the heart often impedes its regenerative potential. Thus, an investigation of the proliferative potential of adult human cardiac stem cells (hCSCs) might be of great interest for improving cell-based treatments of cardiovascular diseases. The application of human blood serum was already shown to enhance hCSC proliferation and reduce senescence. Here, the underlying signalling pathways of serum-mediated hCSC proliferation were studied. We are the first to demonstrate the involvement of the transcription factor NF-κB in the serum-mediated proliferative response of hCSCs by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). RNA-Sequencing (RNA-Seq) revealed ATF6B, COX5B, and TNFRSF14 as potential targets of NF-κB that are involved in serum-induced hCSC proliferation.
Collapse
Affiliation(s)
- Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Anna L. Höving
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Katja Nowak
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Nike an Mey
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Sina Kiani Zahrani
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Britta Nemeita
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Lena Riedel
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Agnes Majewski
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany;
| | - Cornelius Knabbe
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| |
Collapse
|
6
|
Huang Y, Dai H. ATF3 affects myocardial fibrosis remodeling after myocardial infarction by regulating autophagy and its mechanism of action. Gene 2023; 885:147705. [PMID: 37572799 DOI: 10.1016/j.gene.2023.147705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND & OBJECTIVE Myocardial fibrosis remodeling is a key event in the development of heart anomalousness and dysfunction after myocardial infarction (MI). The purpose of this study was to explore the effect of activating transcription factor 3 (ATF3) on myocardial fibrosis remodeling after MI and its underlying mechanism, so as to provide a theoretical basis for the clinical development of new strategies for MI treatment. METHODS MI mouse formers were structured by hypodesmus of the left anterior descending (LAD) arteria coronaria of mice, and primary cardiac fibroblasts (CFs) were separated and cultivated to investigate the effect of ATF3 on myocardial fibrosis after MI and its mechanism. RESULTS Increased collagen content and autophagic flux were found in the left ventricle (LV) tissues of MI mice as shown by Sirius red staining and Western blotting (WB) analysis. Meanwhile, immunofluorescence staining and WB analysis showed that ATF3 was raised in response to MI damage. After remedy with angiotensin II (AngII), the activity and differentiation of CFs were significantly raised, the expression of collagens was increased, and the level of autophagy was notably increased. Furthermore, AngII stimulation remarkably raised the expression of ATF3. Interestingly, knockdown of ATF3 in AngII-CFs reversed the above changes. In addition, after intervention with 3-methyladenine (3-MA), an autophagy restrainer, the activity and differentiation of AngII-CFs, as well as the relative collagen levels and autophagic flux were reduced. However, up-regulation of ATF3 protein expression partially reversed the effect of 3-MA on AngII-CFs. CONCLUSION ATF3 can regulate the proliferation of CFs and collagen production by affecting autophagy, thus affecting myocardial fibrosis remodeling after MI.
Collapse
Affiliation(s)
- Yiwei Huang
- Department of Cardiovascular Medicine, The Dingli Clinical College of Wenzhou Medical University, Laboratory of Wenzhou Pan Vascular Disease Management Center, 252 Bailidong Road, Lucheng District, Wenzhou 325000, Zhejiang Province, China
| | - Haiyue Dai
- Department of Cardiovascular Medicine, The Dingli Clinical College of Wenzhou Medical University, Laboratory of Wenzhou Pan Vascular Disease Management Center, 252 Bailidong Road, Lucheng District, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
7
|
Pi Z, Qiu X, Liu J, Shi Y, Zeng Z, Xiao R. Activating Protein-1 (AP-1): A Promising Target for the Treatment of Fibrotic Diseases. Curr Med Chem 2023; 31:CMC-EPUB-129375. [PMID: 36757030 DOI: 10.2174/0929867330666230209100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
The fibrosis of tissues and organs occurs via an aberrant tissue remodeling process characterized by an excessive deposition of extracellular matrix, which can lead to organ dysfunction, organ failure, and death. Because the pathogenesis of fibrosis remains unclear and elusive, there is currently no medication to reverse it; hence, this process deserves further study. Activating protein-1 (AP-1)-comprising Jun (c-Jun, JunB, JunD), Fos (c-fos, FosB, Fra1, and Fra2), and activating transcription factor-is a versatile dimeric transcription factor. Numerous studies have demonstrated that AP-1 plays a crucial role in advancing tissue and organ fibrosis via induction of the expression of fibrotic molecules and activating fibroblasts. This review focuses on the role of AP-1 in a range of fibrotic disorders as well as on the antifibrotic effects of AP-1 inhibitors. It also discusses the potential of AP-1 as a new therapeutic target in conditions involving tissue and organ fibrosis.
Collapse
Affiliation(s)
- Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Medical Genetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Second Xiangya Hospital of Central South University Department of Dermatology Changsha China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
8
|
Loss of KDM5B ameliorates pathological cardiac fibrosis and dysfunction by epigenetically enhancing ATF3 expression. Exp Mol Med 2022; 54:2175-2187. [PMID: 36481938 PMCID: PMC9794816 DOI: 10.1038/s12276-022-00904-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Excessive cardiac fibrosis is central to adverse cardiac remodeling and dysfunction leading to heart failure in many cardiac diseases. Histone methylation plays a crucial role in various pathophysiological events. However, the role of histone methylation modification enzymes in pathological cardiac fibrosis needs to be fully elucidated. Here, we identified lysine demethylase 5B (KDM5B), a histone H3K4me2/me3 demethylase, as a key epigenetic mediator of pathological cardiac fibrosis. KDM5B expression was upregulated in cardiac fibroblasts and myocardial tissues in response to pathological stress. KDM5B deficiency markedly ameliorated cardiac fibrosis, improved cardiac function, and prevented adverse cardiac remodeling following myocardial infarction (MI) or pressure overload. KDM5B knockout or inhibitor treatment constrained the transition of cardiac fibroblasts to profibrogenic myofibroblasts and suppressed fibrotic responses. KDM5B deficiency also facilitated the transformation of cardiac fibroblasts to endothelial-like cells and promoted angiogenesis in response to myocardial injury. Mechanistically, KDM5B bound to the promoter of activating transcription factor 3 (Atf3), an antifibrotic regulator of cardiac fibrosis, and inhibited ATF3 expression by demethylating the activated H3K4me2/3 modification, leading to the enhanced activation of TGF-β signaling and excessive expression of profibrotic genes. Our study indicates that KDM5B drives pathological cardiac fibrosis and represents a candidate target for intervention in cardiac dysfunction and heart failure.
Collapse
|
9
|
Wang Y, Gao H, Wang F, Ye Z, Mokry M, Turner AW, Ye J, Koplev S, Luo L, Alsaigh T, Adkar SS, Elishaev M, Gao X, Maegdefessel L, Björkegren JLM, Pasterkamp G, Miller CL, Ross EG, Leeper NJ. Dynamic changes in chromatin accessibility are associated with the atherogenic transitioning of vascular smooth muscle cells. Cardiovasc Res 2022; 118:2792-2804. [PMID: 34849613 PMCID: PMC9586565 DOI: 10.1093/cvr/cvab347] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS De-differentiation and activation of pro-inflammatory pathways are key transitions vascular smooth muscle cells (SMCs) make during atherogenesis. Here, we explored the upstream regulators of this 'atherogenic transition'. METHODS AND RESULTS Genome-wide sequencing studies, including Assay for Transposase-Accessible Chromatin using sequencing and RNA-seq, were performed on cells isolated from both murine SMC-lineage-tracing models of atherosclerosis and human atherosclerotic lesions. At the bulk level, alterations in chromatin accessibility were associated with the atherogenic transitioning of lesional SMCs, especially in relation to genes that govern differentiation status and complement-dependent inflammation. Using computational biology, we observed that a transcription factor previously related to coronary artery disease, Activating transcription factor 3 (ATF3), was predicted to be an upstream regulator of genes altered during the transition. At the single-cell level, our results indicated that ATF3 is a key repressor of SMC transitioning towards the subset of cells that promote vascular inflammation by activating the complement cascade. The expression of ATF3 and complement component C3 was negatively correlated in SMCs from human atherosclerotic lesions, suggesting translational relevance. Phenome-wide association studies indicated that genetic variation that results in reduced expression of ATF3 is correlated with an increased risk for atherosclerosis, and the expression of ATF3 was significantly down-regulated in humans with advanced vascular disease. CONCLUSION Our study indicates that the plasticity of atherosclerotic SMCs may in part be explained by dynamic changes in their chromatin architecture, which in turn may contribute to their maladaptive response to inflammation-induced stress.
Collapse
Affiliation(s)
- Ying Wang
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Hua Gao
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Fudi Wang
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Zhongde Ye
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Michal Mokry
- Department of Cardiology and Laboratory of Clinical Chemistry, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands
| | - Adam W Turner
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, 1335 Lee St, Charlottesville, VA 22908, USA
| | - Jianqin Ye
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
| | - Simon Koplev
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Lingfeng Luo
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Tom Alsaigh
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
- Department of Cardiovascular Medicine, Stanford University School of Medicine, 870 Quarry Road Extension, Stanford, CA 94305, USA
| | - Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
| | - Maria Elishaev
- Department of Pathology and Laboratory Medicine, Centre for Heart Lung Innvoation, University of British Columbia, 166-1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada
| | - Xiangyu Gao
- Department of Pathology and Laboratory Medicine, Centre for Heart Lung Innvoation, University of British Columbia, 166-1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, and the German Center for Cardiovascular Research (DZHK partner site), Biedersteiner Str. 29, Munich 80802, Germany
- Department of Internal Medicine, Center for Molecular Medicine, Karolinska Institute, Visionsgatan 18, Stockholm 171 76, Sweden
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, USA
| | - Gerard Pasterkamp
- Department of Cardiology and Laboratory of Clinical Chemistry, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, 1335 Lee St, Charlottesville, VA 22908, USA
| | - Elsie G Ross
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur drive, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Mouse Models of Skin Fibrosis. Methods Mol Biol 2021; 2299:371-383. [PMID: 34028755 DOI: 10.1007/978-1-0716-1382-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Systemic sclerosis (SSc) is a rare systemic autoimmune disease associated with a high mortality. The first histopathological hallmarks are vasculopathy and inflammation, followed by fibrosis of the skin and internal organs. The molecular and cellular mechanisms are incompletely understood. Rodent models provide important insights into the pathogenesis of SSc and are a mainstay for the development of novel targeted therapies. Here we describe the mechanistic insights of inducible and genetic models, and also discuss in detail the limitations and pitfalls of the most frequently used SSc mouse models. We also describe protocols for running the established bleomycin-induced scleroderma skin fibrosis model.
Collapse
|
11
|
Adiponectin Deregulation in Systemic Autoimmune Rheumatic Diseases. Int J Mol Sci 2021; 22:ijms22084095. [PMID: 33920997 PMCID: PMC8071452 DOI: 10.3390/ijms22084095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Deregulation of adiponectin is found in systemic autoimmune rheumatic diseases (SARDs). Its expression is downregulated by various inflammatory mediators, but paradoxically, elevated serum levels are present in SARDs with high inflammatory components, such as rheumatoid arthritis and systemic lupus erythematosus. Circulating adiponectin is positively associated with radiographic progression in rheumatoid arthritis as well as with cardiovascular risks and lupus nephritis in systemic lupus erythematosus. However, in SARDs with less prominent inflammation, such as systemic sclerosis, adiponectin levels are low and correlate negatively with disease activity. Regulators of adiponectin gene expression (PPAR-γ, Id3, ATF3, and SIRT1) and inflammatory cytokines (interleukin 6 and tumor necrosis factor α) are differentially expressed in SARDs and could therefore influence total adiponectin levels. In addition, anti-inflammatory therapy could also have an impact, as tocilizumab treatment is associated with increased serum adiponectin. However, anti-tumor necrosis factor α treatment does not seem to affect its levels. Our review provides an overview of studies on adiponectin levels in the bloodstream and other biological samples from SARD patients and presents some possible explanations why adiponectin is deregulated in the context of therapy and gene regulation.
Collapse
|
12
|
Azizi N, Toma J, Martin M, Khalid MF, Mousavi F, Win PW, Borrello MT, Steele N, Shi J, di Magliano MP, Pin CL. Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer. Oncogene 2021; 40:3118-3135. [PMID: 33864001 PMCID: PMC8173475 DOI: 10.1038/s41388-021-01771-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
The unfolded protein response (UPR) is activated in pancreatic pathologies and suggested as a target for therapeutic intervention. In this study, we examined activating transcription factor 3 (ATF3), a mediator of the UPR that promotes acinar-to-ductal metaplasia (ADM) in response to pancreatic injury. Since ADM is an initial step in the progression to pancreatic ductal adenocarcinoma (PDAC), we hypothesized that ATF3 is required for initiation and progression of PDAC. We generated mice carrying a germline mutation of Atf3 (Atf3-/-) combined with acinar-specific induction of oncogenic KRAS (Ptf1acreERT/+KrasG12D/+). Atf3-/- mice with (termed APK) and without KRASG12D were exposed to cerulein-induced pancreatitis. In response to recurrent pancreatitis, Atf3-/- mice showed decreased ADM and enhanced regeneration based on morphological and biochemical analysis. Similarly, an absence of ATF3 reduced spontaneous pancreatic intraepithelial neoplasia (PanIN) formation and PDAC in Ptf1acreERT/+KrasG12D/+ mice. In response to injury, KRASG12D bypassed the requirement for ATF3 with a dramatic loss in acinar tissue and PanIN formation observed regardless of ATF3 status. Compared to Ptf1acreERT/+KrasG12D/+ mice, APK mice exhibited a significant decrease in pancreatic and total body weight, did not progress through to PDAC, and showed altered pancreatic fibrosis and immune cell infiltration. These findings suggest a complex, multifaceted role for ATF3 in pancreatic cancer pathology.
Collapse
Affiliation(s)
- Nawab Azizi
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jelena Toma
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Oncology, University of Western Ontario, London, ON, Canada
| | - Mickenzie Martin
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Muhammad Faran Khalid
- Children's Health Research Institute, London, ON, Canada
- Department of Paediatrics, University of Western Ontario, London, ON, Canada
| | - Fatemeh Mousavi
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Phyo Wei Win
- Children's Health Research Institute, London, ON, Canada
- Department of Paediatrics, University of Western Ontario, London, ON, Canada
| | - Maria Teresa Borrello
- Centre for Cancer Research Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Nina Steele
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Christopher L Pin
- Children's Health Research Institute, London, ON, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
- Department of Oncology, University of Western Ontario, London, ON, Canada.
- Department of Paediatrics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
13
|
Wang XM, Liu XM, Wang Y, Chen ZY. Activating transcription factor 3 (ATF3) regulates cell growth, apoptosis, invasion and collagen synthesis in keloid fibroblast through transforming growth factor beta (TGF-beta)/SMAD signaling pathway. Bioengineered 2020; 12:117-126. [PMID: 33315500 PMCID: PMC8806324 DOI: 10.1080/21655979.2020.1860491] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The successful treatment of keloids is a great challenge in the plastic surgery field. Activating transcription factor 3 (ATF3) is discovered as an adaptive responsive gene, which plays a critical role in fibroblast activation. This study aimed to investigate the expression and biological role of ATF3 in the pathogenesis of keloids. ATF3 expression in normal skins and keloids was evaluated by real-time PCR, western blot and immunohistochemistry. Effects of ATF3 on cell growth, apoptosis, invasion and collagen production were evaluated in keloid fibroblast cells overexpressing or downregulating ATF3. ATF3 expression was significantly elevated in keloid tissues when compared with that of normal skins and parakeloidal skin tissues. Moreover, ATF3 promoted cell proliferation and collagen production in keloid fibroblast cells. Conversely, transfection with siRNA targeting ATF3 led to decreased cell viability and collagen synthesis via inhibiting transforming growth factor-β1 (TGF-β1) and fibroblast growth factor 2/8 (FGF2/8) production in keloid fibroblasts. ATF3 could reduce the apoptosis rate of keloid fibroblast cells. Molecularly, we found that ATF3 promoted BCL2 level and inhibit the expression of BCL2 associated agonist of cell death (Bad), Caspase3 and Caspase9 in keloid fibroblast cells. ATF3 also enhanced the invasive potential via upregulating the expression of Matrix Metalloproteinases (MMP) family members (MMP1, MMP2, MMP9 and MMP13). ATF3 could induce activation of TGF-β/Smad signaling pathway in fibroblasts. Collectively, ATF3 could promote growth and invasion, and inhibit apoptosis via TGF-β/Smad pathway in keloid fibroblast cells, suggesting that ATF3 might be considered as a novel therapeutic target for the management of keloid.
Collapse
Affiliation(s)
- Xue-Ming Wang
- Department of Plastic Surgery, Qingdao University , Qingdao, China.,Department of Plastic Surgery, Fujian Provincial Maternity and Children's Hospital , Fuzhou, China
| | - Xiu-Mei Liu
- Child Care Center, Fujian Provincial Maternity and Children's Hospital , Fuzhou, China
| | - Yuting Wang
- Department of Plastic Surgery, Yantai Yuhuangding Hospital , Yantai, China
| | - Zhen-Yu Chen
- Medical Plastic and Cosmetic Center, The Affiliated Hospital of Qingdao University , Qingdao, China
| |
Collapse
|
14
|
Li J, Yang Y, Wei S, Chen L, Xue L, Tian H, Tao S. Bixin Confers Prevention against Ureteral Obstruction-Caused Renal Interstitial Fibrosis through Activation of the Nuclear Factor Erythroid-2-Related Factor2 Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8321-8329. [PMID: 32706966 DOI: 10.1021/acs.jafc.0c03674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bixin is a natural carotenoid isolated from the seeds of Bixa orellana, with numerous important pharmacological activities, including antioxidant and antifibrotic effects. The nuclear factor erythroid-2-related factor2 (Nrf2) signaling pathway induced by bixin is involved in the process. Excessive reactive oxygen species generation in tubular cells contributes to kidney interstitial fibrosis. The potential therapeutic strategy for bixin in alleviating kidney fibrosis remains largely unclear. In this study, we used unilateral ureteral obstruction (UUO) to establish a renal fibrotic model. Dramatic oxidative DNA damage occurs in kidneys, especially in tubular cells after UUO. In cultured tubular cells, bixin could induce Nrf2 signaling activation by suppressing Nrf2 ubiquitination and increasing its protein stability. Transforming growth factor beta 1-induced epithelial-to-mesenchymal transition (EMT) and extracellular matrix production were suppressed by bixin, and blockade of Nrf2 activation by small interfering RNA could largely reverse the protective effect of bixin. In vivo studies showed that administration of bixin induces Nrf2 signaling activation in tubular cells and markedly attenuates partial EMT of tubular cells and kidney interstitial fibrosis after subjecting to UUO. Together, this study implies that bixin may protect against kidney interstitial fibrosis through stimulating Nrf2 activation in renal tubular cells.
Collapse
Affiliation(s)
- Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Shuhui Wei
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ling Chen
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
15
|
Yin Y, Qi X, Qiao Y, Liu H, Yan Z, Li H, Liu Z. The Association of Neuronal Stress with Activating Transcription Factor 3 in Dorsal Root Ganglion of in vivo and in vitro Models of Bortezomib- Induced Neuropathy. Curr Cancer Drug Targets 2020; 19:50-64. [PMID: 30289077 DOI: 10.2174/1568009618666181003170027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/15/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The notion that proteasome inhibitor bortezomib (BTZ) induced intracellular oxidative stress resulting in peripheral neuropathy has been generally accepted. The association of mitochondrial dysfunction, cell apoptosis, and endoplasmic reticulum (ER) stress with intracellular oxidative stress is ambiguous and still needs to be investigated. The activation of activating transcription factor 3 (ATF3) is a stress-hub gene which was upregulated in dorsal root ganglion (DRG) neurons after different kinds of peripheral nerve injuries. OBJECTIVE To investigate a mechanism underlying the action of BTZ-induced intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress via activation of ATF3. METHODS Primary cultured DRG neurons with BTZ induced neurotoxicity and DRG from BTZ induced painful peripheral neuropathic rats were used to approach these questions. RESULTS BTZ administration caused the upregulation of ATF3 paralleled with intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress in DRG neurons both in vitro and in vivo. Blocking ATF3 signaling by small interfering RNA (siRNA) gene silencing technology resulted in decreased intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress in DRG neurons after BTZ treatment. CONCLUSION This study exhibited important mechanistic insight into how BTZ induces neurotoxicity through the activation of ATF3 resulting in intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress and provided a novel potential therapeutic target by blocking ATF3 signaling.
Collapse
Affiliation(s)
- Yiting Yin
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Xin Qi
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Yuan Qiao
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Huaxiang Liu
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan 250012, China
| | - Zihan Yan
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan 250012, China
| | - Zhen Liu
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| |
Collapse
|
16
|
GPCR-induced YAP activation sensitizes fibroblasts to profibrotic activity of TGFβ1. PLoS One 2020; 15:e0228195. [PMID: 32053631 PMCID: PMC7018035 DOI: 10.1371/journal.pone.0228195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Tissue fibrosis is a pathological condition characterized by uncontrolled fibroblast activation that ultimately leads to organ failure. The TGFβ1 pathway, one of the major players in establishment of the disease phenotype, is dependent on the transcriptional co-activators YAP/TAZ. We were interested whether fibroblasts can be sensitized to TGFβ1 by activation of the GPCR/YAP/TAZ axis and whether this mechanism explains the profibrotic properties of diverse GPCR ligands. We found that LPA, S1P and thrombin cooperate in human dermal fibroblasts with TGFβ1 to induce extracellular matrix synthesis, myofibroblast marker expression and cytokine secretion. Whole genome expression profiling identified a YAP/TAZ signature behind the synergistic profibrotic effects of LPA and TGFβ1. LPA, S1P and thrombin stimulation led to activation of the Rho-YAP axis, an increase of nuclear YAP-Smad2 complexes and enhanced expression of profibrotic YAP/Smad2-target genes. More generally, dermal, cardiac and lung fibroblast responses to TGFβ1 could be enhanced by increasing YAP nuclear levels (with GPCR ligands LPA, S1P, thrombin or Rho activator) and inhibited by decreasing nuclear YAP (with Rho inhibitor, forskolin, latrunculin B or 2-deoxy-glucose). Thus, we present here a conceptually interesting finding that fibroblast responses to TGFβ1 can be predicted based on the nuclear levels of YAP and modulated by stimuli/treatments that change YAP nuclear levels. Our study contributes to better understanding of fibrosis as a complex interplay of signalling pathways and proposes YAP/TAZ as promising targets in the treatment of fibrosis.
Collapse
|
17
|
Soare A, Györfi HA, Matei AE, Dees C, Rauber S, Wohlfahrt T, Chen C, Ludolph I, Horch RE, Bäuerle T, Hörsten S, Mihai C, Distler O, Ramming A, Schett G, Distler JHW. Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential Target for the Treatment of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2019; 72:137-149. [DOI: 10.1002/art.41058] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alina Soare
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany, and Davila University of Medicine and Pharmacy Bucharest Romania
| | - Hermina A. Györfi
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Alexandru E. Matei
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Clara Dees
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Simon Rauber
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Thomas Wohlfahrt
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Chih‐Wei Chen
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Ingo Ludolph
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Raymund E. Horch
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Tobias Bäuerle
- Friedrich‐Alexander University Erlangen‐Nuremberg Erlangen Germany
| | - Stephan Hörsten
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Carina Mihai
- University Hospital Zurich, Zurich, Switzerland, and Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | | | - Andreas Ramming
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Georg Schett
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Jörg H. W. Distler
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| |
Collapse
|
18
|
Lu Y, Zhao C, Lei L, Tao Z, Zheng L, Wen J, Li X. Effects of thalidomide on Th17, Treg cells and TGF-β1/Smad3 pathway in a mouse model of systemic sclerosis. Int J Rheum Dis 2019; 23:406-419. [PMID: 31840939 DOI: 10.1111/1756-185x.13769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the immune regulatory and anti-fibrosis function of thalidomide (Thal) in systemic sclerosis (SSc), we investigated the effects of Thal on: (a) Th17 and Treg cell production; (b) related factors expression; and (c) transforming growth factor (TGF)-β1/Smad3 pathway, using a mouse model of SSc. METHODS Forty female BALB/c mice were randomly divided into a normal control (NC) group, SSc group (bleomycin [BLM]-induced experimental SSc), BLM + Thal (10 mg/kg/day) group, BLM + Thal (20) group, and BLM + Thal (30) group. Thal was administered a day after BLM. At the end of the animal experiments, mouse tissues were collected for detection of pathological changes and hydroxyproline content. Flow cytometry, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry, Western blot and other methods were used to measure Th17, Treg cell population and their related factors, as well as TGF-β1/Smad3 pathway expression. RESULTS Thal treatment: (a) reduced skin, and pulmonary tissue fibrosis, inflammation score, and hydroxyproline content (P < .001) in BLM-induced SSc mice; (b) reduced the percentages of Th17 cells and associated interleukin (IL)-17A expression (both P < .05) but increased the percentages of Treg cells and its transcription factor Foxp3 expression (both P < .05); (c) correlation analysis found positive correlations between Th17/Treg ratio, the inflammatory score of the skin and pulmonary tissues, hydroxyproline content, and type I collagen messenger RNA expression (r = .8546, .8656, .6902, .6807, .8118, and .8424, respectively, P < .01); (d) Thal inhibited TGF-β1 expression and Smad3 phosphorylation (both P < .05); (e) TGF-β1 was positively correlated with the IL-17A and Th17/Treg ratio (r = .5856, P = .005; r = .6684, P = .0107, respectively). CONCLUSION Thal can effectively prevent skin and pulmonary tissue fibrosis in a mouse model of SSc through the TGF-β1/Smad3 signaling pathway and can rectify the distortion of the Th17/Treg balance in SSc by potentially regulating Th17 and Treg cell production, as well as their related factors expression.
Collapse
Affiliation(s)
- Yi Lu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Cheng Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Ling Lei
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Zhiqing Tao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Leting Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jing Wen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xi Li
- Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
19
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
20
|
Wu C, Lin H, Zhang X. Inhibitory effects of pirfenidone on fibroblast to myofibroblast transition in rheumatoid arthritis-associated interstitial lung disease via the downregulation of activating transcription factor 3 (ATF3). Int Immunopharmacol 2019; 74:105700. [DOI: 10.1016/j.intimp.2019.105700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
|
21
|
Quesnel K, Shi-Wen X, Hutchenreuther J, Xiao Y, Liu S, Peidl A, Naskar D, Siqueira WL, O'Gorman DB, Hinz B, Stratton RJ, Leask A. CCN1 expression by fibroblasts is required for bleomycin-induced skin fibrosis. Matrix Biol Plus 2019; 3:100009. [PMID: 33543008 PMCID: PMC7852207 DOI: 10.1016/j.mbplus.2019.100009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/29/2019] [Indexed: 01/16/2023] Open
Abstract
The microenvironment contributes to the excessive connective tissue deposition that characterizes fibrosis. Members of the CCN family of matricellular proteins are secreted by fibroblasts into the fibrotic microenvironment; however, the role of endogenous CCN1 in skin fibrosis is unknown. Mice harboring a fibroblast-specific deletion for CCN1 were used to assess if CCN1 contributes to dermal homeostasis, wound healing, and skin fibrosis. Mice with a fibroblast-specific CCN1 deletion showed progressive skin thinning and reduced accumulation of type I collagen; however, the overall mechanical property of skin (Young's modulus) was not significantly reduced. Real time-polymerase chain reaction analysis revealed that CCN1-deficient skin displayed reduced expression of mRNAs encoding enzymes that promote collagen stability (including prolyl-4-hydroxylase and PLOD2), although expression of COL1A1 mRNA was unaltered. CCN1-deficent skin showed reduced hydroxyproline levels. Electron microscopy revealed that collagen fibers were disorganized in CCN1-deficient skin. CCN1-deficient mice were resistant to bleomycin-induced skin fibrosis, as visualized by reduced collagen accumulation and skin thickness suggesting that deposition/accumulation of collagen is impaired in the absence of CCN1. Conversely, CCN1-deficient mice showed unaltered wound closure kinetics, suggesting de novo collagen production in response to injury did not require CCN1. In response to either wounding or bleomycin, induction of α-smooth muscle actin-positive myofibroblasts was unaffected by loss of CCN1. CCN1 protein was overexpressed by dermal fibroblasts isolated from lesional (i.e., fibrotic) areas of patients with early onset diffuse scleroderma. Thus, CCN1 expression by fibroblasts, being essential for skin fibrosis, is a viable anti-fibrotic target. The role of endogenous CCN1 in skin biology is largely unknown Fibroblast-specific deletion CCN1 causes thinner skin and misaligned collagen CCN1-deficient mice were resistant to bleomycin-induced skin fibrosis Wound healing closure kinetics was unaffected by loss of CCN1 CCN1 may be as a target for anti-fibrotic therapy
Collapse
Affiliation(s)
- Katherine Quesnel
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Xu Shi-Wen
- Centre for Rheumatology, University College London (Royal Free Campus), London, NW3 2PF, UK
| | - James Hutchenreuther
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Yizhi Xiao
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Shangxi Liu
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Alexander Peidl
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Deboki Naskar
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Walter L Siqueira
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - David B O'Gorman
- Roth McFarlane Hand and Upper Limb Centre, Lawson Research Institute, London, ON, N6A 4V2, Canada.,Departments of Biochemistry and Surgery, University of Western Ontario, London, N6A 5C1, ON, N6A 5C1, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | - Richard J Stratton
- Centre for Rheumatology, University College London (Royal Free Campus), London, NW3 2PF, UK
| | - Andrew Leask
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
22
|
Guo L, Lv J, Huang YF, Hao DJ, Liu JJ. Bioinformatics analyses of differentially expressed genes associated with spinal cord injury: A microarray-based analysis in a mouse model. Neural Regen Res 2019; 14:1262-1270. [PMID: 30804258 PMCID: PMC6425843 DOI: 10.4103/1673-5374.251335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Gene spectrum analysis has shown that gene expression and signaling pathways change dramatically after spinal cord injury, which may affect the microenvironment of the damaged site. Microarray analysis provides a new opportunity for investigating diagnosis, treatment, and prognosis of spinal cord injury. However, differentially expressed genes are not consistent among studies, and many key genes and signaling pathways have not yet been accurately studied. GSE5296 was retrieved from the Gene Expression Omnibus DataSet. Differentially expressed genes were obtained using R/Bioconductor software (expression changed at least two-fold; P < 0.05). Database for Annotation, Visualization and Integrated Discovery was used for functional annotation of differentially expressed genes and Animal Transcription Factor Database for predicting potential transcription factors. The resulting transcription regulatory protein interaction network was mapped to screen representative genes and investigate their diagnostic and therapeutic value for disease. In total, this study identified 109 genes that were upregulated and 30 that were downregulated at 0.5, 4, and 24 hours, and 3, 7, and 28 days after spinal cord injury. The number of downregulated genes was smaller than the number of upregulated genes at each time point. Database for Annotation, Visualization and Integrated Discovery analysis found that many inflammation-related pathways were upregulated in injured spinal cord. Additionally, expression levels of these inflammation-related genes were maintained for at least 28 days. Moreover, 399 regulation modes and 77 nodes were shown in the protein-protein interaction network of upregulated differentially expressed genes. Among the 10 upregulated differentially expressed genes with the highest degrees of distribution, six genes were transcription factors. Among these transcription factors, ATF3 showed the greatest change. ATF3 was upregulated within 30 minutes, and its expression levels remained high at 28 days after spinal cord injury. These key genes screened by bioinformatics tools can be used as biological markers to diagnose diseases and provide a reference for identifying therapeutic targets.
Collapse
Affiliation(s)
- Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yun-Fei Huang
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ding-Jun Hao
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ji-Jun Liu
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
23
|
Diéguez-Hurtado R, Kato K, Giaimo BD, Nieminen-Kelhä M, Arf H, Ferrante F, Bartkuhn M, Zimmermann T, Bixel MG, Eilken HM, Adams S, Borggrefe T, Vajkoczy P, Adams RH. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun 2019; 10:2817. [PMID: 31249304 PMCID: PMC6597568 DOI: 10.1038/s41467-019-10643-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Sufficient vascular supply is indispensable for brain development and function, whereas dysfunctional blood vessels are associated with human diseases such as vascular malformations, stroke or neurodegeneration. Pericytes are capillary-associated mesenchymal cells that limit vascular permeability and protect the brain by preserving blood-brain barrier integrity. Loss of pericytes has been linked to neurodegenerative changes in genetically modified mice. Here, we report that postnatal inactivation of the Rbpj gene, encoding the transcription factor RBPJ, leads to alteration of cell identity markers in brain pericytes, increases local TGFβ signalling, and triggers profound changes in endothelial behaviour. These changes, which are not mimicked by pericyte ablation, imperil vascular stability and induce the acquisition of pathological landmarks associated with cerebral cavernous malformations. In adult mice, loss of Rbpj results in bigger stroke lesions upon ischemic insult. We propose that brain pericytes can acquire deleterious properties that actively enhance vascular lesion formation and promote pathogenic processes. Pericytes are perivascular cells essential for blood-brain barrier maintenance. Here Diéguez-Hurtado et al. show that depletion of the transcription factor RBPJ in pericytes affects their molecular identity and disturbs endothelial cell behaviour, inducing the formation of vascular lesions in the brain.
Collapse
Affiliation(s)
- Rodrigo Diéguez-Hurtado
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany.,Faculty of Medicine, University of Münster, 48149, Münster, Germany
| | - Katsuhiro Kato
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
| | | | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité-Universitätsmedizin, Charitéplatz 1, Berlin, 10117, Germany.,Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Hendrik Arf
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Marek Bartkuhn
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Tobias Zimmermann
- Bioinformatics and Systems Biology, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
| | - Hanna M Eilken
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany.,Bayer AG, Aprather Weg 18a, 42113, Wuppertal, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin, Charitéplatz 1, Berlin, 10117, Germany. .,Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149, Münster, Germany. .,Faculty of Medicine, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
24
|
Braný D, Dvorská D, Grendár M, Ňachajová M, Szépe P, Lasabová Z, Žúbor P, Višňovský J, Halášová E. Different methylation levels in the KLF4, ATF3 and DLEC1 genes in the myometrium and in corpus uteri mesenchymal tumours as assessed by MS-HRM. Pathol Res Pract 2019; 215:152465. [PMID: 31176573 DOI: 10.1016/j.prp.2019.152465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal tumours of the corpus uteri comprise common benign lesions - leiomyomas and very rare malignant variants - sarcomas. It can be difficult to distinguish between the particular types of mesenchymal tumours pre-surgically. Primarily, leiomyomas and the very aggressive leiomyosarcomas can be easily misdiagnosed when using only imaging devices. Therefore, a reliable non-invasive marker for these tumour types would provide greater certitude for patients that the lesion remains benign. Our collection comprises 76 native leiomyomas, an equal number of healthy myometrium samples and 49 FFPE samples of various types of sarcomas. The methylation level was assessed by MS-HRM method and we observed differences in the methylation level between healthy, benign and (semi)malignant tissues in the KLF4 and DLEC1 genes. The mean methylation levels of leiomyomas compared to myometrium and leiomyosarcomas were 70.7% vs. 6.5% vs. 39.6 % (KLF4) and 66.1% vs. 14.08% vs. 37.5% (DLEC1). The ATF3 gene was differentially methylated in leiomyomatous and myometrial tissues with 98.1% compared to 76.6%. The AUC values of the predictive logistic regression model for discrimination between leiomyomas and leiomyosarcomas based on methylation levels were 0.7829 (KLF4) and 0.7719 (DLEC1). Finally, our results suggest that there should be distinct models for the methylation events in benign leiomyomas and sarcomas, and that the KLF4 and DLEC1 genes can be considered potential methylation biomarkers for uterine leiomyomas.
Collapse
Affiliation(s)
- Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Marcela Ňachajová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Peter Szépe
- Department of Pathological Anatomy, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Zora Lasabová
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Pavol Žúbor
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Jozef Višňovský
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Erika Halášová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
25
|
Nagahara R, Matono T, Sugihara T, Matsuki Y, Yamane M, Okamoto T, Miyoshi K, Nagahara T, Okano JI, Koda M, Isomoto H. Gene Expression Analysis of the Activating Factor 3/Nuclear Protein 1 Axis in a Non-alcoholic Steatohepatitis Mouse Model. Yonago Acta Med 2019. [PMID: 30962743 DOI: 10.33160/yam.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) is a chronic liver disease related to metabolic syndrome that can progress to liver cirrhosis. The involvement of the endoplasmic reticulum (ER) stress response in NAFLD progression and the roles played by activating factor 3 (ATF3) and the downstream nuclear protein 1 (NUPR1) are poorly understood. The aim of this study was to determine the gene expression profiles around the ATF3/NUPR1 axis in relation to the development of NAFLD using novel mouse models. Methods Fatty liver Shionogi (FLS) mice (n = 12) as a NAFLD model and FLS-ob/ob mice (n = 28) as a NASH model were fed a standard diet. The FLS mice were sacrificed at 24 weeks of age as a control, whereas the FLS-ob/ob mice were sacrificed at 24, 36, and 48 weeks of age. Hepatic steatosis, inflammation, and fibrosis were evaluated by biochemical, histological, and gene expression analyses. The expression levels of the ER-stress related genes Jun proto-oncogene (C-jun), Atf3, Nupr1, and C/EBP homologous protein (Chop) were measured in liver tissue. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Results Control mice demonstrated hepatic steatosis alone without apparent fibrosis. On the other hand, FLS-ob/ob mice showed severe steatohepatitis at both 24 and 36 weeks of age and severe fibrosis at both 36 and 48 weeks of age. The expression levels of Atf3, Nupr-1, and C-jun significantly increased from 24 to 48 weeks of age in FLS-ob/ob mice compared with control mice. The expression level of Chop was already high in FLS mice and maintained similar levels in FLS-ob/ob mice; the expression level was consistent with the percentage of TUNEL-positive cells. Conclusion The ATF3/NUPR1 axis plays a pivotal role in NASH progression in association with C-jun and Chop and appears to induce apoptosis from early steatosis in the NASH model mice.
Collapse
Affiliation(s)
- Ran Nagahara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Tomomitsu Matono
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takaaki Sugihara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yukako Matsuki
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masafumi Yamane
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Toshiaki Okamoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Kenichi Miyoshi
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takakazu Nagahara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Jun-Ichi Okano
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masahiko Koda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
26
|
Wang Q, Shi G, Zhang Y, Lu F, Xie D, Wen C, Huang L. Deciphering the Potential Pharmaceutical Mechanism of GUI-ZHI-FU-LING-WAN on Systemic Sclerosis based on Systems Biology Approaches. Sci Rep 2019; 9:355. [PMID: 30674993 PMCID: PMC6344516 DOI: 10.1038/s41598-018-36314-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Systemic sclerosis (SSc; scleroderma) is a complicated idiopathic connective tissue disease with seldom effective treatment. GUI-ZHI-FU-LING-WAN (GFW) is a classic Traditional Chinese Medicine (TCM) formula widely used for the treatment of SSc. However, the mechanism of how the GFW affects SSc remains unclear. In this study, the system biology approach was utilized to analyze herb compounds and related targets to get the general information of GFW. The KEGG enrichment analysis of 1645 related targets suggested that the formula is involved in the VEGF signaling pathway, the Toll-like receptor signaling pathway, etc. Quantitative and qualitative analysis of the relationship among the 3 subsets (formula targets, drug targets and disease genes) showed that the formula targets overlapped with 38.0% drug targets and 26.0% proteins encoded by disease genes. Through the analysis of SSc related microarray statistics from the GEO database, we also validated the consistent expression behavior among the 3 subsets before and after treatment. To further reveal the mechanism of prescription, we constructed a network among 3 subsets and decomposed it into 24 modules to decipher how GFW interfere in the progress of SSc. The modules indicated that the intervention may come into effect through following pathogenic processes: vasculopathy, immune dysregulation and tissue fibrosis. Vitro experiments confirmed that GFW could suppress the proliferation of fibroblasts and decrease the Th1 cytokine (TNF-α, MIP-2 and IL-6) expression for lipopolysaccharide (LPS) and bleomycin (BLM) stimulation in macrophages, which is consistent with previous conclusion that GFW is able to relieve SSc. The systems biology approach provides a new insight for deepening understanding about TCM.
Collapse
Affiliation(s)
- Qiao Wang
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Guoshan Shi
- Department of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Yun Zhang
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Feilong Lu
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Duoli Xie
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China
| | - Chengping Wen
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China.
| | - Lin Huang
- TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, 548 Binwen Road, Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
27
|
Yue X, Yu X, Petersen F, Riemekasten G. Recent advances in mouse models for systemic sclerosis. Autoimmun Rev 2018; 17:1225-1234. [PMID: 30316997 DOI: 10.1016/j.autrev.2018.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 12/13/2022]
Abstract
SSc is a complex rheumatoid disease characterized by autoimmunity, fibrosis and vasculopathy. Mouse models provide powerful research tools for exploring the pathogenesis of the human diseases. Each mouse model can represent a specific way leading to the development of disease. Moreover, mouse models can be used to investigate the role of candidate molecule in the pathogenesis of disease. So far, more than twenty mouse models for SSc have been established and provide new insights in the understanding of the pathogenesis of SSc. In this review, we provide an overview on recent advances in the field of experimental SSc. We introduce novel mouse models generated in the recent years and discuss their relevance to the SSc pathogenesis. Moreover, we summarize and discuss recent findings in the pathogenesis of classical SSc mouse models.
Collapse
Affiliation(s)
- Xiaoyang Yue
- Priority Area Asthma & Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Germany
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Germany
| | - Frank Petersen
- Priority Area Asthma & Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Germany
| | - Gabriela Riemekasten
- Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Germany; Department of Rheumatology, University of Lübeck, 23538 Lübeck, Germany.
| |
Collapse
|
28
|
Bueno M, Brands J, Voltz L, Fiedler K, Mays B, St. Croix C, Sembrat J, Mallampalli RK, Rojas M, Mora AL. ATF3 represses PINK1 gene transcription in lung epithelial cells to control mitochondrial homeostasis. Aging Cell 2018; 17. [PMID: 29363258 PMCID: PMC5847866 DOI: 10.1111/acel.12720] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 02/05/2023] Open
Abstract
PINK1 (PTEN‐induced putative kinase 1) is a key regulator of mitochondrial homeostasis that is relatively depleted in aging lungs and in lung epithelial cells from patients with idiopathic pulmonary fibrosis (IPF), a disease linked with aging. Impaired PINK1 expression and accumulation of damaged mitochondria in lung epithelial cells from fibrotic lungs were associated with the presence of ER stress. Here, we show that ATF3 (activating transcription factor 3), a member of the integrated stress response (ISR), negatively regulates transcription of the PINK1 gene. An ATF3 binding site within the human PINK1 promoter is located in the first 150 bp upstream of the transcription start site. Induction of ER stress or overexpression of ATF3 inhibited the activity of the PINK1 promoter. Importantly, overexpression of ATF3 causes accumulation of depolarized mitochondria, increased production of mitochondrial ROS, and loss of cell viability. Furthermore, conditional deletion of ATF3 in type II lung epithelial cells protects mice from bleomycin‐induced lung fibrosis. Finally, we observed that ATF3 expression increases in the lung with age and, specially, in lung epithelial cells from IPF lungs. These data provide a unique link between ATF3 and PINK1 expression suggesting that persistent stress, driven by ATF3, can dysregulate mitochondrial homeostasis by repression of PINK1 mRNA synthesis.
Collapse
Affiliation(s)
- Marta Bueno
- Vascular Medicine Institute; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
- Division of Pulmonary Allergy and Critical Care Medicine; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Judith Brands
- Vascular Medicine Institute; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
- Division of Pulmonary Allergy and Critical Care Medicine; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Lauren Voltz
- Vascular Medicine Institute; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Kaitlin Fiedler
- Vascular Medicine Institute; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Brenton Mays
- Vascular Medicine Institute; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| | | | - John Sembrat
- Vascular Medicine Institute; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases; University of Pittsburgh; Pittsburgh PA USA
| | - Rama K. Mallampalli
- Division of Pulmonary Allergy and Critical Care Medicine; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
- Veterans Affairs Pittsburgh Healthcare System; Pittsburgh PA USA
| | - Mauricio Rojas
- Vascular Medicine Institute; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
- The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Diseases; University of Pittsburgh; Pittsburgh PA USA
| | - Ana L. Mora
- Vascular Medicine Institute; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
- Division of Pulmonary Allergy and Critical Care Medicine; Department of Medicine; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
29
|
Zhang Y, Liang R, Chen CW, Mallano T, Dees C, Distler A, Reich A, Bergmann C, Ramming A, Gelse K, Mielenz D, Distler O, Schett G, Distler JHW. JAK1-dependent transphosphorylation of JAK2 limits the antifibrotic effects of selective JAK2 inhibitors on long-term treatment. Ann Rheum Dis 2017; 76:1467-1475. [PMID: 28478401 DOI: 10.1136/annrheumdis-2016-210911] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/28/2017] [Accepted: 04/09/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Janus kinase 2 (JAK2) has recently been described as a novel downstream mediator of the pro-fibrotic effects of transforming growth factor-β. Although JAK2 inhibitors are in clinical use for myelodysplastic syndromes, patients often rapidly develop resistance. Tumour cells can escape the therapeutic effects of selective JAK2 inhibitors by mutation-independent transactivation of JAK2 by JAK1. Here, we used selective JAK2 inhibition as a model to test the hypothesis that chronic treatment may provoke resistance by facilitating non-physiological signalling pathways in fibroblasts. METHODS The antifibrotic effects of long-term treatment with selective JAK2 inhibitors and reactivation of JAK2 signalling by JAK1-dependent transphosphorylation was analysed in cultured fibroblasts and experimental dermal and pulmonary fibrosis. Combined JAK1/JAK2 inhibition and co-treatment with an HSP90 inhibitor were evaluated as strategies to overcome resistance. RESULTS The antifibrotic effects of selective JAK2 inhibitors on fibroblasts decreased with prolonged treatment as JAK2 signalling was reactivated by JAK1-dependent transphosphorylation of JAK2. This reactivation could be prevented by HSP90 inhibition, which destabilised JAK2 protein, or with combined JAK1/JAK2 inhibitors. Treatment with combined JAK1/JAK2 inhibitors or with JAK2 inhibitors in combination with HSP90 inhibitors was more effective than monotherapy with JAK2 inhibitors in bleomycin-induced pulmonary fibrosis and in adTBR-induced dermal fibrosis. CONCLUSION Fibroblasts can develop resistance to chronic treatment with JAK2 inhibitors by induction of non-physiological JAK1-dependent transactivation of JAK2 and that inhibition of this compensatory signalling pathway, for example, by co-inhibition of JAK1 or HSP90 is important to maintain the antifibrotic effects of JAK2 inhibition with long-term treatment.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Ruifang Liang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Tatjana Mallano
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Alfiya Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Adam Reich
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver Distler
- Division of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Jeong BC, Kim JH, Kim K, Kim I, Seong S, Kim N. ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins. Bone 2017; 95:33-40. [PMID: 27829167 DOI: 10.1016/j.bone.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/27/2016] [Accepted: 11/05/2016] [Indexed: 11/26/2022]
Abstract
Activating transcription factor 3 (ATF3), a member of the ATF/cAMP response element-binding protein family of transcription factors, has been implicated in the regulation of cell proliferation and differentiation. However, whether ATF3 is involved in osteoclast differentiation and activity has not been well-studied. In the present study, we examined the role of ATF3 in osteoclast differentiation and function. ATF3 expression was down-regulated during RANKL-induced osteoclast differentiation. Overexpression of ATF3 in bone marrow-derived monocyte/macrophage lineage cells (BMMs) promoted osteoclast differentiation and activity and strongly induced the expression of osteoclast genes encoding nuclear factor of activated T-cells c1 (NFATc1) and tartrate-resistant acid phosphatase (TRAP) compared to that in the control group. In contrast, small interfering RNA-mediated knockdown of ATF3 prevented the formation of multinucleated osteoclasts and markedly abrogated the expression of osteoclast marker genes. Mechanistically, ATF3 synergistically enhanced c-Fos- or NFAT-mediated transcriptional activity of the NFATc1 or TRAP promoter, respectively. Furthermore, ATF3 physically interacted with c-Fos and NFATc1 and enhanced the binding affinity of c-Fos and NFATc1 to the promoters. Interestingly, ATF3 is involved in calcium signaling during osteoclastogenesis. Taken together, these results suggest that ATF3 is a new co-factor of c-Fos and NFATc1 to activate osteoclast differentiation and activity.
Collapse
Affiliation(s)
- Byung-Chul Jeong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Pharmacology, Seonam University Medical School, Namwon, Chonbuk 55724, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea; Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|
31
|
Palumbo-Zerr K, Soare A, Zerr P, Liebl A, Mancuso R, Tomcik M, Sumova B, Dees C, Chen CW, Wohlfahrt T, Mallano T, Distler A, Ramming A, Gelse K, Mihai C, Distler O, Schett G, Distler JHW. Composition of TWIST1 dimers regulates fibroblast activation and tissue fibrosis. Ann Rheum Dis 2017; 76:244-251. [PMID: 27113414 DOI: 10.1136/annrheumdis-2015-208470] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/26/2016] [Accepted: 03/31/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVES TWIST1 is a member of the class B of basic helix-loop-helix transcription factors that regulates cell lineage determination and differentiation and has been implicated in epithelial-to-mesenchymal transition. Here, we aimed to investigate the role of TWIST1 for the activation of resident fibroblasts in systemic sclerosis (SSc). METHODS The expression of Twist1 in fibroblasts was modulated by forced overexpression or siRNA-mediated knockdown. Interaction of Twist1, E12 and inhibitor Of differentiation (Id) was analysed by co-immunoprecipitation. The role of Twist1 in vivo was evaluated using inducible, conditional knockout mice with either ubiquitous or fibroblast-specific depletion of Twist1. Mice were either challenged with bleomycin or overexpressing a constitutively active transforming growth factor (TGF)β receptor I. RESULT The expression of TWIST1 was increased in fibroblasts in fibrotic human and murine skin in a TGFβ/SMAD3-dependent manner. TWIST1 in turn enhanced TGFβ-induced fibroblast activation in a p38-dependent manner. The stimulatory effects of TWIST1 on resident fibroblasts were mediated by TWIST1 homodimers. TGFβ promotes the formation of TWIST1 homodimers by upregulation of TWIST1 and by induction of inhibitor of DNA-binding proteins, which have high affinity for E12/E47 and compete against TWIST1 for E12/E47 binding. Mice with selective depletion of Twist1 in fibroblasts are protected from experimental skin fibrosis in different murine models to a comparable degree as mice with ubiquitous depletion of Twist1. CONCLUSIONS Our data identify TWIST1 as a central pro-fibrotic factor in SSc, which facilitates fibroblast activation by amplifying TGFβ signalling. Targeting of TWIST1 may thus be a novel approach to normalise aberrant TGFβ signalling in SSc.
Collapse
Affiliation(s)
- Katrin Palumbo-Zerr
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Internal Medicine and Rheumatology, Dr. I. Cantacuzino Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Pawel Zerr
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Liebl
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rossella Mancuso
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michal Tomcik
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Institute of Rheumatology and Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Sumova
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Institute of Rheumatology and Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Clara Dees
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Wohlfahrt
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tatjana Mallano
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alfiya Distler
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carina Mihai
- Department of Internal Medicine and Rheumatology, Dr. I. Cantacuzino Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oliver Distler
- Research of Systemic Autoimmune Diseases, Division of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
32
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
33
|
Abstract
AIM: To detect the expression of octamer-binding transcription factor-4 (Oct4) and drosophila mothers against decapentaplegic protein (Smad) 1 and 2 in gastric cancer, and to discuss their interactions.
METHODS: We collected 60 cases of gastric cancer (adenocarcinoma) and 25 cases of normal gastric tissue (above 10 cm from the tumor edge) to detect Oct4, Smad1 and Smad2 gene expression by quantitative real-time PCR technique and protein expression by Western blot.
RESULTS: Oct4 expression was significantly higher in gastric cancer than in normal gastric tissue (P < 0.05). Oct4 expression was significantly lower in well and moderately differentiated gastric cancer than in poorly differentiated gastric cancer (P < 0.05). Oct4 expression increased along with the increase of TNM stage (P < 0.05). Oct4 expression was significantly higher in gastric cancer with lymph node metastasis than in without (P < 0.05). Smad1 and Smad2 expression was significantly higher in normal gastric tissue than in gastric cancer (P < 0.05). Smad1 and Smad2 expression was significantly higher in well and moderately differentiated gastric cancer than in poorly differentiated gastric cancer (P < 0.05). Smad1 and Smad2 expression decreased along with the increase of TNM stage (P < 0.05). Smad1 and Smad2 expression was significantly lower in gastric cancer with lymph node metastasis than in without (P < 0.05). All the above three indicators had no significant correlation with age or gender (P > 0.05); Oct4 expression was correlated negatively with Smad1 (r = -0.882, P < 0.05) and Smad2 expression (r = -0.859, P < 0.05); Smad1 expression was correlated positively with Smad2 expression (r = 0.905, P < 0.05).
CONCLUSION: Oct4, Smad1 and Smad2 expression may be closely related to the occurrence and development of gastric cancer, and therefore, they may be used as new drug targets for targeted therapy of gastric cancer.
Collapse
|