1
|
Li J, He J, Kuhn KA, Li Z. Animal Models Informing the Role of the Microbiome and its Metabolites in Rheumatoid Arthritis. Rheum Dis Clin North Am 2025; 51:325-346. [PMID: 40246443 DOI: 10.1016/j.rdc.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Animal models of rheumatoid arthritis (RA) are essential for understanding the disease's mechanisms and developing new treatments. Recent research highlights the microbiome's significant roles in RA pathogenesis, influencing disease susceptibility and progression. These models allow researchers to investigate the causal relationships between specific microbial species and arthritis development. Despite challenges in translating findings to human conditions, animal models are crucial for uncovering microbiome-related therapeutic strategies, advancing our understanding of RA, and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Place, Aurora, CO 80045, USA
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Place, Aurora, CO 80045, USA
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, South Xizhimen Street, Xicheng District, Beijing, 100044, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
2
|
Jin J, Cai X, Rao P, Xu J, Li J. Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential. Best Pract Res Clin Rheumatol 2025; 39:102035. [PMID: 39863438 DOI: 10.1016/j.berh.2025.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility. Dysbiosis-driven metabolic disruptions, including alterations in short-chain fatty acids and bile acids, further exacerbate immune dysregulation and systemic inflammation. Emerging therapeutic strategies-probiotics, microbial metabolites, fecal microbiota transplantation, and antibiotics-offer innovative avenues for restoring microbial balance and mitigating disease progression. By integrating microbiota-targeted approaches with existing treatments, this review highlights the potential to revolutionize RA management through precision medicine and underscores the need for further research to harness the microbiota's therapeutic potential.
Collapse
Affiliation(s)
- Jiayang Jin
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xuanlin Cai
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Peishi Rao
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Ng BCK, Lassere M. The role of the gastrointestinal microbiome on rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and reactive arthritis: A systematic review. Semin Arthritis Rheum 2025; 70:152574. [PMID: 39644691 DOI: 10.1016/j.semarthrit.2024.152574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND There is an increasing body of literature observing a state of dysbiosis in the gut microbiome in different autoimmune conditions including inflammatory arthritis. It is unknown whether the microbiome can be a biomarker for prognostication purposes or for stratification of treatment strategies. This review aims to evaluate the existing evidence on the association between the microbiome and inflammatory arthritis, including rheumatoid arthritis (RA), psoriatic arthritis (PsA) and ankylosing spondylitis (AS) and reactive arthritis (ReA) population groups. METHODS This systematic review was performed based on methods from the Cochrane guidelines and reported based on PRISMA criteria. Studies exploring the microbiome of patients with RA, AS, PsA or ReA compared with controls via 16s rRNA or shotgun sequencing were evaluated. The outcomes of interest include alpha and beta diversity, abundance or depletion of organisms and functional analysis. Literature up to August 2024 was retrieved searching the databases PubMed, Medline, ScienceDirect, Scopus, Web of Science, Cochrane, EMBASE and CINAHL. All references were systematically evaluated by two reviewers. Quality of the studies were evaluated by the Newcastle-Ottawa Scale. FINDINGS The review yielded 25,794 search results, of which 53 studies were included for the RA group, 34 studies for the AS group, 6 studies for the PsA group and 2 studies for the ReA group. Reduced diversity has been observed in disease groups and in patients with higher disease activity. INTERPRETATION There are limited longitudinal studies on the role of the microbiome in inflammatory arthritis, in particular PsA. Existing cross-sectional studies suggest altered microbiome in disease states compared with controls. Further studies are required to understand the utility of the microbiome as a biomarker to better understand prognosis and tailor treatments.
Collapse
Affiliation(s)
- Beverly Cheok Kuan Ng
- Department of Rheumatology, St George Hospital, Australia; University of New South Wales, School of Public Health and Community Medicine, Australia.
| | - Marissa Lassere
- Department of Rheumatology, St George Hospital, Australia; University of New South Wales, School of Public Health and Community Medicine, Australia
| |
Collapse
|
4
|
Yu X, Mankia K, Do T, Meade J. Oral Microbiome Dysbiosis and Citrullination in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:185-199. [PMID: 40111693 DOI: 10.1007/978-3-031-79146-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Rheumatoid arthritis and periodontal diseases, both characterized by chronic inflammation, share many common risk factors, sparking interest in understanding their established association. Emerging research has shed light on the link between these two diseases potentially occurring through the intricate interactions within the oral microbiome. The enrichment of pathogenic strains and species in this microbial community disrupts the delicate balance of both ecological and immunological homeostasis with the host. Particular attention has been paid to the role of key pathogens, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, known for their immunomodulatory abilities. The generation of an autoimmune response against proteins modified by citrullination is known to be a key step in the pathogenesis of RA. Importantly, the bidirectional citrullination mediated by both host innate immune cells and oral bacteria generates citrullinated peptide neoepitopes, which may serve as potential triggers for the loss of tolerance and subsequent autoimmunity in susceptible individuals. This review highlights the importance of understanding the mechanisms through which oral microbiome dysbiosis and citrullination contribute to the onset and progression of RA. Insights into these mechanisms not only advance pathobiological understanding but also offer potential therapeutic targets. Furthermore, we discuss the potential impact of nonsurgical periodontal treatment in modifying disease progression or mitigating RA, underscoring the critical role of periodontal health in managing systemic inflammatory conditions.
Collapse
Affiliation(s)
- Xia Yu
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Kulveer Mankia
- Leeds Biomedical Centre-NIHR, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Josephine Meade
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
5
|
Chen H, Liu N, Hu S, Li X, He F, Chen L, Xu X. Yeast β-glucan-based nanoparticles loading methotrexate promotes osteogenesis of hDPSCs and periodontal bone regeneration under the inflammatory microenvironment. Carbohydr Polym 2024; 342:122401. [PMID: 39048236 DOI: 10.1016/j.carbpol.2024.122401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The regeneration of absorbed alveolar bone and reconstruction of periodontal support tissue are huge challenges in the clinical treatment of periodontitis due to the limited regenerative capacity of alveolar bone. It is essential to regulate inflammatory reaction and periodontal cell differentiation. Based on the anti-inflammatory effect of baker's yeast β-glucan (BYG) with biosafety by targeting macrophages, the BYG-based nanoparticles loading methotrexate (cBPM) were fabricated from polyethylene glycol-grafted BYG through chemical crosslinking for treatment of periodontitis. In our findings, cBPM promoted osteogenesis of human dental pulp stem cells (hDPSCs) under inflammatory microenvironment, characterized by the enhanced expression of osteogenesis-related Runx2 and activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/Erk) pathway in vitro. Animal experiments further demonstrate that cBPM effectively promoted periodontal bone regeneration and achieved in a better effect of recovery indicated by 19.2 % increase in tissue volume, 7.1 % decrease in trabecular separation, and a significant increase in percent bone volume and trabecular thickness, compared with the model group. Additionally, cBPM inhibited inflammation and repaired alveolar bone by transforming macrophage phenotype from inflammatory M1 to anti-inflammatory M2. This work provides an alternative strategy for the clinical treatment of periodontitis through BYG-based delivery nanoplatform of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Huanhuan Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Ningyue Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shuqian Hu
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuan Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fangzhou He
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaojuan Xu
- Division of Joint Surgery and Sports Medicine, Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
6
|
Wajima T, Sugawara T, Tanaka E, Uchiya KI. Molecular characterization of a novel putative pathogen, Streptococcus nakanoensis sp. nov., isolated from sputum culture. Microbiol Spectr 2024; 12:e0135424. [PMID: 39269180 PMCID: PMC11465973 DOI: 10.1128/spectrum.01354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Reports of novel species of α-hemolytic Streptococcus have increased recently. However, limited information exists regarding the pathogenicity of these species, with the exception of Streptococcus pneumoniae and Streptococcus pseudopneumoniae. In this study, a quinolone-resistant α-Streptococcus strain, MTG105, was isolated from the sputum of a patient with pneumonia. This strain was first identified as S. pneumoniae at the hospital laboratory; however, it exhibited unique genetic features upon further analysis. Digital DNA-DNA hybridization and average nucleotide identity based on BLAST values from whole-genome sequencing revealed MTG105 to be a novel species closely related to S. pseudopneumoniae. Although MTG105 carried two copies of the pneumolysin gene, similar to S. pseudopneumoniae, this isolate exhibited susceptibility to optochin under both aerobic and 5% CO2 conditions. Notably, no biochemical features could be used to definitively identify this species. In an infection assay using organotypic lung tissue models, MTG105 induced epithelial damage comparable to that of S. pneumoniae and S. pseudopneumoniae, possibly suggesting its potential as a pathogenic α-Streptococcus. The natural transformation abilities of Streptococcus species facilitate their exchange of genes within the same genus, resulting in the existence of species with increasingly more diverse genome structures. Therefore, the identification of this species highlights the importance of monitoring the emergence of novel species exhibiting virulence and/or multidrug resistance. This isolate was proposed as a novel species, designated Streptococcus nakanoensis sp. nov. The type strain was MTG 105T (= JCM 35953T = CCUG 76894T). IMPORTANCE The genus Streptococcus encompasses a wide range of bacteria with more than 60 species. Recently, there has been a notable increase in reports of novel species of α-Streptococcus based on genomic analysis data. However, limited information exists regarding the pathogenicity of these species. In this study, a quinolone-resistant α-hemolytic Streptococcus strain, MTG105, was isolated from a patient with pneumonia. Genetic analysis revealed that this species was a novel species closely related to S. pseudopneumoniae. In an infection assay using organotypic lung tissue models, MTG105 induced epithelial damage comparable to that caused by S. pneumoniae and S. pseudopneumoniae, strongly suggesting its potential as a pathogenic α-Streptococcus. The natural transformation abilities of Streptococcus species facilitate gene exchange within the same genus, leading to the emergence of species with increasingly diverse genome structures. Therefore, the identification of this species underscores the importance of monitoring the emergence of novel species exhibiting virulence and/or multidrug resistance.
Collapse
Affiliation(s)
- Takeaki Wajima
- Department of
Microbiology, Faculty of Pharmacy, Meijo
University, Nagoya,
Japan
| | | | - Emi Tanaka
- Department of
Microbiology, Faculty of Pharmacy, Meijo
University, Nagoya,
Japan
| | - Kei-ichi Uchiya
- Department of
Microbiology, Faculty of Pharmacy, Meijo
University, Nagoya,
Japan
| |
Collapse
|
7
|
Li J, Li S, Jin J, Guo R, Jin Y, Cao L, Cai X, Rao P, Zhong Y, Xiang X, Sun X, Guo J, Hu F, Ye H, Jia Y, Xiao W, An Y, Zhang X, Xia B, Yang R, Zhou Y, Wu L, Qin J, He J, Wang J, Li Z. The aberrant tonsillar microbiota modulates autoimmune responses in rheumatoid arthritis. JCI Insight 2024; 9:e175916. [PMID: 39163137 PMCID: PMC11457857 DOI: 10.1172/jci.insight.175916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Palatine tonsils are the only air-contacted lymphoid organs that constantly engage in crosstalk with commensal microorganisms and serve as the first handling sites against microbial antigens. While tonsil inflammations have been implicated in various autoimmune diseases, including rheumatoid arthritis (RA), the precise role of tonsillar microbiota in autoimmune pathogenesis remains inadequately characterized. In this study, we profiled the tonsillar microbiota and identified a notable dysbiosis in patients with RA, particularly within the Streptococcus genus. Specifically, patients with RA exhibited an enrichment of pathogenic Streptococcus species, including S. pyogenes, S. dysgalactiae, and S. agalactiae. Colonization with these bacteria significantly exacerbated arthritis severity and increased autoimmune responses in collagen-induced arthritis (CIA). Furthermore, immunization with peptides derived from these pathogenic Streptococcus species directly induced experimental arthritis. Conversely, patients with RA demonstrated a marked deficiency in commensal Streptococcus members, notably S. salivarius. Treatment of CIA mice with S. salivarius attenuated the progression of arthritis and downregulated autoimmune responses. These findings highlight a pathogenic link of tonsillar microbiota with RA, shedding light on their contribution to autoimmunity.
Collapse
Affiliation(s)
- Jing Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Shenghui Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Puensum Genetech Institute, Wuhan, China
| | - Jiayang Jin
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | | | - Yuebo Jin
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xuanlin Cai
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Peishi Rao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yan Zhong
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Rheumatology and Immunology, The People’s Hospital of Xin Jiang Uygur Autonomous Region, Urumqi, China
| | - Xiaohong Xiang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wenjing Xiao
- Emergency Department, Peking University People’s Hospital, Beijing, China
| | - Yuan An
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xuan Zhang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - BinBin Xia
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rentao Yang
- Promegene Translational Research Institute, Shenzhen, China
| | - Yuanjie Zhou
- Promegene Translational Research Institute, Shenzhen, China
| | - Lijun Wu
- Department of Rheumatology and Immunology, The People’s Hospital of Xin Jiang Uygur Autonomous Region, Urumqi, China
| | - Junjie Qin
- Promegene Translational Research Institute, Shenzhen, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Hu W, Chen S, Zou X, Chen Y, Luo J, Zhong P, Ma D. Oral microbiome, periodontal disease and systemic bone-related diseases in the era of homeostatic medicine. J Adv Res 2024:S2090-1232(24)00362-X. [PMID: 39159722 DOI: 10.1016/j.jare.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Homeostasis is a state of self-regulation and dynamic equilibrium, maintaining the good physiological functions of each system in living organisms. In the oral cavity, the interaction between the host and the oral microbiome forms oral microbial homeostasis. Physiological bone remodeling and renewal can occur under the maintenance of oral microbial homeostasis. The imbalance of bone homeostasis is a key mechanism leading to the occurrence of systemic bone-related diseases. Considering the importance of oral microbial homeostasis in the maintenance of bone homeostasis, it still lacks a complete understanding of the relationship between oral microbiome, periodontal disease and systemic bone-related diseases. AIM OF REVIEW This review focuses on the homeostatic changes, pathogenic routes and potential mechanisms in the oral microbiome in periodontal disease and systemic bone-related diseases such as rheumatoid arthritis, osteoarthritis, osteoporosis and osteomyelitis. Additionally, this review discusses oral microbiome-based diagnostic approaches and explores probiotics, mesenchymal stem cells, and oral microbiome transplantation as promising treatment strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the association between oral microbial homeostasis imbalance and systemic bone-related diseases, and highlights the possibility of remodeling oral microbial homeostasis for the prevention and treatment of systemic bone-related diseases.
Collapse
Affiliation(s)
- Weiqi Hu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Yan Chen
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Peiliang Zhong
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China.
| |
Collapse
|
9
|
Seymour BJ, Allen BE, Kuhn KA. Microbial Mechanisms of Rheumatoid Arthritis Pathogenesis. Curr Rheumatol Rep 2024; 26:124-132. [PMID: 38300467 PMCID: PMC11141067 DOI: 10.1007/s11926-024-01135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW Host-microbiome interactions have been implicated in the pathophysiology of rheumatoid arthritis (RA), but the data linking specific microbes to RA is largely associative. Here, we review recent studies that have interrogated specific mechanistic links between microbes and host in the setting of RA. RECENT FINDINGS Several candidate bacterial species and antigens that may trigger the conversion of an anti-bacterial to an autoimmune response have been recently identified. Additional studies have identified microbial metabolic pathways that are altered in RA. Some of these microbial species and metabolic pathways have been validated in mouse models to induce RA-like immune responses, providing initial evidence of specific mechanisms by which the microbiota contributes to the development of RA. Several microbial species, antigens, and metabolites have been identified as potential contributors to RA pathophysiology. Further interrogation and validation of these pathways may identify novel biomarkers of or therapeutic avenues for RA.
Collapse
Affiliation(s)
- Brenda J Seymour
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan E Allen
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Holub MN, Wahhab A, Rouse JR, Danner R, Hackner LG, Duris CB, McClune ME, Dressler JM, Strle K, Jutras BL, Edelstein AI, Lochhead RB. Peptidoglycan in osteoarthritis synovial tissue is associated with joint inflammation. Arthritis Res Ther 2024; 26:77. [PMID: 38532447 PMCID: PMC10967045 DOI: 10.1186/s13075-024-03293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVES Peptidoglycan (PG) is an arthritogenic bacterial cell wall component whose role in human osteoarthritis is poorly understood. The purpose of this study was to determine if PG is present in synovial tissue of osteoarthritis patients at the time of primary total knee arthroplasty (TKA), and if its presence is associated with inflammation and patient reported outcomes. METHODS Intraoperative synovial tissue and synovial fluid samples were obtained from 56 patients undergoing primary TKA, none of whom had history of infection. PG in synovial tissue was detected by immunohistochemistry (IHC) and immunofluorescence microscopy (IFM). Synovial tissue inflammation and fibrosis were assessed by histopathology and synovial fluid cytokine quantification. Primary human fibroblasts isolated from arthritis synovial tissue were stimulated with PG to determine inflammatory cytokine response. RESULTS A total of 33/56 (59%) of primary TKA synovial tissue samples were positive for PG by IHC, and PG staining colocalized with markers of synovial macrophages and fibroblasts by IFM. Synovial tissue inflammation and elevated IL-6 in synovial fluid positively correlated with PG positivity. Primary human fibroblasts stimulated with PG secreted high levels of IL-6, consistent with ex vivo findings. Interestingly, we observed a significant inverse correlation between PG and age at time of TKA, indicating younger age at time of TKA was associated with higher PG levels. CONCLUSION Peptidoglycan is commonly found in synovial tissue from patients undergoing TKA. Our data indicate that PG may play an important role in inflammatory synovitis, particularly in patients who undergo TKA at a relatively younger age.
Collapse
Affiliation(s)
- Meaghan N Holub
- Department of Orthopaedic Surgery, Medical College of Wisconsin, BSB room 2850, Milwaukee, WI, 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amanda Wahhab
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph R Rouse
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rebecca Danner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lauren G Hackner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine B Duris
- Department of Pathology, Children's Hospital of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mecaila E McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Jules M Dressler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Adam I Edelstein
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Robert B Lochhead
- Department of Orthopaedic Surgery, Medical College of Wisconsin, BSB room 2850, Milwaukee, WI, 53226, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Rheumatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Bhattacharjee P, Karim KA, Khan Z. Harnessing the Microbiome: A Comprehensive Review on Advancing Therapeutic Strategies for Rheumatic Diseases. Cureus 2023; 15:e50964. [PMID: 38249228 PMCID: PMC10800157 DOI: 10.7759/cureus.50964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Rheumatic diseases are a group of disorders that affect the joints, muscles, and bones. These diseases, such as rheumatoid arthritis, lupus, and psoriatic arthritis, can cause pain, stiffness, and swelling, leading to reduced mobility and disability. Recent studies have identified the microbiome, the diverse community of microorganisms that live in and on the human body, as a potential factor in the development and progression of rheumatic diseases. Harnessing the microbiome offers a promising new avenue for developing therapeutic strategies for these debilitating conditions. There is growing interest in the role of oral and gut microbiomes in the management of rheumatoid arthritis and other autoimmune disease. Microbial metabolites have immunomodulatory properties that could be exploited for rheumatic disorders. A wide range of microorganisms are present in the oral cavity and are found to be vulnerable to the effects of the environment. The physiology and ecology of the microbiota become intimately connected with those of the host, and they critically influence the promotion of health or progression toward disease. This article aims to provide a comprehensive overview of the current state of knowledge on oral and gut microbiome and its potential future role in the management of rheumatic diseases. This article will also discuss newer treatment strategies such as bioinformatic analyses and fecal transplantation.
Collapse
Affiliation(s)
- Priyadarshini Bhattacharjee
- Acute Medicine, Cambridge University Hospital NHS Foundation Trust, Cambridge, GBR
- School of Clinical Medicine, University of Cambridge, Cambridge, GBR
| | - Karim Arif Karim
- Medicine and Surgery, Kamuzu University of Health Sciences, Blantyre, MWI
| | - Zahid Khan
- Acute Medicine, Mid and South Essex NHS Foundation Trust, Southend-on-Sea, GBR
- Cardiology, Bart's Heart Centre, London, GBR
- Cardiology and General Medicine, Barking, Havering and Redbridge University Hospitals NHS Trust, London, GBR
- Cardiology, Royal Free Hospital, London, GBR
| |
Collapse
|
12
|
Lin WZ, Chen BY, Qiu P, Zhou LJ, Li YL, Du LJ, Liu Y, Wang YL, Zhu H, Wu XY, Liu X, Duan SZ, Zhu YQ. Altered salivary microbiota profile in patients with abdominal aortic aneurysm. Heliyon 2023; 9:e23040. [PMID: 38144289 PMCID: PMC10746442 DOI: 10.1016/j.heliyon.2023.e23040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Evidence suggests that the DNA of oral pathogens is detectable in the dilated aortic tissue of abdominal aortic aneurysm (AAA), one of the most fatal cardiovascular diseases. However, the association between oral microbial homeostasis and aneurysm formation remains largely unknown. In this study, a cohort of individuals, including 53 AAA patients and 30 control participants (CTL), was recruited for salivary microbiota investigation by 16S rRNA gene sequencing and bioinformatics analysis. Salivary microbial diversity was decreased in AAA compared with CTL, and the microbial structures were significantly separated between the two groups. Additionally, significant taxonomic and functional changes in the salivary microbiota of AAA participants were observed. The genera Streptococcus and Gemella were remarkably enriched, while Selenomonas, Leptotrichia, Lautropia and Corynebacterium were significantly depleted in AAA. Co-occurrence network analysis showed decreased potential interactions among the differentially abundant microbial genera in AAA. A machine-learning model predicted AAA using the combination of 5 genera and 14 differentially enriched functional pathways, which could distinguish AAA from CTL with an area under the receiver-operating curve of 90.3 %. Finally, 16 genera were found to be significantly positively correlated with the morphological parameters of AAA. Our study is the first to show that AAA patients exhibit oral microbial dysbiosis, which has high predictive power for AAA, and the over-representation of specific salivary bacteria may be associated with AAA disease progression. Further studies are needed to better understand the function of putative oral bacteria in the etiopathogenesis of AAA. Importance Host microbial dysbiosis has recently been linked to AAA as a possible etiology. To our knowledge, studies of the oral microbiota and aneurysms remain scarce, although previous studies have indicated that the DNA of some oral pathogens is detectable in aneurysms by PCR method. We take this field one step further by investigating the oral microbiota composition of AAA patients against control participants via high-throughput sequencing technologies and unveiling the potential microbial biomarker associated with AAA formation. Our study will provide new insights into AAA etiology, treatment and prevention from a microecological perspective and highlight the effects of oral microbiota on vascular health.
Collapse
Affiliation(s)
- Wen-Zhen Lin
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Jun Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yong-Li Wang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiao-Yu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ya-Qin Zhu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
13
|
Andreu-Sánchez S, Bourgonje AR, Vogl T, Kurilshikov A, Leviatan S, Ruiz-Moreno AJ, Hu S, Sinha T, Vich Vila A, Klompus S, Kalka IN, de Leeuw K, Arends S, Jonkers I, Withoff S, Brouwer E, Weinberger A, Wijmenga C, Segal E, Weersma RK, Fu J, Zhernakova A. Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire. Immunity 2023; 56:1376-1392.e8. [PMID: 37164013 DOI: 10.1016/j.immuni.2023.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria; Center for Cancer Research, Medical University of Vienna, Wien, Austria.
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Angel J Ruiz-Moreno
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shixian Hu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris N Kalka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Iris Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
14
|
Tan L, Zhong MM, Liu Q, Chen Y, Zhao YQ, Zhao J, Dusenge MA, Feng Y, Ye Q, Hu J, Ou-Yang ZY, Zhou YH, Guo Y, Feng YZ. Potential interaction between the oral microbiota and COVID-19: a meta-analysis and bioinformatics prediction. Front Cell Infect Microbiol 2023; 13:1193340. [PMID: 37351182 PMCID: PMC10282655 DOI: 10.3389/fcimb.2023.1193340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Objectives The purpose of this study was to evaluate available evidence on the association between the human oral microbiota and coronavirus disease 2019 (COVID-19) and summarize relevant data obtained during the pandemic. Methods We searched EMBASE, PubMed, and the Cochrane Library for human studies published up to October 2022. The main outcomes of the study were the differences in the diversity (α and β) and composition of the oral microbiota at the phylum and genus levels between patients with laboratory-confirmed SARS-CoV-2 infection (CPs) and healthy controls (HCs). We used the Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA) database, Protein-protein interaction (PPI) network (STRING) and Gene enrichment analysis (Metascape) to evaluate the expression of dipeptidyl peptidase 4 (DPP4) (which is the cell receptor of SARS CoV-2) in oral tissues and evaluate its correlation with viral genes or changes in the oral microbiota. Results Out of 706 studies, a meta-analysis of 9 studies revealed a significantly lower alpha diversity (Shannon index) in CPs than in HCs (standardized mean difference (SMD): -0.53, 95% confidence intervals (95% CI): -0.97 to -0.09). Subgroup meta-analysis revealed a significantly lower alpha diversity (Shannon index) in older than younger individuals (SMD: -0.54, 95% CI: -0.86 to -0.23/SMD: -0.52, 95% CI: -1.18 to 0.14). At the genus level, the most significant changes were in Streptococcus and Neisseria, which had abundances that were significantly higher and lower in CPs than in HCs based on data obtained from six out of eleven and five out of eleven studies, respectively. DPP4 mRNA expression in the oral salivary gland was significantly lower in elderly individuals than in young individuals. Spearman correlation analysis showed that DPP4 expression was negatively correlated with the expression of viral genes. Gene enrichment analysis showed that DPP4-associated proteins were mainly enriched in biological processes, such as regulation of receptor-mediated endocytosis of viruses by host cells and bacterial invasion of epithelial cells. Conclusion The oral microbial composition in COVID-19 patients was significantly different from that in healthy individuals, especially among elderly individuals. DPP4 may be related to viral infection and dysbiosis of the oral microbiome in elderly individuals.
Collapse
Affiliation(s)
- Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Mosaddad SA, Mahootchi P, Safari S, Rahimi H, Aghili SS. Interactions between systemic diseases and oral microbiota shifts in the aging community: A narrative review. J Basic Microbiol 2023. [PMID: 37173818 DOI: 10.1002/jobm.202300141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
As a gateway to general health and a diverse microbial habitat, the oral cavity is colonized by numerous microorganisms such as bacteria, fungi, viruses, and archaea. Oral microbiota plays an essential role in preserving oral health. Besides, the oral cavity also significantly contributes to systemic health. Physiological aging influences all body systems, including the oral microbial inhabitants. The cited effect can cause diseases by forming dysbiotic communities. Since it has been demonstrated that microbial dysbiosis could disturb the symbiosis state between the host and the resident microorganism, shifting the condition toward a more pathogenic one, this study investigated how the oral microbial shifts in aging could associate with the development or progression of systemic diseases in older adults. The current study focused on the interactions between variations in the oral microbiome and prevalent diseases in older adults, including diabetes mellitus, Sjögren's syndrome, rheumatoid arthritis, pulmonary diseases, cardiovascular diseases, oral candidiasis, Parkinson's disease, Alzheimer's disease, and glaucoma. Underlying diseases can dynamically modify the oral ecology and the composition of its resident oral microbiome. Clinical, experimental, and epidemiological research suggests the associations of systemic disorders with bacteremia and inflammation after oral microbial changes in older adults.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mahootchi
- Department of Oral and Maxillofacial Diseases, School of Dentistry, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sajedeh Safari
- Department of Prosthodontics, Islamic Azad University, Tehran, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Holub MN, Wahhab A, Rouse JR, Danner R, McClune MM, Dressler JM, Strle K, Jutras BL, Edelstein AI, Lochhead RB. Peptidoglycan in osteoarthritis synovial tissue is associated with joint inflammation. RESEARCH SQUARE 2023:rs.3.rs-2842385. [PMID: 37162851 PMCID: PMC10168439 DOI: 10.21203/rs.3.rs-2842385/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Objectives Peptidoglycan (PG) is an arthritogenic bacterial cell wall component whose role in human osteoarthritis is poorly understood. The purpose of this study was to determine if PG is present in synovial tissue of osteoarthritis patients at the time of primary total knee arthroplasty (TKA), and if its presence is associated with inflammation and patient reported outcomes. Methods Intraoperative synovial tissue and synovial fluid samples were obtained from 56 patients undergoing primary TKA, none of whom had history of infection. PG in synovial tissue was detected by immunohistochemistry (IHC). Synovial tissue inflammation and fibrosis were assessed by histopathology and synovial fluid cytokine quantification. Primary human fibroblasts isolated from arthritis synovial tissue were stimulated with PG to determine inflammatory cytokine response. Results A total of 33/56 (59%) of primary TKA synovial tissue samples were positive for PG by IHC, with mean 8 PG occurrences per 10 mm2 of tissue in PG-positive samples. Synovial tissue inflammation and elevated IL-6 in synovial fluid positively correlated with PG positivity. Primary human fibroblasts stimulated with PG secreted high levels of IL-6, consistent with ex vivo findings. Interestingly, we observed a significant inverse correlation between PG and age at time of TKA, indicating younger age at time of TKA was associated with higher PG levels. Conclusion Peptidoglycan is commonly found in synovial tissue from patients undergoing TKA. Our data indicate that PG may play an important role in inflammatory synovitis, particularly in patients who undergo TKA at a relatively younger age.
Collapse
|
17
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
18
|
Brewer RC, Lanz TV, Hale CR, Sepich-Poore GD, Martino C, Swafford AD, Carroll TS, Kongpachith S, Blum LK, Elliott SE, Blachere NE, Parveen S, Fak J, Yao V, Troyanskaya O, Frank MO, Bloom MS, Jahanbani S, Gomez AM, Iyer R, Ramadoss NS, Sharpe O, Chandrasekaran S, Kelmenson LB, Wang Q, Wong H, Torres HL, Wiesen M, Graves DT, Deane KD, Holers VM, Knight R, Darnell RB, Robinson WH, Orange DE. Oral mucosal breaks trigger anti-citrullinated bacterial and human protein antibody responses in rheumatoid arthritis. Sci Transl Med 2023; 15:eabq8476. [PMID: 36812347 PMCID: PMC10496947 DOI: 10.1126/scitranslmed.abq8476] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Periodontal disease is more common in individuals with rheumatoid arthritis (RA) who have detectable anti-citrullinated protein antibodies (ACPAs), implicating oral mucosal inflammation in RA pathogenesis. Here, we performed paired analysis of human and bacterial transcriptomics in longitudinal blood samples from RA patients. We found that patients with RA and periodontal disease experienced repeated oral bacteremias associated with transcriptional signatures of ISG15+HLADRhi and CD48highS100A2pos monocytes, recently identified in inflamed RA synovia and blood of those with RA flares. The oral bacteria observed transiently in blood were broadly citrullinated in the mouth, and their in situ citrullinated epitopes were targeted by extensively somatically hypermutated ACPAs encoded by RA blood plasmablasts. Together, these results suggest that (i) periodontal disease results in repeated breaches of the oral mucosa that release citrullinated oral bacteria into circulation, which (ii) activate inflammatory monocyte subsets that are observed in inflamed RA synovia and blood of RA patients with flares and (iii) activate ACPA B cells, thereby promoting affinity maturation and epitope spreading to citrullinated human antigens.
Collapse
Affiliation(s)
- R. Camille Brewer
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Tobias V. Lanz
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Caryn R. Hale
- Rockefeller University, New York City, NY 10065, USA
| | | | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Austin D. Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Thomas S. Carroll
- Bioinformatics Resource Center, Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Sarah Kongpachith
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lisa K. Blum
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Serra E. Elliott
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Nathalie E. Blachere
- Rockefeller University, New York City, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - John Fak
- Rockefeller University, New York City, NY 10065, USA
| | - Vicky Yao
- Department of Computer Science, Rice University, Houston, TX 77005, USA
- Department of Computer Science, Princeton University, Princeton, NJ, 08544, USA
| | - Olga Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
- Flatiron Institute, Simons Foundation, New York, NY, 10010, USA
| | - Mayu O. Frank
- Rockefeller University, New York City, NY 10065, USA
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Alejandro M. Gomez
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Radhika Iyer
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Nitya S. Ramadoss
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Orr Sharpe
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | | | - Lindsay B. Kelmenson
- Division of Rheumatology, University of Colorado - Denver, Aurora, CO, 80045, USA
| | - Qian Wang
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Heidi Wong
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | | | - Mark Wiesen
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin D. Deane
- Division of Rheumatology, University of Colorado - Denver, Aurora, CO, 80045, USA
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado - Denver, Aurora, CO, 80045, USA
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Robert B. Darnell
- Rockefeller University, New York City, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Dana E. Orange
- Rockefeller University, New York City, NY 10065, USA
- Hospital for Special Surgery, New York City, NY 10075, USA
| |
Collapse
|
19
|
González-Chávez SA, Salas-Leiva JS, Salas-Leiva DE, López-Loeza SM, Sausameda-García J, Orrantia-Borunda E, Burgos-Vargas R, Alvarado-Jáquez MF, Torres-Quintana M, Cuevas-Martínez R, Chaparro-Barrera E, Marín-Terrazas C, Espino-Solís GP, Romero-López JP, Bernal-Alferes BDJ, Pacheco-Tena C. Levofloxacin induces differential effects in the transcriptome between the gut, peripheral and axial joints in the Spondyloarthritis DBA/1 mice: Improvement of intestinal dysbiosis and the overall inflammatory process. PLoS One 2023; 18:e0281265. [PMID: 36730179 PMCID: PMC9894406 DOI: 10.1371/journal.pone.0281265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
To analyze the effect of levofloxacin-induced intestinal microbiota modifications on intestinal, joint, and systemic inflammation in the DBA/1 mice with spontaneous arthritis. The study included two groups of mice, one of which received levofloxacin. The composition and structure of the microbiota were determined in the mice's stool using 16S rRNA sequencing; the differential taxa and metabolic pathway between mice treated with levofloxacin and control mice were also defied. The effect of levofloxacin was evaluated in the intestines, hind paws, and spines of mice through DNA microarray transcriptome and histopathological analyses; systemic inflammation was measured by flow cytometry. Levofloxacin decreased the pro-inflammatory bacteria, including Prevotellaceae, Odoribacter, and Blautia, and increased the anti-inflammatory Muribaculaceae in mice's stool. Histological analysis confirmed the intestinal inflammation in control mice, while in levofloxacin-treated mice, inflammation was reduced; in the hind paws and spines, levofloxacin also decreased the inflammation. Microarray showed the downregulation of genes and signaling pathways relevant in spondyloarthritis, including several cytokines and chemokines. Levofloxacin-treated mice showed differential transcriptomic profiles between peripheral and axial joints and intestines. Levofloxacin decreased the expression of TNF-α, IL-23a, and JAK3 in the three tissues, but IL-17 behaved differently in the intestine and the joints. Serum TNF-α was also reduced in levofloxacin-treated mice. Our results suggest that the microbiota modification aimed at reducing pro-inflammatory and increasing anti-inflammatory bacteria could potentially be a coadjuvant in treating inflammatory arthropathies.
Collapse
Affiliation(s)
- Susana Aideé González-Chávez
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Joan S. Salas-Leiva
- Departamento de Medio Ambiente y Energía, CONACyT-Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Dayana E. Salas-Leiva
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Molecular Biology, Institute for Comparative Genomics (ICG), Dalhousie University, Halifax, NS, Canada
| | - Salma Marcela López-Loeza
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Jasanai Sausameda-García
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Erasmo Orrantia-Borunda
- Departamento de Medio Ambiente y Energía, CONACyT-Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Rubén Burgos-Vargas
- Department of Rheumatology, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | | | - Mayra Torres-Quintana
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Rubén Cuevas-Martínez
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Eduardo Chaparro-Barrera
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Carlos Marín-Terrazas
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Gerardo Pável Espino-Solís
- Translational Research Laboratory and National Laboratory of Flow Cytometry, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua, Mexico
| | - José Pablo Romero-López
- Laboratorio de Inmunología Clínica 1, Instituto Politécnico Nacional de México, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Brian de Jesús Bernal-Alferes
- Laboratorio de Inmunología Clínica 1, Instituto Politécnico Nacional de México, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - César Pacheco-Tena
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
- * E-mail:
| |
Collapse
|
20
|
Manoil D, Bostanci N, Finckh A. Editorial: The interplay between the oral Microbiota and rheumatoid arthritis. FRONTIERS IN ORAL HEALTH 2022; 3:1055482. [DOI: 10.3389/froh.2022.1055482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
|
21
|
Chriswell ME, Lefferts AR, Clay MR, Hsu AR, Seifert J, Feser ML, Rims C, Bloom MS, Bemis EA, Liu S, Maerz MD, Frank DN, Demoruelle MK, Deane KD, James EA, Buckner JH, Robinson WH, Holers VM, Kuhn KA. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci Transl Med 2022; 14. [PMID: 36288282 PMCID: PMC9804515 DOI: 10.1126/scitranslmed.abn5166 10.1126/scitranslmed.abn5166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mucosal origins hypothesis of rheumatoid arthritis (RA) proposes a central role for mucosal immune responses in the initiation or perpetuation of the systemic autoimmunity that occurs with disease. However, the connection between the mucosa and systemic autoimmunity in RA remains unclear. Using dual immunoglobulin A (IgA) and IgG family plasmablast-derived monoclonal autoantibodies obtained from peripheral blood of individuals at risk for RA, we identified cross-reactivity between RA-relevant autoantigens and bacterial taxa in the closely related families Lachnospiraceae and Ruminococcaceae. After generating bacterial isolates within the Lachnospiraceae/Ruminococcaceae genus Subdoligranulum from the feces of an individual, we confirmed monoclonal antibody binding and CD4+ T cell activation in individuals with RA compared to control individuals. In addition, when Subdoligranulum isolate 7 but not isolate 1 colonized germ-free mice, it stimulated TH17 cell expansion, serum RA-relevant IgG autoantibodies, and joint swelling reminiscent of early RA, with histopathology characterized by antibody deposition and complement activation. Systemic immune responses were likely due to mucosal invasion along with the generation of colon-isolated lymphoid follicles driving increased fecal and serum IgA by isolate 7, because B and CD4+ T cell depletion not only halted intestinal immune responses but also eliminated detectable clinical disease. In aggregate, these findings demonstrate a mechanism of RA pathogenesis through which a specific intestinal strain of bacteria can drive systemic autoantibody generation and joint-centered antibody deposition and immune activation.
Collapse
Affiliation(s)
- Meagan E. Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Adam R. Lefferts
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alex Ren Hsu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jennifer Seifert
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marie L. Feser
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cliff Rims
- Benaroya Research Institute, Seattle, WA 98101
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Elizabeth A. Bemis
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sucai Liu
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | - Daniel N. Frank
- Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - M. Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin D. Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | | | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - V. Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,Corresponding Author:
| |
Collapse
|
22
|
Chriswell ME, Lefferts AR, Clay MR, Hsu AR, Seifert J, Feser ML, Rims C, Bloom MS, Bemis EA, Liu S, Maerz MD, Frank DN, Demoruelle MK, Deane KD, James EA, Buckner JH, Robinson WH, Holers VM, Kuhn KA. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci Transl Med 2022; 14:eabn5166. [PMID: 36288282 PMCID: PMC9804515 DOI: 10.1126/scitranslmed.abn5166] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mucosal origins hypothesis of rheumatoid arthritis (RA) proposes a central role for mucosal immune responses in the initiation or perpetuation of the systemic autoimmunity that occurs with disease. However, the connection between the mucosa and systemic autoimmunity in RA remains unclear. Using dual immunoglobulin A (IgA) and IgG family plasmablast-derived monoclonal autoantibodies obtained from peripheral blood of individuals at risk for RA, we identified cross-reactivity between RA-relevant autoantigens and bacterial taxa in the closely related families Lachnospiraceae and Ruminococcaceae. After generating bacterial isolates within the Lachnospiraceae/Ruminococcaceae genus Subdoligranulum from the feces of an individual, we confirmed monoclonal antibody binding and CD4+ T cell activation in individuals with RA compared to control individuals. In addition, when Subdoligranulum isolate 7 but not isolate 1 colonized germ-free mice, it stimulated TH17 cell expansion, serum RA-relevant IgG autoantibodies, and joint swelling reminiscent of early RA, with histopathology characterized by antibody deposition and complement activation. Systemic immune responses were likely due to mucosal invasion along with the generation of colon-isolated lymphoid follicles driving increased fecal and serum IgA by isolate 7, because B and CD4+ T cell depletion not only halted intestinal immune responses but also eliminated detectable clinical disease. In aggregate, these findings demonstrate a mechanism of RA pathogenesis through which a specific intestinal strain of bacteria can drive systemic autoantibody generation and joint-centered antibody deposition and immune activation.
Collapse
Affiliation(s)
- Meagan E. Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Adam R. Lefferts
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alex Ren Hsu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jennifer Seifert
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marie L. Feser
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cliff Rims
- Benaroya Research Institute, Seattle, WA 98101
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Elizabeth A. Bemis
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sucai Liu
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | - Daniel N. Frank
- Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - M. Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin D. Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | | | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - V. Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,Corresponding Author:
| |
Collapse
|
23
|
Finckh A, Gilbert B, Hodkinson B, Bae SC, Thomas R, Deane KD, Alpizar-Rodriguez D, Lauper K. Global epidemiology of rheumatoid arthritis. Nat Rev Rheumatol 2022; 18:591-602. [PMID: 36068354 DOI: 10.1038/s41584-022-00827-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that predominantly affects the joints. The prevalence of RA varies globally, with generally a higher prevalence in industrialized countries, which may be explained by exposures to environmental risk factors, but also by genetic factors, differing demographics and under-reporting in other parts of the world. Over the past three decades, strong trends of the declining severity of RA probably reflect changes in treatment paradigms and overall better management of the disease. Other trends include increasing RA prevalence. Common risk factors for RA include both modifiable lifestyle-associated variables and non-modifiable features, such as genetics and sex. A better understanding of the natural history of RA, and of the factors that contribute to the development of RA in specific populations, might lead to the introduction of specific prevention strategies for this debilitating disease.
Collapse
Affiliation(s)
- Axel Finckh
- Division of Rheumatology, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland.
| | - Benoît Gilbert
- Division of Rheumatology, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Bridget Hodkinson
- Division of Rheumatology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Hanyang University Institute for Rheumatology and Hanyang University Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Kevin D Deane
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kim Lauper
- Division of Rheumatology, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland.,Centre for Epidemiology versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Holers VM, Kuhn KA, Demoruelle MK, Norris JM, Firestein GS, James EA, Robinson WH, Buckner JH, Deane KD. Mechanism-driven strategies for prevention of rheumatoid arthritis. RHEUMATOLOGY & AUTOIMMUNITY 2022; 2:109-119. [PMID: 36312783 PMCID: PMC9610829 DOI: 10.1002/rai2.12043] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
In seropositive rheumatoid arthritis (RA), the onset of clinically apparent inflammatory arthritis (IA) is typically preceded by a prolonged period of autoimmunity manifest by the presence of circulating autoantibodies that can include antibodies to citrullinated protein antigens (ACPA) and rheumatoid factor (RF). This period prior to clinical IA can be designated preclinical RA in those individuals who have progressed to a clinical diagnosis of RA, and an 'at-risk' status in those who have not developed IA but exhibit predictive biomarkers of future clinical RA. With the goal of developing RA prevention strategies, studies have characterized immune phenotypes of preclinical RA/at-risk states. From these studies, a model has emerged wherein mucosal inflammation and dysbiosis may lead first to local autoantibody production that should normally be transient, but instead is followed by systemic spread of the autoimmunity as manifest by serum autoantibody elevations, and ultimately drives the development of clinically identified joint inflammation. This model can be envisioned as the progression of disease development through serial 'checkpoints' that in principle should constrain or resolve autoimmunity; however, instead the checkpoints 'fail' and clinical RA develops. Herein we review the immune processes that are likely to be present at each step and the potential therapeutic strategies that could be envisioned to delay, diminish, halt or even reverse the progression to clinical RA. Notably, these prevention strategies could utilize existing therapies approved for clinical RA, therapies approved for other diseases that target relevant pathways in the preclinical/at-risk state, or approaches that target novel pathways.
Collapse
Affiliation(s)
- V. Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristine A. Kuhn
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M. Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Gary S. Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA and VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | - Kevin D. Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Li B, Yang B, Liu X, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights. Cell Mol Life Sci 2022; 79:470. [PMID: 35932328 PMCID: PMC11072763 DOI: 10.1007/s00018-022-04498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/22/2022]
Abstract
Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.
| |
Collapse
|
26
|
Gao C, Li X, Zhao X, Yang P, Wang X, Chen X, Chen N, Chen F. Standardized studies of the oral microbiome: From technology-driven to hypothesis-driven. IMETA 2022; 1:e19. [PMID: 38868569 PMCID: PMC10989927 DOI: 10.1002/imt2.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2024]
Abstract
The microbiome is in a symbiotic relationship with the host. Among the microbial consortia in the human body, that in the oral cavity is complex. Instead of repeatedly confirming biomarkers of oral and systemic diseases, recent studies have focused on a unified clinical diagnostic standard in microbiology that reduces the heterogeneity caused by individual discrepancies. Research has also been conducted on other topics of greater clinical importance, including bacterial pathogenesis, and the effects of drugs and treatments. In this review, we divide existing research into technology-driven and hypothesis-driven, according to whether there is a clear research hypothesis. This classification allows the demonstration of shifts in the direction of oral microbiology research. Based on the shifts, we suggested that establishing clear hypotheses may be the solution to major research challenges.
Collapse
Affiliation(s)
- Chuqi Gao
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xuantao Li
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiaole Zhao
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Peiyue Yang
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiao Wang
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiaoli Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Ning Chen
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| |
Collapse
|
27
|
Li H, Zhang P, Lin H, Gao H, Yin J. ETC-1002 Attenuates Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells via the AMPK/NF- κB Pathway and Exerts Ameliorative Effects in Experimental Periodontitis in Mice. DISEASE MARKERS 2022; 2022:8583674. [PMID: 35340409 PMCID: PMC8942644 DOI: 10.1155/2022/8583674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/11/2022]
Abstract
Background Clinically, the failure of periodontal therapy stems largely from an inability to control the inflammatory response. Resolution of inflammation is an active, energy-requiring repair process, not merely a passive termination of inflammation. AMP-activated protein kinase (AMPK), a key energy sensor, has been shown to negatively regulate inflammatory signaling pathways. Thus, there is a crucial need for new therapeutic strategies to modulate AMPK and to promote enhanced resolution of inflammation. This study is aimed at investigating the anti-inflammatory effects of ETC-1002 through modulating AMPK in periodontitis. Methods RAW264.7 cells were infected with Pg-LPS in the presence or absence of ETC-1002, following which the expression levels of proinflammatory cytokines and inflammation signaling-related proteins were evaluated by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. ETC-1002 was applied in a murine model of periodontitis to determine its anti-inflammatory effect in vivo. Histological changes were investigated by hematoxylin and eosin (H&E) staining, the levels of proinflammatory cytokines were detected using immunohistochemistry, and alveolar bone height was measured using micro-CT imaging. Results ETC-1002 inhibited the production of proinflammatory cytokines, promoted AMPK phosphorylation, and decreased IκBα and NF-κB p65 phosphorylation levels in Pg-LPS-treated RAW264.7 macrophages. The inhibitory effects of ETC-1002 on the production of proinflammatory mediators were significantly abrogated by siRNA-mediated silencing of AMPKα in RAW264.7 cells. In vivo, ETC-1002 inhibited inflammatory cell infiltration, the expression of proinflammatory cytokines, and the inflammation-mediated destruction of alveolar bone in mice with experimental periodontitis. The anti-inflammatory effect of ETC-1002 in the periodontium could be reversed by the administration of Compound C, an AMPK inhibitor. Conclusions ETC-1002 exerts anti-inflammatory effects in Pg-LPS-treated RAW264.7 cells via the AMPK/NF-κB pathway in vitro and inhibits the progress of experimental periodontitis in mice in an AMPK signaling-dependent manner in vivo. These results provide evidence for the beneficial effects of ETC-1002 in the treatment of periodontitis.
Collapse
Affiliation(s)
- Hongyan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Hospital of Stomatology, Jilin University & Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun 130021, China
| | - Peipei Zhang
- Hospital of Stomatology, Jilin University & Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun 130021, China
| | - Hongbing Lin
- Hospital of Stomatology, Jilin University & Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun 130021, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jianyuan Yin
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
28
|
Berthelot JM, Bandiaky ON, Le Goff B, Amador G, Chaux AG, Soueidan A, Denis F. Another Look at the Contribution of Oral Microbiota to the Pathogenesis of Rheumatoid Arthritis: A Narrative Review. Microorganisms 2021; 10:59. [PMID: 35056507 PMCID: PMC8778040 DOI: 10.3390/microorganisms10010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although autoimmunity contributes to rheumatoid arthritis (RA), several lines of evidence challenge the dogma that it is mainly an autoimmune disorder. As RA-associated human leukocyte antigens shape microbiomes and increase the risk of dysbiosis in mucosae, RA might rather be induced by epigenetic changes in long-lived synovial presenting cells, stressed by excessive translocations into joints of bacteria from the poorly cultivable gut, lung, or oral microbiota (in the same way as more pathogenic bacteria can lead to "reactive arthritis"). This narrative review (i) lists evidence supporting this scenario, including the identification of DNA from oral and gut microbiota in the RA synovium (but in also healthy synovia), and the possibility of translocation through blood, from mucosae to joints, of microbiota, either directly from the oral cavity or from the gut, following an increase of gut permeability worsened by migration within the gut of oral bacteria such as Porphyromonas gingivalis; (ii) suggests other methodologies for future works other than cross-sectional studies of periodontal microbiota in cohorts of patients with RA versus controls, namely, longitudinal studies of oral, gut, blood, and synovial microbiota combined with transcriptomic analyses of immune cells in individual patients at risk of RA, and in overt RA, before, during, and following flares of RA.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Octave Nadile Bandiaky
- Division of Fixed Prosthodontics, University of Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France;
| | - Benoit Le Goff
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Gilles Amador
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Nantes Teaching Hospital, 44000 Nantes, France;
| | - Anne-Gaelle Chaux
- Nantes Teaching Hospital, 44000 Nantes, France;
- Department of Oral Surgery, Faculty of Dental Surgery, University of Nantes, 44000 Nantes, France
| | - Assem Soueidan
- Department of Periodontology, Faculty of Dental Surgery, UIC 11, Rmes U1229, CHU de Nantes, 44000 Nantes, France;
| | - Frederic Denis
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Tours Teaching Hospital, 37000 Tours, France
| |
Collapse
|
29
|
Ren C, Hao X, Wang L, Hu Y, Meng L, Zheng S, Ren F, Bu W, Wang H, Li D, Zhang K, Sun H. Metformin Carbon Dots for Promoting Periodontal Bone Regeneration via Activation of ERK/AMPK Pathway. Adv Healthc Mater 2021; 10:e2100196. [PMID: 33987977 DOI: 10.1002/adhm.202100196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Indexed: 12/14/2022]
Abstract
The osteogenic potential of mesenchymal stem cells (MSCs) is severely impaired under persistent inflammation of periodontitis. A highly efficient way to promote or rescue osteogenic potential of MSCs under inflammation remains an unmet goal. Herein, metformin carbon dots (MCDs) with excellent biocompatibility are prepared from metformin hydrochloride and citric acid via a hydrothermal method. The MCDs can more effectively enhance the alkaline phosphatase (ALP) activity, calcium deposition nodules formation, expression of osteogenic genes and proteins in rat bone marrow mesenchymal stem cells (rBMSCs) than metformin under both inflammatory and normal conditions. Moreover, a novel pathway of extracellular signal-regulated kinases (ERK)/AMP-activated protein kinase (AMPK) signaling is involved in the MCDs-induced osteogenesis. In periodontitis rats, MCDs can effectively regenerate the lost alveolar bone, but not the metformin. Taken together, MCDs can be the promising candidate nanomaterial for periodontitis treatment. This work may provide a new pharmacological target of ERK/AMPK pathway for treating bone loss and also give additional insights into developing nanodrugs from the numerous medications.
Collapse
Affiliation(s)
- Chunxia Ren
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Xinqing Hao
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Lu Wang
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Yue Hu
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Lin Meng
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Shize Zheng
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Feilong Ren
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Wenhuan Bu
- School of Stomatology China Medical University Shenyang 110001 P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Daowei Li
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Hongchen Sun
- Hospital of Stomatology Jilin University Changchun 130021 P. R. China
| |
Collapse
|