1
|
Lourido L, Joshua V, Hansson M, Sjöberg R, Pin E, Ruiz-Romero C, Nilsson P, Alfredsson L, Klareskog L, Blanco FJ. Identification of circulating autoantibodies to non-modified proteins associated with ACPA status in early rheumatoid arthritis. Rheumatology (Oxford) 2024; 63:3106-3114. [PMID: 38195995 DOI: 10.1093/rheumatology/keae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
OBJECTIVE The objective of this study was to discover autoantibodies to non-modified proteins associated with the presence/absence of ACPAs in RA. METHODS The autoantibody repertoire of 80 ACPA-negative and 80 ACPA-positive RA subjects from the Swedish population-based Epidemiological Investigation of RA (EIRA) cohort was screened using a suspension bead array built on protein fragments earlier described as autoimmunity targets. Four autoantibodies positive in the initial screening were validated in another set of EIRA samples containing 317 ACPA-positive, 302 ACPA-negative and 372 age- and sex-matched controls. The relationship between the four autoantibodies and lung abnormalities on high-resolution CT (HRCT) was examined in 93 early-RA patients from the LURA cohort. Association between the autoantibodies, smoking and MHC class II alleles was assessed by logistic regression analysis. RESULTS Anti-ANOS1 and anti-MURC IgG levels were associated with ACPA-positive status [odds ratio (OR) = 3.02; 95% CI 1.87-4.89; and OR = 1.86; 95% CI 1.16-2.97, respectively] and increased in ACPA-positive patients compared with controls. Anti-ANOS1 IgG was associated with smoking habit (OR = 2.11; 95% CI 1.22-3.69) and anti-MURC IgG with the presence of the MHC class II 'shared-epitope' genes (OR = 1.95; 95% CI 1.11-3.46). Anti-TSPYL4 IgG was associated with being ACPA negative (OR = 0.41; 95% CI 0.19-0.89). Anti-TSPYL4 IgG and anti-MAP2K6 IgG levels were increased in the ACPA-negative patients compared with controls. Presence of anti-MAP2K6 IgG and anti-TSPYL4 IgG correlated negatively with HRCT-defined lung abnormalities. CONCLUSION These four autoantibodies may be useful in diagnostics and in predicting clinical phenotypes of RA.
Collapse
Affiliation(s)
- Lucía Lourido
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
| | - Vijay Joshua
- Division for Rheumatology, Department of Medicine, (Solna) Karolinska Institutet, Stockholm, Sweden
| | - Monika Hansson
- Division for Rheumatology, Department of Medicine, (Solna) Karolinska Institutet, Stockholm, Sweden
| | - Ronald Sjöberg
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elisa Pin
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Ruiz-Romero
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, España
| | - Peter Nilsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Division for Rheumatology, Department of Medicine, (Solna) Karolinska Institutet, Stockholm, Sweden
| | - Francisco J Blanco
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, España
- Grupo de Investigación en Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química e Bioloxía (CICA), Departamento de Fisioterapia, Medicina y Ciencias Biomédica, Facultad de Fisioterapia, Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
2
|
Chen G, Xia Y, Shi X, You Q, Dou W, Zhang Y, Yang X, Mao Y, Diao L, Wang J, Zhou L, Liu M. Sophoridine exerts anti-arthritic effects on fibroblast-like synoviocytes and collagen-induced arthritis in rats. Phytother Res 2024; 38:3337-3351. [PMID: 38634416 DOI: 10.1002/ptr.8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/29/2023] [Accepted: 01/13/2024] [Indexed: 04/19/2024]
Abstract
The discovery of alternative medicines with fewer adverse effects is urgently needed for rheumatoid arthritis (RA). Sophoridine (SR), the naturally occurring quinolizidine alkaloid isolated from the leguminous sophora species, has been demonstrated to possess a wide range of pharmacological activities. However, the effect of SR on RA remains unknown. In this study, the collagen-induced arthritis (CIA) rat model and tumor necrosis factor alpha (TNFα)-induced fibroblast-like synoviocytes (FLSs) were utilized to investigate the inhibitory effect of SR on RA. The anti-arthritic effect of SR was evaluated using the CIA rat model in vivo and TNFα-stimulated FLSs in vitro. Mechanistically, potential therapeutic targets and pathways of SR in RA were analyzed through drug target databases and disease databases, and validation was carried out through immunofluorescence, immunohistochemistry, and Western blot. The in vivo results revealed that SR treatment effectively ameliorated synovial inflammation and bone erosion in rats with CIA. The in vitro studies showed that SR could significantly suppress the proliferation and migration in TNFα-induced arthritic FLSs. Mechanistically, SR treatment efficiently inhibited the activation of MAPKs (JNK and p38) and NF-κB pathways in TNFα-induced arthritic FLSs. These findings were further substantiated by Immunohistochemistry results in the CIA rat. SR exerts an anti-arthritic effect in CIA rats through inhibition of the pathogenic characteristic of arthritic FLSs via suppressing NF-κB and MAPKs (JNK and p38) signaling pathways. SR may have a great potential for development as a novel therapeutic agent for RA treatment.
Collapse
Affiliation(s)
- Gang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yehua Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaotian Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiuyi You
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenwen Dou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yudie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xue Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuhang Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Li Diao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lin Zhou
- Department of endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Yan H, He L, Lv D, Yang J, Yuan Z. The Role of the Dysregulated JNK Signaling Pathway in the Pathogenesis of Human Diseases and Its Potential Therapeutic Strategies: A Comprehensive Review. Biomolecules 2024; 14:243. [PMID: 38397480 PMCID: PMC10887252 DOI: 10.3390/biom14020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
JNK is named after c-Jun N-terminal kinase, as it is responsible for phosphorylating c-Jun. As a member of the mitogen-activated protein kinase (MAPK) family, JNK is also known as stress-activated kinase (SAPK) because it can be activated by extracellular stresses including growth factor, UV irradiation, and virus infection. Functionally, JNK regulates various cell behaviors such as cell differentiation, proliferation, survival, and metabolic reprogramming. Dysregulated JNK signaling contributes to several types of human diseases. Although the role of the JNK pathway in a single disease has been summarized in several previous publications, a comprehensive review of its role in multiple kinds of human diseases is missing. In this review, we begin by introducing the landmark discoveries, structures, tissue expression, and activation mechanisms of the JNK pathway. Next, we come to the focus of this work: a comprehensive summary of the role of the deregulated JNK pathway in multiple kinds of diseases. Beyond that, we also discuss the current strategies for targeting the JNK pathway for therapeutic intervention and summarize the application of JNK inhibitors as well as several challenges now faced. We expect that this review can provide a more comprehensive insight into the critical role of the JNK pathway in the pathogenesis of human diseases and hope that it also provides important clues for ameliorating disease conditions.
Collapse
Affiliation(s)
- Huaying Yan
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - Lanfang He
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - De Lv
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun Yang
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhu Yuan
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
4
|
Czárán D, Sasvári P, Horváth ÁI, Ella K, Sűdy ÁR, Borbély É, Rusznák K, Czéh B, Mócsai A, Helyes Z, Csépányi-Kömi R. Lacking ARHGAP25 mitigates the symptoms of autoantibody-induced arthritis in mice. Front Immunol 2023; 14:1182278. [PMID: 37234175 PMCID: PMC10208528 DOI: 10.3389/fimmu.2023.1182278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Objective Despite intensive research on rheumatoid arthritis, the pathomechanism of the disease is still not fully understood and the treatment has not been completely resolved. Previously we demonstrated that the GTPase-activating protein, ARHGAP25 has a crucial role in the regulation of basic phagocyte functions. Here we investigate the role of ARHGAP25 in the complex inflammatory process of autoantibody-induced arthritis. Methods Wild-type and ARHGAP25 deficient (KO) mice on a C57BL/6 background, as well as bone marrow chimeric mice, were treated i.p. with the K/BxN arthritogenic or control serum, and the severity of inflammation and pain-related behavior was measured. Histology was prepared, leukocyte infiltration, cytokine production, myeloperoxidase activity, and superoxide production were determined, and comprehensive western blot analysis was conducted. Results In the absence of ARHGAP25, the severity of inflammation, joint destruction, and mechanical hyperalgesia significantly decreased, similarly to phagocyte infiltration, IL-1β, and MIP-2 levels in the tibiotarsal joint, whereas superoxide production or myeloperoxidase activity was unchanged. We observed a significantly mitigated phenotype in KO bone marrow chimeras as well. In addition, fibroblast-like synoviocytes showed comparable expression of ARHGAP25 to neutrophils. Significantly reduced ERK1/2, MAPK, and I-κB protein signals were detected in the arthritic KO mouse ankles. Conclusion Our findings suggest that ARHGAP25 has a key role in the pathomechanism of autoantibody-induced arthritis in which it regulates inflammation via the I-κB/NF-κB/IL-1β axis with the involvement of both immune cells and fibroblast-like synoviocytes.
Collapse
Affiliation(s)
- Domonkos Czárán
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Sasvári
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Ádám István Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Krisztina Ella
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Réka Sűdy
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Kitti Rusznák
- Histology and Light Microscopy Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Boldizsár Czéh
- Histology and Light Microscopy Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Chronic Pain Research Group, Eötvös Loránd Research Network, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | | |
Collapse
|
5
|
Farina L, Minnone G, Alivernini S, Caiello I, MacDonald L, Soligo M, Manni L, Tolusso B, Coppola S, Zara E, Conti LA, Aquilani A, Magni-Manzoni S, Kurowska-Stolarska M, Gremese E, De Benedetti F, Bracci-Laudiero L. Pro Nerve Growth Factor and Its Receptor p75NTR Activate Inflammatory Responses in Synovial Fibroblasts: A Novel Targetable Mechanism in Arthritis. Front Immunol 2022; 13:818630. [PMID: 35309353 PMCID: PMC8931659 DOI: 10.3389/fimmu.2022.818630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
We have recently provided new evidence for a role of p75NTR receptor and its preferential ligand proNGF in amplifying inflammatory responses in synovial mononuclear cells of chronic arthritis patients. In the present study, to better investigate how activation of the p75NTR/proNGF axis impacts synovial inflammation, we have studied the effects of proNGF on fibroblast-like synoviocytes (FLS), which play a central role in modulating local immune responses and in activating pro-inflammatory pathways. Using single cell RNA sequencing in synovial tissues from active and treatment-naïve rheumatoid arthritis (RA) patients, we demonstrated that p75NTR and sortilin, which form a high affinity receptor complex for proNGF, are highly expressed in PRG4pos lining and THY1posCOL1A1pos sublining fibroblast clusters in RA synovia but decreased in RA patients in sustained clinical remission. In ex vivo experiments we found that FLS from rheumatoid arthritis patients (RA-FLS) retained in vitro a markedly higher expression of p75NTR and sortilin than FLS from osteoarthritis patients (OA-FLS). Inflammatory stimuli further up-regulated p75NTR expression and induced endogenous production of proNGF in RA-FLS, leading to an autocrine activation of the proNGF/p75NTR pathway that results in an increased release of pro-inflammatory cytokines. Our data on the inhibition of p75NTR receptor, which reduced the release of IL-1β, IL-6 and TNF-α, further confirmed the key role of p75NTR activation in regulating inflammatory cytokine production. In a set of ex vivo experiments, we used RA-FLS and cultured them in the presence of synovial fluids obtained from arthritis patients that, as we demonstrated, are characterized by a high concentration of proNGF. Our data show that the high levels of proNGF present in inflamed synovial fluids induced pro-inflammatory cytokine production by RA-FLS. The blocking of NGF binding to p75NTR using specific inhibitors led instead to the disruption of this pro-inflammatory loop, reducing activation of the p38 and JNK intracellular pathways and decreasing inflammatory cytokine production. Overall, our data demonstrate that an active proNGF/p75NTR axis promotes pro-inflammatory responses in synovial fibroblasts, thereby contributing to chronic synovial inflammation, and point to the possible use of p75NTR inhibitors as a novel therapeutic approach in chronic arthritis.
Collapse
Affiliation(s)
- Luciapia Farina
- Department of Immunology, Laboratory of ImmunoRheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gaetana Minnone
- Department of Immunology, Laboratory of ImmunoRheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Stefano Alivernini
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Ivan Caiello
- Department of Immunology, Laboratory of ImmunoRheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Lucy MacDonald
- Inflammatory Arthritis Centre Versus Arthritis (RACE), Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marzia Soligo
- Institute of Translational Pharmacology (IFT-CNR), Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology (IFT-CNR), Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Simona Coppola
- National Centre for Rare Diseases, Istituto Superiore di Sanita’, Rome, Italy
| | - Erika Zara
- National Centre for Rare Diseases, Istituto Superiore di Sanita’, Rome, Italy
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Aquilani
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Magni-Manzoni
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mariola Kurowska-Stolarska
- Inflammatory Arthritis Centre Versus Arthritis (RACE), Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Fabrizio De Benedetti
- Department of Immunology, Laboratory of ImmunoRheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luisa Bracci-Laudiero
- Department of Immunology, Laboratory of ImmunoRheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Institute of Translational Pharmacology (IFT-CNR), Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
6
|
Activation of c-Jun N-Terminal Kinase, a Potential Therapeutic Target in Autoimmune Arthritis. Cells 2020; 9:cells9112466. [PMID: 33198301 PMCID: PMC7696795 DOI: 10.3390/cells9112466] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The c-Jun-N-terminal kinase (JNK) is a critical mediator involved in various physiological processes, such as immune responses, and the pathogenesis of various diseases, including autoimmune disorders. JNK is one of the crucial downstream signaling molecules of various immune triggers, mainly proinflammatory cytokines, in autoimmune arthritic conditions, mainly including rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. The activation of JNK is regulated in a complex manner by upstream kinases and phosphatases. Noticeably, different subtypes of JNKs behave differentially in immune responses. Furthermore, aside from biologics targeting proinflammatory cytokines, small-molecule inhibitors targeting signaling molecules such as Janus kinases can act as very powerful therapeutics in autoimmune arthritis patients unresponsiveness to conventional synthetic antirheumatic drugs. Nevertheless, despite these encouraging therapies, a population of patients with an inadequate therapeutic response to all currently available medications still remains. These findings identify the critical signaling molecule JNK as an attractive target for investigation of the immunopathogenesis of autoimmune disorders and for consideration as a potential therapeutic target for patients with autoimmune arthritis to achieve better disease control. This review provides a useful overview of the roles of JNK, how JNK is regulated in immunopathogenic responses, and the potential of therapeutically targeting JNK in patients with autoimmune arthritis.
Collapse
|
7
|
Evaluation of the therapeutic potential of the selective p38 MAPK inhibitor Skepinone-L and the dual p38/JNK 3 inhibitor LN 950 in experimental K/BxN serum transfer arthritis. Inflammopharmacology 2019; 27:1217-1227. [PMID: 31037574 DOI: 10.1007/s10787-019-00593-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) signaling plays an important role in inflammatory diseases such as rheumatoid arthritis (RA).The aim of our study was to elucidate the therapeutic potential of the highly selective p38 MAPK inhibitor Skepinone-L and the dual inhibitor LN 950 (p38 MAPK and JNK 3) in the K/BxN serum transfer model of RA. Additionally, we aimed to monitor MAPK treatment non-invasively in vivo using the hypoxia tracer [18F]fluoromisonidazole ([18F]FMISO) and positron emission tomography (PET). METHODS To induce experimental arthritis, we injected glucose-6-phosphate isomerase autoantibody-containing serum in BALB/c mice. MAPK inhibitor or Sham treatment was administered per os once daily. On days 3 and 6 after arthritis induction, we conducted PET imaging with [18F]FMISO. At the end of the experiment, ankles were harvested for histopathological analysis. RESULTS Skepinone-L and LN 950 were applicable to suppress the severity of experimental arthritis confirmed by reduced ankle swelling and histopathological analysis. Skepinone-L (3.18 ± 0.19 mm) and LN 950 (3.40 ± 0.13 mm) treatment yielded a significantly reduced ankle thickness compared to Sham-treated mice (3.62 ± 0.11 mm) on day 5 after autoantibody transfer, a time-point characterized by severe arthritis. Hypoxia imaging with [18F]FMISO revealed non-conclusive results and might not be an appropriate tool to monitor MAPK therapy in experimental RA. CONCLUSION Both the selective p38 MAPK inhibitor Skepinone-L and the dual (p38 MAPK and JNK 3) inhibitor LN 950 exhibited significant therapeutic effects during experimental arthritis. Thus, our study contributes to the ongoing discussion on the use of p38 MAPK as a potential target in RA.
Collapse
|
8
|
Borbély É, Botz B, Bölcskei K, Kenyér T, Kereskai L, Kiss T, Szolcsányi J, Pintér E, Csepregi JZ, Mócsai A, Helyes Z. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis. Brain Behav Immun 2015; 45:50-9. [PMID: 25524130 PMCID: PMC4349500 DOI: 10.1016/j.bbi.2014.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro-immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. METHODS Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. RESULTS In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. CONCLUSIONS Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important anti-inflammatory roles at least partially through somatostatin release.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary
| | - Tibor Kenyér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, University of Pécs, Medical School, Pécs, Hungary
| | - Tamás Kiss
- János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | - Janka Zsófia Csepregi
- Department of Physiology, and MTA-SE "Lendület" Inflammation Physiology Research Group, Semmelweis University, School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, and MTA-SE "Lendület" Inflammation Physiology Research Group, Semmelweis University, School of Medicine, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Pécs, Hungary; János Szentágothai Research Centre, Molecular Pharmacology Research Team, University of Pécs, Pécs, Hungary; Centre for Neuroscience, University of Pécs, Medical School, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary; MTA-PTE NAP B Pain Research Group, Hungary.
| |
Collapse
|
9
|
Julovi SM, Shen K, Mckelvey K, Minhas N, March L, Jackson CJ. Activated protein C inhibits proliferation and tumor necrosis factor α-stimulated activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in rheumatoid synovial fibroblasts. Mol Med 2013; 19:324-31. [PMID: 24096826 DOI: 10.2119/molmed.2013.00034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/19/2013] [Indexed: 11/06/2022] Open
Abstract
Synovial fibroblast proliferation is a hallmark of the invasive pannus in the rheumatoid joint. Activated protein C (APC) is a natural anticoagulant that exerts antiinflammatory and cyto-protective effects in various diseases via endothelial protein C receptor (EPCR) and proteinase-activated receptor (PAR)-mediated pathways. In this study, we investigated the effect and the underlying cellular signaling mechanisms of APC on proliferation of human rheumatoid synovial fibroblasts (RSFs). We found that APC stimulated proliferation of mouse dermal fibroblasts (MDFs) and normal human dermal fibroblasts (HDFs) by up to 60%, but robustly downregulated proliferation of RSFs. APC induced the phosphorylation of extracellular signal-regulated protein kinase (ERK) and enhanced expression of p21 and p27 in a dose-dependent manner in RSFs. The latter effect was inhibited by pre-treatment with the ERK inhibitors PD98059 and U0126 but not by p38 inhibitor SB203580. In addition, APC significantly downregulated tumor necrosis factor (TNF)α-stimulated cell proliferation and activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in RSFs. These results provide the first evidence that APC selectively inhibits proliferation and the inflammatory signaling pathways of RSFs. Thus, APC may reduce synovial hyperplasia and pannus invasion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Sohel M Julovi
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia.,Department of Surgery, Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Kaitlin Shen
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Kelly Mckelvey
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Nikita Minhas
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
10
|
Guma M, Firestein GS. c-Jun N-Terminal Kinase in Inflammation and Rheumatic Diseases. Open Rheumatol J 2012; 6:220-31. [PMID: 23028407 PMCID: PMC3460413 DOI: 10.2174/1874312901206010220] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 01/03/2011] [Accepted: 07/13/2011] [Indexed: 01/24/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are activated by environmental stress. JNK is also activated by proinflammatory cytokines, such as TNF and IL-1, and Toll-like receptor ligands. This pathway, therefore, can act as a critical convergence point in immune system signaling for both adaptive and innate responses. Like other MAPKs, the JNKs are activated via the sequential activation of protein kinases that includes two dual-specificity MAP kinase kinases (MKK4 and MKK7) and multiple MAP kinase kinase kinases. MAPKs, including JNKs, can be deactivated by a specialized group of phosphatases, called MAP kinase phosphatases. JNK phosphorylates and regulates the activity of transcription factors other than c-Jun, including ATF2, Elk-1, p53 and c-Myc and non-transcription factors, such as members of the Bcl-2 family. The pathway plays a critical role in cell proliferation, apoptosis, angiogenesis and migration. In this review, an overview of the functions that are related to rheumatic diseases is presented. In addition, some diseases in which JNK participates will be highlighted.
Collapse
Affiliation(s)
- Monica Guma
- Division of Rheumatology, Allergy and Immunology, UC San Diego School of Medicine, La Jolla, CA, USA
| | | |
Collapse
|
11
|
|
12
|
de Launay D, van de Sande MGH, de Hair MJH, Grabiec AM, van de Sande GPM, Lehmann KA, Wijbrandts CA, van Baarsen LGM, Gerlag DM, Tak PP, Reedquist KA. Selective involvement of ERK and JNK mitogen-activated protein kinases in early rheumatoid arthritis (1987 ACR criteria compared to 2010 ACR/EULAR criteria): a prospective study aimed at identification of diagnostic and prognostic biomarkers as well as therapeutic targets. Ann Rheum Dis 2012; 71:415-23. [PMID: 21953337 PMCID: PMC3277721 DOI: 10.1136/ard.2010.143529] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 08/14/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate the expression and activation of mitogen-activated protein kinases in patients with early arthritis who are disease-modifying antirheumatic drug (DMARD) naïve. METHODS A total of 50 patients with early arthritis who were DMARD naïve (disease duration <1 year) were prospectively followed and diagnosed at baseline and after 2 years for undifferentiated arthritis (UA), rheumatoid arthritis (RA) (1987 American College of Rheumatology (ACR) and 2010 ACR/European League Against Rheumatism (EULAR) criteria), or spondyloarthritis (SpA). Synovial biopsies obtained at baseline were examined for expression and phosphorylation of p38, extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunohistochemistry and digital analysis. Synovial tissue mRNA expression was measured by quantitative PCR (qPCR). RESULTS ERK and JNK activation was enhanced at inclusion in patients meeting RA criteria compared to other diagnoses. JNK activation was enhanced in patients diagnosed as having UA at baseline who eventually fulfilled 1987 ACR RA criteria compared to those who remained UA, and in patients with RA fulfilling 2010 ACR/EULAR criteria at baseline. ERK and JNK activation was enhanced in patients with RA developing progressive joint destruction. JNK activation in UA predicted 1987 ACR RA classification criteria fulfilment (R(2)=0.59, p=0.02) after follow-up, and disease progression in early arthritis (R(2)=0.16, p<0.05). Enhanced JNK activation in patients with persistent disease was associated with altered synovial expression of extracellular matrix components and CD44. CONCLUSIONS JNK activation is elevated in RA before 1987 ACR RA classification criteria are met and predicts development of erosive disease in early arthritis, suggesting JNK may represent an attractive target in treating RA early in the disease process.
Collapse
Affiliation(s)
- Daphne de Launay
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee SI, Boyle DL, Berdeja A, Firestein GS. Regulation of inflammatory arthritis by the upstream kinase mitogen activated protein kinase kinase 7 in the c-Jun N-terminal kinase pathway. Arthritis Res Ther 2012; 14:R38. [PMID: 22353730 PMCID: PMC3392838 DOI: 10.1186/ar3750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/12/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction The c-Jun N-terminal kinase (JNK) is a key regulator of matrix metalloproteinase (MMP) and cytokine production in rheumatoid arthritis (RA) and JNK deficiency markedly protects mice in animal models of arthritis. Cytokine-induced JNK activation is strictly dependent on the mitogen-activated protein kinase kinase 7 (MKK7) in fibroblast-like synoviocytes (FLS). Therefore, we evaluated whether targeting MKK7 using anti-sense oligonucleotides (ASO) would decrease JNK activation and severity in K/BxN serum transfer arthritis. Methods Three 2'-O-methoxyethyl chimeric ASOs for MKK7 and control ASO were injected intravenously in normal C57BL/6 mice. PBS, control ASO or MKK7 ASO was injected from Day -8 to Day 10 in the passive K/BxN model. Ankle histology was evaluated using a semi-quantitative scoring system. Expression of MKK7 and JNK pathways was evaluated by quantitative PCR and Western blot analysis. Results MKK7 ASO decreased MKK7 mRNA and protein levels in ankles by about 40% in normal mice within three days. There was no effect of control ASO on MKK7 expression and MKK7 ASO did not affect MKK3, MKK4 or MKK6. Mice injected with MKK7 ASO had significantly less severe arthritis compared with control ASO (P < 0.01). Histologic evidence of synovial inflammation, bone erosion and cartilage damage was reduced in MKK7 ASO-treated mice (P < 0.01). MKK7 deficiency decreased phospho-JNK and phospho-c-Jun in ankle extracts (P < 0.05), but not phospho-MKK4. Interleukin-1beta (IL-1β), MMP3 and MMP13 gene expression in ankle joints were decreased by MKK7 ASO (P < 0.01). Conclusions MKK7 plays a critical regulatory role in the JNK pathway in a murine model of arthritis. Targeting MKK7 rather than JNK could provide site and event specificity when treating synovitis.
Collapse
Affiliation(s)
- Sang-il Lee
- Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, La Jolla, CA, USA
| | | | | | | |
Collapse
|
14
|
Luo Y, Boyle DL, Hammaker D, Edgar M, Franzoso G, Firestein GS. Suppression of collagen-induced arthritis in growth arrest and DNA damage-inducible protein 45β-deficient mice. ARTHRITIS AND RHEUMATISM 2011; 63:2949-55. [PMID: 21702006 PMCID: PMC3183142 DOI: 10.1002/art.30497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Growth arrest and DNA damage-inducible protein 45β (GADD45β) is involved in stress responses, cell cycle regulation, and oncogenesis. Previous studies demonstrated that GADD45β deficiency exacerbates K/BxN serum-induced arthritis and experimental allergic encephalomyelitis (EAE) in mice, indicating that GADD45β plays a suppressive role in innate and adaptive immune responses. To further understand how GADD45β regulates autoimmunity, we evaluated collagen-induced arthritis in GADD45β-/- mice. METHODS Wild-type (WT) and GADD45β-/- DBA/1 mice were immunized with bovine type II collagen (CII). Serum anticollagen antibody levels were quantified by enzyme-linked immunosorbent assay. Expression of cytokines and matrix metalloproteinases in the joint and spleen was determined by quantitative polymerase chain reaction. The in vitro T cell cytokine response to CII was measured by multiplex analysis. CD4+CD25+ Treg cells and Th17 cells were quantified using flow cytometry. RESULTS GADD45β-/- mice showed significantly lower arthritis severity and joint destruction compared with WT mice. MMP-3 and MMP-13 expression was also markedly reduced in GADD45β-/- mice. However, serum anti-CII antibody levels were similar in both groups. FoxP3 and interleukin-10 (IL-10) expression was increased 2-3-fold in splenocytes from arthritic GADD45β-/- mice compared with those from WT mice. Flow cytometric analysis showed greater numbers of CD4+CD25+ Treg cells in the spleen of GADD45β-/- mice than in the spleen of WT mice. In vitro studies showed that interferon-γ and IL-17 production by T cells was significantly decreased in GADD45β-/- mice. CONCLUSION Unlike passive K/BxN arthritis and EAE, GADD45β deficiency in CIA was associated with lower arthritis severity, elevated IL-10 expression, decreased IL-17 production, and increased numbers of Treg cells. The data suggest that GADD45β plays a complex role in regulating adaptive immunity and, depending on the model, either enhances or suppresses inflammation.
Collapse
Affiliation(s)
- Yubin Luo
- UC San Diego School of Medicine, La Jolla, CA 92093
| | | | | | - Meghan Edgar
- UC San Diego School of Medicine, La Jolla, CA 92093
| | - Guido Franzoso
- Section of Inflammation & Signal Transduction, Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
15
|
Abstract
Signal transduction pathways regulate the production and function of many cytokines implicated in immune-mediated diseases. Targeting these enzymes with small molecule inhibitors represents a fertile field for the treatment of rheumatoid arthritis. Recent successes with compounds that block upstream kinases suggest that proximal members of the signaling cascades, such as Rac and other Rho family enzymes, might have therapeutic potential. Balancing efficacy and toxicity, however, remains a significant challenge that will require careful evaluation.
Collapse
|
16
|
Abstract
Despite the success of biological therapies in rheumatoid arthritis (RA), orally active small-molecule drugs are desirable. Signal transduction inhibitors have been the focus of intense efforts, with some recent notable successes and failures. p38alpha is a signalling molecule that regulates proinflammatory cytokines, which makes it a logical target for RA. Unfortunately, selective p38alpha inhibitors have limited efficacy. An attempt is made here to put these studies into perspective and offer possible explanations for the failure of p38alpha blockers. Alternative strategies, such as targeting kinases higher in the signalling cascade or using less selective compounds, might be more successful as suggested by the efficacy seen with Syk and JAK inhibitors.
Collapse
Affiliation(s)
- D Hammaker
- Division of Rheumatology, Allergy and Immunology, UC San Diego School of Medicine, La Jolla, CA 92093-0656, USA.
| | | |
Collapse
|
17
|
Radbruch A, Isaacs J. Animal models in infection and inflammation - chance and necessity. Eur J Immunol 2009; 39:1991-3. [PMID: 19672889 DOI: 10.1002/eji.200939772] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In biomedical research, to understand pathogenesis and test innovative therapeutic strategies, animal models of human disease are a bare necessity. We cannot do without them, but could we do better with them? In this issue of the European Journal of Immunology a series of Viewpoints discusses the pros and cons of currently available animal models that address the clinical challenges of immunology in infection and inflammatory diseases.
Collapse
Affiliation(s)
- Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.
| | | |
Collapse
|