1
|
Pentraxin 3 inhibits fibroblast growth factor 2 induced osteoclastogenesis in rheumatoid arthritis. Biomed Pharmacother 2020; 131:110628. [PMID: 32890968 DOI: 10.1016/j.biopha.2020.110628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Synovial fibroblasts (SFs) act as key effector cells mediating synovial inflammation and joint destruction in rheumatoid arthritis (RA). Fibroblast growth factor 2 (FGF2) and its receptors (FGFRs) play important roles in RASF-mediated osteoclastogenesis. Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with nonredundant roles in inflammation and innate immunity. PTX3 is produced by various cell types, including SFs and is highly expressed in RA. However, the role of PTX3 in FGF2-induced osteoclastogenesis in RA and the underlying mechanism have been poorly elucidated. METHODS We first determined the expression of FGF2 and RANKL in synovial tissue and synovial fluid of RA patients. We then examined the effect of PTX3 on RASF osteoclastogenesis induced by endogenous and exogenous FGF2 in isolated RASF cells treated with FGF2 and/or recombinant PTX3 (rPTX3). Thirdly, we analyzed the effect of PTX3 on FGF2 binding to FGFR-1 and HSPG receptors on RASFs. Lastly, we evaluated joint morphology after injection of rPTX3 into collagen-induced arthritis (CIA) mice. RESULTS FGF2 was confirmed to be highly expressed in both synovial tissue and synovial fluid of RA patients. FGF2 promoted cell proliferation and increased the expressions of RANKL and ICAM-1 and RANKL/OPG to induce osteoclastogenesis in RASF, while anti-FGF2 neutralized this effect. PTX3 significantly inhibited FGF2-induced RASF cell growth and osteoclastogenesis by preventing the interaction of 125I-FGF2 and FGFRs on the same cells. In addition, administration of rPTX3 significantly ameliorated cartilage and bone destruction in mice with CIA. CONCLUSIONS PTX3 exhibited an inhibitory effect on the autocrine and paracrine stimulation of FGF2 on SFs, and ameliorated bone destruction in CIA mice. PTX3 may be implicated in bone destruction in RA, which may provide theoretical evidence and potential therapeutic targets for RA treatment.
Collapse
|
2
|
Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis 2018. [PMID: 29540697 PMCID: PMC5851988 DOI: 10.1038/s41419-018-0433-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease that mainly affects the synovial joints. Although involvement of the fibroblast growth factor (FGF) signaling pathway has been suggested as an important modulator in RA development, no clear evidence has been provided. In this study, we found that synovial fluid basic FGF (bFGF) concentration was significantly higher in RA than in osteoarthritis (OA) patients. bFGF stimulates proliferation and migration of human fibroblast-like synoviocytes (FLSs) by activation of the bFGF-FGF receptor 3 (FGFR3)-ribosomal S6 kinase 2 (RSK2) signaling axis. Moreover, a molecular docking study revealed that kaempferol inhibited FGFR3 activity by binding to the active pocket of the FGFR3 kinase domain. Kaempferol forms hydrogen bonds with the FGFR3 backbone oxygen of Glu555 and Ala558 and the side chain of Lys508. Notably, the inhibition of bFGF-FGFR3-RSK2 signaling by kaempferol suppresses the proliferation and migration of RA FLSs and the release of activated T-cell-mediated inflammatory cytokines, such as IL-17, IL-21, and TNF-α. We further found that activated phospho-FGFR3 and -RSK2 were more highly observed in RA than in OA synovium. The hyperplastic lining and sublining lymphoid aggregate layers of RA synovium showed p-RSK2-expressing CD68+ macrophages with high frequency, while pRSK2-expressing CD4+ T-cells was observed at a lower frequency. Notably, kaempferol administration in collagen-induced arthritis mice relieved the frequency and severity of arthritis. Kaempferol reduced osteoclast differentiation in vitro and in vivo relative to the controls and was associated with the inhibition of osteoclast markers, such as tartrate-resistant acid phosphatase, integrin β3, and MMP9. Conclusively, our data suggest that bFGF-induced FGFR3-RSK2 signaling may play a critical role during the initiation and progression of RA in terms of FLS proliferation and enhanced osteoclastogenesis, and that kaempferol may be effective as a new treatment for RA.
Collapse
|
3
|
Lambert C, Mathy-Hartert M, Dubuc JE, Montell E, Vergés J, Munaut C, Noël A, Henrotin Y. Characterization of synovial angiogenesis in osteoarthritis patients and its modulation by chondroitin sulfate. Arthritis Res Ther 2012; 14:R58. [PMID: 22409996 PMCID: PMC3446424 DOI: 10.1186/ar3771] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/11/2011] [Accepted: 03/12/2012] [Indexed: 01/15/2023] Open
Abstract
Introduction This work aimed at comparing the production of inflammatory and pro- and anti-angiogenic factors by normal/reactive (N/R) or inflammatory (I) areas of the osteoarthritic synovial membrane. The effects of interleukin (IL)-1β and chondroitin sulfate (CS) on the expression of pro- and anti-angiogenic factors by synovial fibroblasts cells (SFC) were also studied. Methods Biopsies from N/R or from I areas of osteoarthritic synovial membrane were collected at the time of surgery. The inflammatory status of the synovial membrane was characterized by the surgeon according to macroscopic criteria, including the synovial vascularization, the villi formation and the hypertrophic aspect of the tissue. We assessed the expression of CD45, von Willebrand factor and vascular endothelial growth factor (VEGF) antigen by immunohistochemistry in both N/R and I biopsies. The production of IL-6, -8, VEGF and thrombospondin (TSP)-1 by N/R or I synovial cells was quantified by ELISA. SFC were cultured in the absence or in the presence of IL-1β (1 ng/ml) and with or without CS (10, 50, 200 μg/ml). Gene expression of pro-angiogenic factors (VEGF, basic fibroblast growth factor (bFGF), nerve growth factor (NGF), matrix metalloproteinase (MMP)-2 and angiopoietin (ang)-1) and anti-angiogenic factors (vascular endothelial growth inhibitor (VEGI), TSP-1 and -2) were determined by real time RT-PCR. Production of VEGI and TSP-1 was also estimated by ELISA. Results Immunohistochemistry showed the increase of lymphocyte infiltration, vascular density and VEGF expression in I compared to N/R synovial biopsies. Synovial cells from I areas produced more IL-6, IL-8 and VEGF but less TSP-1 than cells isolated from N/R synovial biopsies. The expression of pro-angiogenic factors by SFC was stimulated by IL-1β. A time dependent regulation of the expression of anti-angiogenic factor genes was observed. IL-1β stimulated the expression of anti-angiogenic factor genes but inhibited it after 24 h. CS reversed the inhibitory effect of IL-1β on anti-angiogenic factors, VEGI and TSP-1. Conclusions We demonstrated that synovial biopsies from I areas expressed a pro-angiogenic phenotype. IL-1β induced an imbalance between pro- and anti-angiogenic factors in SFC and CS tended to normalize this IL-1β-induced imbalance, providing a new possible mechanism of action of this drug.
Collapse
Affiliation(s)
- Cécile Lambert
- Bone and Cartilage Research Unit, Institute of pathology, CHU Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The expansion of the synovial lining of joints in rheumatoid arthritis (RA) necessitates an increase in the vascular supply to the synovium, to cope with the increased requirement for oxygen and nutrients. New blood vessel formation -'angiogenesis'- is recognized as a key event in the formation and maintenance of the pannus in RA, suggesting that targeting blood vessels in RA may be an effective future therapeutic strategy. Although many pro-angiogenic factors have been demonstrated to be expressed in RA synovium, vascular endothelial growth factor (VEGF) has been demonstrated to a have a central involvement in the angiogenic process in RA. Nevertheless, it is unclear whether angiogenesis - whether driven by VEGF and/or other factors - should be considered as a 'cause' or 'consequence' of disease. This ongoing 'chicken vs. egg' debate is difficult, as even the success of angiogenesis inhibition in models of RA does not provide a direct answer to the question. This review will focus on the role of the vasculature in RA, and the contribution of different angiogenic factors in promoting disease. Although no data regarding the effectiveness of anti-angiogenic therapy in RA have been reported to date, the blockade of angiogenesis nevertheless looks to be a promising therapeutic avenue.
Collapse
Affiliation(s)
- Ewa M Paleolog
- Kennedy Institute of Rheumatology and Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
5
|
Bainbridge J, Madden L, Essex D, Binks M, Malhotra R, Paleolog EM. Methionine aminopeptidase-2 blockade reduces chronic collagen-induced arthritis: potential role for angiogenesis inhibition. Arthritis Res Ther 2008; 9:R127. [PMID: 18072970 PMCID: PMC2246249 DOI: 10.1186/ar2340] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/24/2007] [Accepted: 12/11/2007] [Indexed: 12/19/2022] Open
Abstract
The enzyme methionine aminopeptidase-2 (MetAP-2) is thought to play an important function in human endothelial cell proliferation, and as such provides a valuable target in both inflammation and cancer. Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with increased synovial vascularity, and hence is a potential therapeutic target for angiogenesis inhibitors. We examined the use of PPI-2458, a selective non-reversible inhibitor of MetAP-2, in disease models of RA, namely acute and chronic collagen-induced arthritis (CIA) in mice. Whilst acute CIA is a monophasic disease, CIA induced with murine collagen type II manifests as a chronic relapsing arthritis and mimics more closely the disease course of RA. Our study showed PPI-2458 was able to reduce clinical signs of arthritis in both acute and chronic CIA models. This reduction in arthritis was paralleled by decreased joint inflammation and destruction. Detailed mechanism of action studies demonstrated that PPI-2458 inhibited human endothelial cell proliferation and angiogenesis in vitro, without affecting production of inflammatory cytokines. Furthermore, we also investigated release of inflammatory cytokines and chemokines from human RA synovial cell cultures, and observed no effect of PPI-2458 on spontaneous expression of cytokines and chemokines, or indeed on the angiogenic molecule vascular endothelial growth factor (VEGF). These results highlight MetAP-2 as a good candidate for therapeutic intervention in RA.
Collapse
Affiliation(s)
- John Bainbridge
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, 1, Aspenlea Road, London W6 8LH, UK.
| | | | | | | | | | | |
Collapse
|
6
|
Middleton J, Americh L, Gayon R, Julien D, Aguilar L, Amalric F, Girard JP. Endothelial cell phenotypes in the rheumatoid synovium: activated, angiogenic, apoptotic and leaky. Arthritis Res Ther 2004; 6:60-72. [PMID: 15059266 PMCID: PMC400438 DOI: 10.1186/ar1156] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 01/28/2004] [Accepted: 02/04/2004] [Indexed: 01/23/2023] Open
Abstract
Endothelial cells are active participants in chronic inflammatory diseases. These cells undergo phenotypic changes that can be characterised as activated, angiogenic, apoptotic and leaky. In the present review, these phenotypes are described in the context of human rheumatoid arthritis as the disease example. Endothelial cells become activated in rheumatoid arthritis pathophysiology, expressing adhesion molecules and presenting chemokines, leading to leukocyte migration from the blood into the tissue. Endothelial cell permeability increases, leading to oedema formation and swelling of the joints. These cells proliferate as part of the angiogenic response and there is also a net increase in the turnover of endothelial cells since the number of apoptotic endothelial cells increases. The endothelium expresses various cytokines, cytokine receptors and proteases that are involved in angiogenesis, proliferation and tissue degradation. Associated with these mechanisms is a change in the spectrum of genes expressed, some of which are relatively endothelial specific and others are widely expressed by other cells in the synovium. Better knowledge of molecular and functional changes occurring in endothelial cells during chronic inflammation may lead to the development of endothelium-targeted therapies for rheumatoid arthritis and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jim Middleton
- Endocube S,A,S, Prologue Biotech, Labege cedex, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Scola MP, Imagawa T, Boivin GP, Giannini EH, Glass DN, Hirsch R, Grom AA. Expression of angiogenic factors in juvenile rheumatoid arthritis: correlation with revascularization of human synovium engrafted into SCID mice. ARTHRITIS AND RHEUMATISM 2001; 44:794-801. [PMID: 11315918 DOI: 10.1002/1529-0131(200104)44:4<794::aid-anr135>3.0.co;2-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Although increased vascularity was noted in early histopathologic studies of juvenile rheumatoid arthritis (JRA) synovium, the available data on angiogenesis in JRA are very limited. The main purposes of this study were to assess expression of the key angiogenic factors in JRA synovium, and to evaluate a SCID mouse model of JRA as an approach to study in vivo regulation of the expression of these factors in JRA. METHODS RNase protection assay was used to assess the expression of the key angiogenic factors in fresh JRA synovium and in JRA synovial tissue fragments that had been minced and then implanted into SCID mice. Vascularity of the samples was assessed by immunohistochemical staining for von Willebrand factor. Synovial specimens obtained from patients with osteoarthritis (OA) or other noninflammatory arthropathies were used as controls. RESULTS Detectable levels of messenger RNA for vascular endothelial growth factor and angiopoietin 1 and their respective receptors, as well as endoglin and thrombin receptors, were present in all JRA tissue specimens studied. The levels of expression of these factors in JRA tissues were significantly higher than those in tissues obtained from patients with OA or other noninflammatory arthropathies. Furthermore, increased expression of the key angiogenic factors in the fresh JRA tissues correlated with the exuberant revascularization of JRA minced tissue fragments implanted into SCID mice. This was in sharp contrast to the poor revascularization of implanted OA tissues. CONCLUSION JRA synovium is characterized by high angiogenic activity. SCID mouse-human JRA synovium chimeras may provide a good approach to study the in vivo regulation of angiogenesis in JRA.
Collapse
MESH Headings
- Angiopoietin-1
- Animals
- Antigens, CD
- Arthritis, Juvenile/immunology
- Arthritis, Juvenile/metabolism
- Disease Models, Animal
- Endoglin
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Female
- Humans
- Lymphokines/genetics
- Lymphokines/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Neovascularization, Pathologic/metabolism
- Osteoarthritis/metabolism
- RNA, Messenger/metabolism
- Receptors, Cell Surface
- Receptors, Thrombin/genetics
- Receptors, Thrombin/metabolism
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Synovial Membrane/transplantation
- Tissue Transplantation
- Transplantation, Heterologous
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- M P Scola
- Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Koch AE, Volin MV, Woods JM, Kunkel SL, Connors MA, Harlow LA, Woodruff DC, Burdick MD, Strieter RM. Regulation of angiogenesis by the C-X-C chemokines interleukin-8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint. ARTHRITIS AND RHEUMATISM 2001; 44:31-40. [PMID: 11212173 DOI: 10.1002/1529-0131(200101)44:1<31::aid-anr5>3.0.co;2-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Angiogenesis, the growth of new blood vessels, is vital to the ingress of inflammatory leukocytes in rheumatoid arthritis (RA) synovial tissue and to the growth and proliferation of RA pannus. The factors that mediate the growth of new blood vessels have not been completely defined. This study examined the ability of Glu-Leu-Arg (ELR)-containing chemokines to induce angiogenesis in the RA joint. METHODS To reflect angiogenic activity in vivo, we selected a model using whole human synovial tissue rather than isolated cells. Tissues were examined by immunohistochemistry and enzyme-linked immunosorbent assay, and tissue homogenates were immunoneutralized and assayed for their ability to induce endothelial cell chemotaxis and rat corneal neovascularization. RESULTS Cells expressing interleukin-8 (IL-8) and epithelial neutrophil activating peptide 78 (ENA-78) were located in proximity to factor VIII-related antigen-immunopositive endothelial cells. RA homogenates produced more IL-8 and ENA-78 compared with normal synovial tissue homogenates. Moreover, homogenates from RA synovial tissue produced significantly more chemotactic activity for endothelial cells in vitro and angiogenic activity in the rat cornea in vivo than did normal synovial tissue homogenates. The effects of IL-8 and ENA-78 accounted for a significant proportion of the chemotactic activity of endothelial cells and angiogenic activity found in RA synovial tissue homogenates. CONCLUSION These results indicate that the ELR-containing chemokines IL-8 and ENA-78 are important contributors to the angiogenic activity found in the inflamed RA joint. It is possible that efforts aimed at down-regulating these chemokines offer a novel targeted therapy for the treatment of RA.
Collapse
Affiliation(s)
- A E Koch
- Northwestern University Medical School and Veterans Administration Chicago Health Care System, Lakeside Division, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nagashima M, Wauke K, Hirano D, Ishigami S, Aono H, Takai M, Sasano M, Yoshino S. Effects of combinations of anti-rheumatic drugs on the production of vascular endothelial growth factor and basic fibroblast growth factor in cultured synoviocytes and patients with rheumatoid arthritis. Rheumatology (Oxford) 2000; 39:1255-62. [PMID: 11085806 DOI: 10.1093/rheumatology/39.11.1255] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To examine whether different combinations of disease-modifying anti-rheumatic drugs (DMARDs), including bucillamine (BUC), gold sodium thiomalate (GST), methotrexate (MTX), salazosulphapyridine (SASP) and dexamethasone (DEX; a steroid), act by inhibiting the production of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in cultured synoviocytes, causing a decrease in their serum concentrations in patients with rheumatoid arthritis (RA). METHODS The VEGF and bFGF concentrations in cultured synoviocytes and peripheral blood from patients with RA were measured by enzyme-linked immunosorbent assay and their serum concentrations were measured at two time points. RESULTS BUC and GST inhibited VEGF production even when given alone, and a combination of BUC, GST and MTX with DEX also inhibited VEGF production. None of the DMARDs or DEX inhibited bFGF production when given alone, but a combination of SASP and GST inhibited the production of bFGF in cultured synoviocytes. Serum VEGF concentrations were significantly decreased 6 months after the commencement of medication compared with their concentrations before medication. CONCLUSION Our results show that the effects of a combination of DEX with any two of BUC, GST, SASP and MTX on the production of VEGF and bFGF in cultured synoviocytes and on the serum concentrations of VEGF in patients with RA may be based on synergistic or additive effects of the drugs.
Collapse
Affiliation(s)
- M Nagashima
- Department of Joint Disease and Rheumatism, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Manabe N, Oda H, Nakamura K, Kuga Y, Uchida S, Kawaguchi H. Involvement of fibroblast growth factor-2 in joint destruction of rheumatoid arthritis patients. Rheumatology (Oxford) 1999; 38:714-20. [PMID: 10501417 DOI: 10.1093/rheumatology/38.8.714] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To investigate the effect of the synovial fluid from knee joints of rheumatoid arthritis (RA) patients with different severities of joint destruction on osteoclastogenesis and bone resorption. METHODS Synovial fluid was harvested from the knee joints of 59 RA patients and 37 ostcoarthritis (OA) patients. RA patients with Larsen's knee grade 1-3 were classified as mild RA (n = 30) and those with grade 4 or 5 as severe RA (n = 29). Cytokine concentrations in synovial fluid were measured by ELISA. Osteoclastogenesis was measured by tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell (MNC) formation in a co-culture of mouse osteoblastic cells and bone marrow cells, and bone resorption by 45Ca release from pre-labelled cultured neonatal mouse calvariae. RESULTS The synovial fluid of severe RA patients significantly stimulated TRAP-positive MNC formation and 45Ca release compared to those of mild RA and OA patients. Among the bone-resorptive cytokines fibroblast growth factor-2 (FGF-2), tumour necrosis factor alpha (TNF-alpha), interleukin-1alpha (IL-1alpha), IL-6 and soluble IL-6 receptor (sIL-6R), only FGF-2 concentration in the synovial fluid was positively correlated to Larsen's grade, and severe RA patients showed significantly higher FGF-2 concentrations than mild RA patients. Osteoclastogenesis in a co-culture system which was stimulated by the synovial fluid of severe RA patients was significantly inhibited by a neutralizing antibody against FGF-2 and this inhibition was stronger than antibodies against other cytokines. CONCLUSION The increase in endogenous FGF-2 levels in the synovial fluid of RA patients may play a role in the joint destruction by inducing osteoclastogenesis.
Collapse
Affiliation(s)
- N Manabe
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Khoa ND, Hasunuma T, Kobata T, Kato T, Nishioka K. Expression of murine HOXD9 during embryonic joint patterning and in human T lymphotropic virus type I tax transgenic mice with arthropathy resembling rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 1999; 42:686-96. [PMID: 10211882 DOI: 10.1002/1529-0131(199904)42:4<686::aid-anr11>3.0.co;2-o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To characterize the expression of murine HOXD9 during normal joint development and in arthritic joints of human T lymphotropic virus type I (HTLV-I) tax transgenic mice and the role of HTLV-I tax in HOXD9 expression. METHODS Expression of HOXD9, HOXD1O, HOXD11, HOXD12, and HOXD13 genes in joint tissues at the ankle/foot regions of mouse embryos at day 10 to day 18 of gestation (E10-E18) and neonates within 10 days after birth was determined by reverse transcriptase-polymerase chain reaction and in situ reverse transcription methods. Adult synovial tissues from 5 HTLV-I tax transgenic mice with chronic polyarthritis and 4 nontransgenic (normal) mice were also examined for expression of these HOXD genes. The effect of HTLV-I on HOXD9 expression in cultured synoviocytes was studied by in vitro infection and transfection experiments. RESULTS Expression of HOXD9 was detected in embryonic joints, preferentially on articular cartilage, only during the early stages of joint development (up to E15), whereas other HOXD genes were expressed throughout the embryonic and neonatal stages. In adult mice, transcripts of HOXD9 were specifically detected in synovial tissues from 4 of 5 arthritic mice, especially in the lining and sublining synovial cells, but not in synovial tissues of normal mice. Activation of HOXD9 was observed in cultured synoviocytes infected with HTLV-I in vitro as well as in those transfected with HTLV-I tax. CONCLUSION Our findings suggest that HOXD9 is involved not only in the early stages of normal joint development, but may also be involved in the pathologic process of arthritis. HTLV-I tax appeared as an activator of this HOX gene in cultured synoviocytes.
Collapse
Affiliation(s)
- N D Khoa
- St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | |
Collapse
|
12
|
Kobayashi T, Okamoto K, Kobata T, Hasunuma T, Sumida T, Nishioka K. Tumor necrosis factor alpha regulation of the FAS-mediated apoptosis-signaling pathway in synovial cells. ARTHRITIS AND RHEUMATISM 1999; 42:519-26. [PMID: 10088775 DOI: 10.1002/1529-0131(199904)42:3<519::aid-anr17>3.0.co;2-q] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Fas-mediated apoptosis is observed in synoviocytes of patients with rheumatoid arthritis (RA), but not in those of patients with osteoarthritis (OA). The present study was conducted to elucidate the mechanisms that initiate induction of Fas-mediated apoptosis in RA synoviocytes. METHODS Cultured OA synoviocytes, which are insensitive to Fas-mediated apoptosis in spite of Fas antigen expression, were used in these experiments. Synovial cell proliferation and cytotoxicity studies were performed using MTS and lactate dehydrogenase release assays. Surface expression of Fas antigen was analyzed by flow cytometry. The expression and function of apoptosis-signaling molecules, such as caspase 8 and caspase 3, were examined by immunoblot analysis. RESULTS Tumor necrosis factor alpha (TNFalpha) induced proliferation of cultured OA synoviocytes. Fas ligation with anti-Fas monoclonal antibody (mAb) resulted in cytotoxic activity against cultured OA synoviocytes that had been pretreated with TNFalpha for 5 days, but not those pretreated for 2 days. In contrast, anti-Fas mAb did not show a cytotoxic effect against untreated cultured OA synoviocytes. A gradual up-regulation of caspase 8 and caspase 3, which played a role in the caspase cascade for Fas-mediated apoptosis, was observed in TNFalpha-treated cultured OA synoviocytes. In addition, Fas ligation to TNFalpha-treated cultured OA synoviocytes induced activation of caspase 8 and caspase 3, with subsequent cleavage of poly(ADP-ribose) polymerase (PARP), a substrate of activated caspase 3. More importantly, Z-IETD-FMK, a caspase 8 inhibitor, and Ac-DEVD-CHO, a caspase 3 inhibitor, almost completely inhibited Fas-mediated apoptosis of TNFalpha-treated cultured OA synoviocytes, whereas Ac-YVAD-CHO, a caspase 1 inhibitor, did not. CONCLUSION Our results clearly demonstrate that TNFalpha stimulates synovial cells to proliferate as well as sensitizes the cells for Fas-mediated apoptosis, at least in part by up-regulation and activation of caspase 8 and caspase 3. These findings suggest that TNFalpha may be one of the factors providing sensitization of synovial cells to Fas-mediated apoptosis in RA.
Collapse
Affiliation(s)
- T Kobayashi
- St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA. Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J Clin Invest 1999; 103:47-54. [PMID: 9884333 PMCID: PMC407856 DOI: 10.1172/jci3756] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease associated with intense angiogenesis and vascular expression of integrin alphavbeta3. Intra-articular administration of a cyclic peptide antagonist of integrin alphavbeta3 to rabbits with antigen-induced arthritis early in disease resulted in inhibition of synovial angiogenesis and reduced synovial cell infiltrate, pannus formation, and cartilage erosions. These effects were not associated with lymphopenia or impairment of leukocyte function. Furthermore, when administered in chronic, preexisting disease, the alphavbeta3 antagonist effectively diminished arthritis severity and was associated with a quantitative increase in apoptosis of the angiogenic blood vessels. Therefore, angiogenesis appears to be a central factor in the initiation and persistence of arthritic disease, and antagonists of integrin alphavbeta3 may represent a novel therapeutic strategy for RA.
Collapse
Affiliation(s)
- C M Storgard
- Departments of Immunology and Vascular Biology (IMM24), The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Affiliation(s)
- A E Koch
- Northwestern University Medical School, and Veterans Administration, Chicago Health Care System, Illinois 60611, USA
| |
Collapse
|
16
|
Xue C, Hasunuma T, Asahara H, Yin W, Maeda T, Fujisawa K, Dong Y, Sumida T, Nishioka K. Transcriptional regulation of the HOX4C gene by basic fibroblast growth factor on rheumatoid synovial fibroblasts. ARTHRITIS AND RHEUMATISM 1997; 40:1628-35. [PMID: 9324017 DOI: 10.1002/art.1780400912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To examine the expression of genes of the HOX D cluster in the synovial tissue of patients with rheumatoid arthritis (RA), and to determine whether basic fibroblast growth factor (bFGF) influences the expression and transcriptional regulation of the gene. METHODS The expression of genes of the HOX D cluster, including HOX4C, HOX4D, HOX4H, and HOX4I, was determined in the synovium of 4 patients with RA and 4 with osteoarthritis (OA) by in situ reverse transcription (RT) and RT-polymerase chain reaction (RT-PCR). The induction of HOX4C messenger RNA (mRNA) by bFGF was determined by RT-PCR. The binding activity of a transcriptional regulator of the HOX4C gene, C2, was analyzed by the mobility shift assay. NIH-3T3 cells transfected with a construct containing C2 binding sequence were incubated with bFGF, and the activity of the reporter was measured by luciferase assay. RESULTS Using an in situ RT assay, specific expression of HOX4C mRNA was detected in 3 of 4 RA synovial samples, whereas none of the OA synovia expressed HOX4C. HOX4D, HOX4H, and HOX4I genes were expressed in all synovial samples from RA and OA patients. The presence of HOX4C mRNA was also confirmed by RT-PCR and Southern blotting. Treatment with bFGF increased the expression of HOX4C mRNA in RA fibroblasts. The mobility shift assay and luciferase assay showed that bFGF enhanced C2 binding activity and significantly increased the transcriptional activity on RA fibroblasts. CONCLUSION Our findings suggest that HOX4C is involved in synovial hyperplasia, and that the transcriptional regulation of HOX4C genes by bFGF may play a crucial role in the pathogenesis of RA.
Collapse
Affiliation(s)
- C Xue
- St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Murata M, Hara K, Saku T. Dynamic distribution of basic fibroblast growth factor during epulis formation: an immunohistochemical study in an enhanced healing process of the gingiva. J Oral Pathol Med 1997; 26:224-32. [PMID: 9178174 DOI: 10.1111/j.1600-0714.1997.tb01228.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Basic fibroblast growth factor (bFGF) is thought to play an important role in wound healing. However, its histological localization, both in normal and pathological conditions in the oral mucosa, has not been well documented. We have studied the immunolocalization of bFGF in normal gingiva and gingival epulis specimens corresponding to different organizing stages. In normal gingiva, bFGF was detected in subpopulations of macrophages, mast cells and most endothelial cells in the lamina propria. Granulation tissue in epulides was histopathologically classified into six organizing stages. In stages 1 and 2, a small number of bFGF-positive macrophages was seen at the periphery of ulcer bases. In stages 3 and 4, histologically characterized by prominent capillary proliferation, large numbers of bFGF-positive macrophages and mast cells were located within granulation tissue. A positive reaction for bFGF was also found in some endothelial cells and in myxoedematous stroma that was rich in heparan sulfate proteoglycan. In stages 5 and 6, when fibrosis was accelerated, bFGF-positive macrophages and mast cells decreased in number and were localized only at the periphery of the fibrous tissue. These findings suggest that maximum amounts of bFGF are synthesized and released from some macrophages and mast cells into the extracellular matrix during neovascularization of granulation tissue.
Collapse
Affiliation(s)
- M Murata
- Department of Pathology, Niigata University School of Dentistry, Japan
| | | | | |
Collapse
|
18
|
Saito K, Mori S, Iwakura M, Sakamoto S. Immunohistochemical localization of transforming growth factor beta, basic fibroblast growth factor and heparan sulphate glycosaminoglycan in gingival hyperplasia induced by nifedipine and phenytoin. J Periodontal Res 1996; 31:545-55. [PMID: 8971653 DOI: 10.1111/j.1600-0765.1996.tb00519.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although drug-induced gingival hyperplasia has been extensively studied, the pathogenesis of this disorder has not been clarified to date. Transforming growth factor beta (TGF beta) and basic fibroblast growth factor (bFGF) have been shown to be implicated in diverse fibrotic and hyperplastic diseases. Heparan sulphate proteoglycan (HSPG), which is composed of heparan sulphate glycosaminoglycan (HSGAG), has also been shown to play an important role in the pathogenesis of tissue overgrowth by enhancing the functions of bFGF. However, the possible implication of these growth factors in gingival hyperplasia has not been studied. Immunohistochemical localization of TGF beta, bFGF, their receptors and HSGAG was studied in 4 nifedipine-induced and 5 phenytoin-induced hyperplastic gingival tissues, and 5 non-hyperplastic control gingival tissues to elucidate the pathogenesis of this disease. Significant immunostaining against TGF beta, bFGF, the receptors of these two growth factors and HSGAG was observed in the lamina propria of hyperplastic gingival tissues while less immunostaining was observed in the controls. The mean numbers of immunostained cells against TGF beta, bFGF, their receptors in a square unit (0.1 x 0.1 mm) of the lamina propria, which were counted to 10 units of each hyperplastic gingival tissue, were significantly higher than those of the controls. The results suggest that the increased synthesis of TGF beta, bFGF, their receptors and HSGAG may be related to the pathogenesis of drug-induced gingival hyperplasia.
Collapse
Affiliation(s)
- K Saito
- Department of Preventive Dentistry, School of Dentistry, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
19
|
Kawakami A, Eguchi K, Matsuoka N, Tsuboi M, Kawabe Y, Aoyagi T, Nagataki S. Inhibition of Fas antigen-mediated apoptosis of rheumatoid synovial cells in vitro by transforming growth factor beta 1. ARTHRITIS AND RHEUMATISM 1996; 39:1267-76. [PMID: 8702433 DOI: 10.1002/art.1780390802] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the mitogenic and anti-apoptotic effects of transforming growth factor beta 1 (TGF beta 1) on rheumatoid synovial cells in vitro. METHODS Synovial cells were cultured with or without TGF beta 1. After incubation, the proliferative response of synovial cells and the expression of Fas antigen and bcl-2 on synovial cells were examined. Finally, Fas antigen-mediated apoptosis of synovial cells was investigated by the addition of anti-Fas antibody. RESULTS TGF beta 1 enhanced the proliferation of synovial cells in a dose-dependent manner. In addition, Fas antigen expression on synovial cells was inhibited by the addition of TGF beta 1 with up-regulation of bcl-2 expression. The addition of anti-Fas antibody induced synovial cell apoptosis. However, stimulation of synovial cells with TGF beta 1 became markedly resistant to Fas antigen-mediated apoptosis. The results were not affected by the addition of a neutralizing antibody to platelet-derived growth factor type AA (PDGF-AA), which suggests that the effect of TGF beta 1 on synovial cells was promoted via PDGF-AA-independent mechanisms. CONCLUSION Our results suggest that TGF beta 1 promotes synovial cell proliferation through its mitogenic effect on synovial cells and interference with the apoptotic process mediated by the Fas antigen, resulting in the perpetuation of the synovial hyperplasia in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- A Kawakami
- Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Byrd V, Zhao XM, McKeehan WL, Miller GG, Thomas JW. Expression and functional expansion of fibroblast growth factor receptor T cells in rheumatoid synovium and peripheral blood of patients with rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 1996; 39:914-22. [PMID: 8651984 DOI: 10.1002/art.1780390607] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an inflammatory disorder of the diarthroidial joints, characterized by fibroblast proliferation, angiogenesis, and perivascular CD4+ T cell infiltration. The present study examined the interactions between fibroblast growth factor-1 (FGF-1) and T cells. METHODS Synovial tissues from patients with RA or noninflammatory arthritis were examined for the expression of FGF-1 and its receptor, FGFR-1, by immunohistology and reverse transcriptase-polymerase chain reaction. Functional assays were used to detect enrichment of FGF-1-responsive peripheral CD4+ T cells in RA. RESULTS FGF-1 is abundantly expressed by rheumatoid synovium. Enhanced expression of its receptor, FGFR-1, was found in perivascular CD4+ T cells. In addition, T cells that are activated by FGF-1 are increased in the peripheral blood of patients with RA, as compared with other inflammatory conditions. CONCLUSION The increased frequency of peripheral T cells that respond to FGF-1 in RA is consistent with expansion of FGFR-1-expressing T cells in the rheumatoid synovium.
Collapse
Affiliation(s)
- V Byrd
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
21
|
Okazaki R, Sakai A, Nakamura T, Kunugita N, Norimura T, Suzuki K. Effects of transforming growth factor beta s and basic fibroblast growth factor on articular chondrocytes obtained from immobilised rabbit knees. Ann Rheum Dis 1996; 55:181-6. [PMID: 8712881 PMCID: PMC1010125 DOI: 10.1136/ard.55.3.181] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To clarify the effects of transforming growth factor beta 1 (TGF beta 1), TGF beta 2, and basic fibroblast growth factor (bFGF) on cell proliferation and proteoglycan (PG) synthesis in articular chondrocytes obtained from immobilised rabbit knees. METHODS The right knees of rabbits were immobilised in full extension for up to 42 days using fiberglass casts. Specimens for histology were stained with safranin O. Chondrocytes were isolated from the weight bearing regions of the femur and tibia of the immobilised knees and cultured with combinations of growth factors. Cell proliferation and PG synthesis were determined by 3H-thymidine and 35S-sulphate incorporations. RESULTS Histological study revealed loss of metachromasia in the articular cartilage at seven days, fissuring and cell clusters at 28 days, and loss of cartilage layers 42 days after immobilisation. Radioisotope assay of the chondrocytes revealed no remarkable change in DNA synthesis in the presence of either TGF beta 1 or TGF beta 2 alone. bFGF markedly stimulated cell proliferation in specimens obtained 0 to seven days after immobilisation. The combination of either TGF beta 1 or TGF beta 2 with bFGF had a synergistic effect, inducing significant increases in DNA synthesis four, seven, and 14 days after immobilisation. PG synthesis by chondrocytes from immobilised joints was not significantly altered by these agents. CONCLUSION TGF beta 1 or TGF beta 2 in combination with bFGF exert synergistic effects on cell proliferation in articular chondrocytes obtained from the rabbit knee during the early days after immobilisation by a cast. These results suggest a critical role of cytokine combinations in the development of articular cartilage degeneration after immobilisation.
Collapse
Affiliation(s)
- R Okazaki
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|