1
|
Wu Y, Yao M, Wu Z, Ma L, Liu C. A new prognostic model based on gamma-delta T cells for predicting the risk and aiding in the treatment of clear cell renal cell carcinoma. Discov Oncol 2024; 15:185. [PMID: 38795225 PMCID: PMC11127908 DOI: 10.1007/s12672-024-01057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND ccRCC is the prevailing form of RCC, accounting for the majority of cases. The formation of cancer and the body's ability to fight against tumors are strongly connected to Gamma delta (γδ) T cells. METHODS We examined and analyzed the gene expression patterns of 535 individuals diagnosed with ccRCC and 72 individuals serving as controls, all sourced from the TCGA-KIRC dataset, which were subsequently validated through molecular biology experiments. RESULTS In ccRCC, we discovered 304 module genes (DEGRGs) that were ex-pressed differentially and linked to γδ T cells. A risk model for ccRCC was constructed using 13 differentially DEGRGs identified through univariate Cox and LASSO regression analyses, which were found to be associated with prognosis. The risk model exhibited outstanding performance in both the training and validation datasets. The comparison of immune checkpoint inhibitors and the tumor immune microenvironment between the high- and low-risk groups indicates that immunotherapy could lead to positive results for low-risk patients. Moreover, the inhibition of ccRCC cell proliferation, migration, and invasion was observed in cell culture upon knocking down TMSB10, a gene associated with different types of cancers. CONCLUSIONS In summary, we have created a precise predictive biomarker using a risk model centered on γδ T cells, which can anticipate clinical results and provide direction for the advancement of innovative targeted therapies.
Collapse
Affiliation(s)
- Yaqian Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Mengfei Yao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Cheng Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
2
|
Verkerk T, Pappot AT, Jorritsma T, King LA, Duurland MC, Spaapen RM, van Ham SM. Isolation and expansion of pure and functional γδ T cells. Front Immunol 2024; 15:1336870. [PMID: 38426099 PMCID: PMC10902048 DOI: 10.3389/fimmu.2024.1336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
γδ T cells are important components of the immune system due to their ability to elicit a fast and strong response against infected and transformed cells. Because they can specifically and effectively kill target cells in an MHC independent fashion, there is great interest to utilize these cells in anti-tumor therapies where antigen presentation may be hampered. Since only a small fraction of T cells in the blood or tumor tissue are γδ T cells, they require extensive expansion to allow for fundamental, preclinical and ex vivo research. Although expansion protocols can be successful, most are based on depletion of other cell types rather than γδ T cell specific isolation, resulting in unpredictable purity of the isolated fraction. Moreover, the primary focus only lies with expansion of Vδ2+ T cells, while Vδ1+ T cells likewise have anti-tumor potential. Here, we investigated whether γδ T cells directly isolated from blood could be efficiently expanded while maintaining function. γδ T cell subsets were isolated using MACS separation, followed by FACS sorting, yielding >99% pure γδ T cells. Isolated Vδ1+ and Vδ2+ T cells could effectively expand immediately after isolation or upon freeze/thawing and reached expansion ratios between 200 to 2000-fold starting from varying numbers using cytokine supported feeder stimulations. MACS/FACS isolated and PHA stimulated γδ T cells expanded as good as immobilized antibody mediated stimulated cells in PBMCs, but delivered purer cells. After expansion, potential effector functions of γδ T cells were demonstrated by IFN-γ, TNF-α and granzyme B production upon PMA/ionomycin stimulation and effective killing capacity of multiple tumor cell lines was confirmed in killing assays. In conclusion, pure γδ T cells can productively be expanded while maintaining their anti-tumor effector functions against tumor cells. Moreover, γδ T cells could be expanded from low starting numbers suggesting that this protocol may even allow for expansion of cells extracted from tumor biopsies.
Collapse
Affiliation(s)
- Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Anouk T Pappot
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Lisa A King
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Zhou B, Basu J, Kazmi HR, Chitrala KN, Mo X, Preston-Alp S, Cai KQ, Kappes D, Zaidi MR. Interferon-gamma signaling promotes melanoma progression and metastasis. Oncogene 2023; 42:351-363. [PMID: 36463370 PMCID: PMC9991867 DOI: 10.1038/s41388-022-02561-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
Interferon-gamma (IFNG) has long been regarded as the flag-bearer for the anti-cancer immunosurveillance mechanisms. However, relatively recent studies have suggested a dual role of IFNG, albeit there is no direct experimental evidence for its potential pro-tumor functions. Here we provide in vivo evidence that treatment of mouse melanoma cell lines with Ifng enhances their tumorigenicity and metastasis in lung colonization allograft assays performed in immunocompetent syngeneic host mice, but not in immunocompromised host mice. We also show that this enhancement is dependent on downstream signaling via Stat1 but not Stat3, suggesting an oncogenic function of Stat1 in melanoma. The experimental results suggest that melanoma cell-specific Ifng signaling modulates the tumor microenvironment and its pro-tumorigenic effects are partially dependent on the γδ T cells, as Ifng-enhanced tumorigenesis was inhibited in the TCR-δ knockout mice. Overall, these results show that Ifng signaling may have tumor-promoting effects in melanoma by modulating the immune cell composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Bo Zhou
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,MEI Pharma, San Diego, CA, USA
| | - Jayati Basu
- Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hasan Raza Kazmi
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kumaraswamy Naidu Chitrala
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Department of Engineering Technology, University of Houston, Houston, TX, USA
| | - Xuan Mo
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sarah Preston-Alp
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathy Q Cai
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - M Raza Zaidi
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Bartish M, Del Rincón SV, Rudd CE, Saragovi HU. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy. Front Immunol 2020; 11:564499. [PMID: 33133075 PMCID: PMC7550643 DOI: 10.3389/fimmu.2020.564499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Though a healthy immune system is capable of recognizing and eliminating emergent cancerous cells, an established tumor is adept at escaping immune surveillance. Altered and tumor-specific expression of immunosuppressive cell surface carbohydrates, also termed the “tumor glycocode,” is a prominent mechanism by which tumors can escape anti-tumor immunity. Given their persistent and homogeneous expression, tumor-associated glycans are promising targets to be exploited as biomarkers and therapeutic targets. However, the exploitation of these glycans has been a challenge due to their low immunogenicity, immunosuppressive properties, and the inefficient presentation of glycolipids in a conventional major histocompatibility complex (MHC)-restricted manner. Despite this, a subset of T-cells expressing the gamma and delta chains of the T-cell receptor (γδ T cells) exist with a capacity for MHC-unrestricted antigen recognition and potent inherent anti-tumor properties. In this review, we discuss the role of tumor-associated glycans in anti-tumor immunity, with an emphasis on the potential of γδ T cells to target the tumor glycocode. Understanding the many facets of this interaction holds the potential to unlock new ways to use both tumor-associated glycans and γδ T cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Margarita Bartish
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Christopher E Rudd
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada.,Pharmacology and Therapeutics, and Ophthalmology and Vision Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Han J, Zhang S, Xu Y, Pang Y, Zhang X, Hu Y, Chen H, Chen W, Zhang J, He W. Beneficial Effect of Antibiotics and Microbial Metabolites on Expanded Vδ2Vγ9 T Cells in Hepatocellular Carcinoma Immunotherapy. Front Immunol 2020; 11:1380. [PMID: 32849498 PMCID: PMC7396509 DOI: 10.3389/fimmu.2020.01380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
Animal experiments and clinical trials have shown that the gut microbiota modulates host immunity and immune checkpoint-mediated responses to tumor cells. However, it remains unclear whether microbiota can also play a role in the tumor immune response of γδT cells, a kind of cell that targets cancer directly. Here, we report that microbiota dysbiosis induced by antibiotics enhanced γδT cell efficacy during tumor therapy in a mouse model. Further microbiota and metabolite analysis revealed that the alteration of γδT cell cytotoxicity might be closely associated with specific metabolites, which are produced by intestinal bacteria and stimulate γδT cells to release more cytotoxic cytokines, such as granzyme B and perforin. Among the metabolites that we analyzed, 3-indopropionic acid (IPA) showed the highest concentration in antibiotic-treated mice and can improve the cytotoxic ability of γδT cells both in vitro and in vivo. Our research determined how the gut microbiota can influence the antitumor ability of γδT cells and identified potential intermediate molecules that connect the gut microbiota and γδT cells.
Collapse
Affiliation(s)
- Jiajia Han
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Siya Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yongsheng Pang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xue Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yu Hu
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hui Chen
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wanjun Chen
- Mucosal Immunology Section, National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Jianmin Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei He
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Silva-Santos B, Mensurado S, Coffelt SB. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer 2019; 19:392-404. [PMID: 31209264 PMCID: PMC7614706 DOI: 10.1038/s41568-019-0153-5] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The potential of cancer immunotherapy relies on the mobilization of immune cells capable of producing antitumour cytokines and effectively killing tumour cells. These are major attributes of γδ T cells, a lymphoid lineage that is often underestimated despite its major role in tumour immune surveillance, which has been established in a variety of preclinical cancer models. This situation notwithstanding, in particular instances the tumour microenvironment seemingly mobilizes γδ T cells with immunosuppressive or tumour-promoting functions, thus emphasizing the importance of regulating γδ T cell responses in order to realize their translation into effective cancer immunotherapies. In this Review we outline both seminal work and recent advances in our understanding of how γδ T cells participate in tumour immunity and how their functions are regulated in experimental models of cancer. We also discuss the current strategies aimed at maximizing the therapeutic potential of human γδ T cells, on the eve of their exploration in cancer clinical trials that may position them as key players in cancer immunotherapy.
Collapse
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow and Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
8
|
Girard P, Charles J, Cluzel C, Degeorges E, Manches O, Plumas J, De Fraipont F, Leccia MT, Mouret S, Chaperot L, Aspord C. The features of circulating and tumor-infiltrating γδ T cells in melanoma patients display critical perturbations with prognostic impact on clinical outcome. Oncoimmunology 2019; 8:1601483. [PMID: 31413911 DOI: 10.1080/2162402x.2019.1601483] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
γδT cells hold a pivotal role in tumor immunosurveillance through their prompt activation and cytokine secretion, their ability to kill tumor cells in an Human Leukocyte Antigen (HLA)-unrestricted manner, and their combination of features of both innate and adaptive immunity. These unique properties and functional plasticity render them very attractive both as targets and vectors for cancer immunotherapy. Yet, these potent and fascinating antitumor effectors have not been extensively explored in melanoma. We provided here a detailed investigation of the phenotypic and functional properties of circulating and tumor-infiltrating γδT cells in melanoma patients, and their impact on clinical evolution. High proportions of circulating- and tumor-infiltrating γδT and δ2+ subset were associated with better clinical outcome. We reported however that circulating and tumor-infiltrating γδT cells from melanoma patients displayed an altered expression of NCR, KIR, and immune checkpoints, and identified NKp44, PD1, 41BB/41BBL, TIM3, and LAG3 as crucial checkpoints allowing immune escape and tumor progression. Notably, melanoma drastically impaired the ability of γδT cells to exhibit activation molecules, secrete cytokines, and display cytotoxicity toward melanoma in response to stimulation with phosphoantigens. It drove them toward regulatory and Th17 profiles associated with poor clinical outcomes. Our study highlights that melanoma hijacked γδT cells to escape from immune control, and revealed that circulating and tumor-infiltrating γδT cell features are promising potential biomarkers of clinical evolution. Such understanding of the physiopathology of γδT cells may help designing new therapeutic approaches exploiting the antitumor potential of γδT cells while counteracting their skewing by tumors to improve patient outcomes.
Collapse
Affiliation(s)
- Pauline Girard
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Julie Charles
- University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,Dermatology clinic, Grenoble University Hospital, Grenoble, France
| | - Camille Cluzel
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Emmanuelle Degeorges
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Olivier Manches
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Joel Plumas
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,pDCline Pharma, Grenoble, France
| | - Florence De Fraipont
- University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,Department of Biochemistry of Cancers and Biotherapies, Grenoble University Hospital, Grenoble, France
| | - Marie-Therese Leccia
- University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,Dermatology clinic, Grenoble University Hospital, Grenoble, France
| | - Stephane Mouret
- University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France.,Dermatology clinic, Grenoble University Hospital, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| | - Caroline Aspord
- Etablissement Français du Sang Auvergne Rhone-Alpes, R&D-Laboratory, Grenoble, France.,University Grenoble Alpes, EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology & Immunotherapy of Chronic Diseases, Grenoble, France
| |
Collapse
|
9
|
Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018; 48:453-473. [PMID: 29562195 DOI: 10.1016/j.immuni.2018.03.009] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Most studies on the immunotherapeutic potential of T cells have focused on CD8 and CD4 T cells that recognize peptide antigens (Ag) presented by polymorphic major histocompatibility complex (MHC) class I and MHC class II molecules, respectively. However, unconventional T cells, which interact with MHC class Ib and MHC-I like molecules, are also implicated in tumor immunity, although their role therein is unclear. These include unconventional T cells targeting MHC class Ib molecules such as HLA-E and its murine ortholog Qa-1b, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, and γδ T cells. Here, we review the current understanding of the roles of these unconventional T cells in tumor immunity and discuss why further studies into the immunotherapeutic potential of these cells is warranted.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jérôme Le Nours
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
10
|
Elias R, Hartshorn K, Rahma O, Lin N, Snyder-Cappione JE. Aging, immune senescence, and immunotherapy: A comprehensive review. Semin Oncol 2018; 45:187-200. [PMID: 30539714 DOI: 10.1053/j.seminoncol.2018.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/07/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
The advent of immune checkpoint inhibitors (ICIs) has changed the landscape of cancer treatment. Older adults represent the majority of cancer patients; however, direct data evaluating ICIs in this patient population is lacking. Aging is associated with changes in the immune system known as "immunosenescence" that could impact the efficacy and safety profile of ICIs. In this paper, we review aging-associated changes in the immune system as they may relate to cancer and immunotherapy, with mention of the effect of chronic viral infections and frailty. Furthermore, we summarize the current clinical evidence of ICI effectiveness and toxicity among older adults with cancer.
Collapse
Affiliation(s)
- Rawad Elias
- Hartford HealthCare Cancer Institute, Hartford Hospital, Hartford, CT, USA.
| | - Kevan Hartshorn
- Section of Hematology Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Osama Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nina Lin
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, MA, USA
| | - Jennifer E Snyder-Cappione
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Hoeres T, Smetak M, Pretscher D, Wilhelm M. Improving the Efficiency of Vγ9Vδ2 T-Cell Immunotherapy in Cancer. Front Immunol 2018; 9:800. [PMID: 29725332 PMCID: PMC5916964 DOI: 10.3389/fimmu.2018.00800] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Increasing immunological knowledge and advances in techniques lay the ground for more efficient and broader application of immunotherapies. gamma delta (γδ) T-cells possess multiple favorable anti-tumor characteristics, making them promising candidates to be used in cellular and combination therapies of cancer. They recognize malignant cells, infiltrate tumors, and depict strong cytotoxic and pro-inflammatory activity. Here, we focus on human Vγ9Vδ2 T-cells, the most abundant γδ T-cell subpopulation in the blood, which are able to inhibit cancer progression in various models in vitro and in vivo. For therapeutic use they can be cultured and manipulated ex vivo and in the following adoptively transferred to patients, as well as directly stimulated to propagate in vivo. In clinical studies, Vγ9Vδ2 T-cells repeatedly demonstrated a low toxicity profile but hitherto only the modest therapeutic efficacy. This review provides a comprehensive summary of established and newer strategies for the enhancement of Vγ9Vδ2 T-cell anti-tumor functions. We discuss data of studies exploring methods for the sensitization of malignant cells, the improvement of recognition mechanisms and cytotoxic activity of Vγ9Vδ2 T-cells. Main aspects are the tumor cell metabolism, antibody-dependent cell-mediated cytotoxicity, antibody constructs, as well as activating and inhibitory receptors like NKG2D and immune checkpoint molecules. Several concepts show promising results in vitro, now awaiting translation to in vivo models and clinical studies. Given the array of research and encouraging findings in this area, this review aims at optimizing future investigations, specifically targeting the unanswered questions.
Collapse
Affiliation(s)
- Timm Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Manfred Smetak
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Dominik Pretscher
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
12
|
Lo Presti E, Di Mitri R, Pizzolato G, Mocciaro F, Dieli F, Meraviglia S. γδ cells and tumor microenvironment: A helpful or a dangerous liason? J Leukoc Biol 2017; 103:485-492. [PMID: 29345336 DOI: 10.1002/jlb.5mr0717-275rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
γδ T cells are a subset of T lymphocytes that have been implicated in immunosurveillance against infections and tumors. γδ T cells are endowed with antitumor activities, and hence several γδ T cell-based small-scale clinical trials have been conducted either by in vivo activation by intravenous administration of aminobiphosphonates or by adoptive transfer of in vitro expanded γδ T cells. Although both these strategies have yielded promising results, there are a number of limitations associated with each of them which, if overcome may help to further improve efficacy. One of the most important limits is the possible polarization of tumor-infiltrating γδ T cells toward different γδ T cells population with functional activities that help the progression and spread of the tumor. Here, we review the modalities and the possible mechanisms involved in the polarization of tumor-infiltrating γδ T cells upon interaction with several components of the tumor microenvironment and discuss their implications for the manipulation of γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Elena Lo Presti
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Roberto Di Mitri
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Gabriele Pizzolato
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Filippo Mocciaro
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Wang J, Lin C, Li H, Li R, Wu Y, Liu H, Zhang H, He H, Zhang W, Xu J. Tumor-infiltrating γδT cells predict prognosis and adjuvant chemotherapeutic benefit in patients with gastric cancer. Oncoimmunology 2017; 6:e1353858. [PMID: 29147601 DOI: 10.1080/2162402x.2017.1353858] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 12/19/2022] Open
Abstract
Purpose : Tumor-infiltrating γδT cells (γδTILs) have different prognostic value and functions among various cancers. The aim of the present study was to evaluate the effect of γδTILs in gastric cancer. Patients and methods : A discovery set (n = 190) and a validation set (n = 273) were involved in this study. Patients with TNM II and III disease were used to predict response to 5-fluorouracil (5-FU)-based adjuvant chemotherapy (ACT) in both sets. γδTILs were defined as intense (γδT cells≥ 5/HPF) versus nonintense (γδT cells<5/HPF). Kaplan-Meier curve was plotted to analysis survival. Hazard ratio (HR) and 95%CI associated with γδTILs were evaluated by multivariable Cox models. Findings : The prognostic value of γδTILs in the discovery set (HR, 0.193; 95%CI, 0.097-0.383; P<0.001) was confirmed in the validation set (HR, 0.442; 95%CI, 0.251-0.779; P = 0.005) for overall survival (OS). Patients whose tumors with γδT cells≥ 5/HPF could benefit from ACT, with a reduced risk of compromised survival compared with those with γδT cells<5/HPF (HR, 0.086; 95%CI, 0.023-0.327; P<0.001 in discovery set; and HR, 0.077; 95%CI, 0.023-0.256; P<0.001 in validation set). Conclusion : The present study shows that intense γδT cells infiltration is an independent prognostic factor in patients with gastric cancer and is predictive of a survival benefit from adjuvant chemotherapy in patients with TNM II and III disease.
Collapse
Affiliation(s)
- Jieti Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Wistuba-Hamprecht K, Martens A, Haehnel K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Demuth I, Steinhagen-Thiessen E, Larbi A, Schilling B, Schadendorf D, Wolchok JD, Blank CU, Pawelec G, Garbe C, Weide B. Proportions of blood-borne Vδ1+ and Vδ2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur J Cancer 2016; 64:116-26. [PMID: 27400322 DOI: 10.1016/j.ejca.2016.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Human γδ T-cells possess regulatory and cytotoxic capabilities, and could potentially influence the efficacy of immunotherapies. We analysed the frequencies of peripheral γδ T-cells, including their most prominent subsets (Vδ1+ and Vδ2+ cells) and differentiation states in 109 melanoma patients and 109 healthy controls. We additionally analysed the impact of γδ T-cells on overall survival (OS) calculated from the first dose of ipilimumab in melanoma patients. Higher median frequencies of Vδ1+ cells and lower median frequencies of Vδ2+ cells were identified in patients compared to healthy subjects (Vδ1+: 30% versus 15%, Vδ2+: 39% versus 64%, both p < 0.001). Patients with higher frequencies of Vδ1+ cells (≥30%) had poorer OS (p = 0.043) and a Vδ1+ differentiation signature dominated by late-differentiated phenotypes. In contrast, higher frequencies of Vδ2+ cells (≥39%) were associated with longer survival (p = 0.031) independent of the M category or lactate dehydrogenase level. Patients with decreasing frequencies of Vδ2+ cells under ipilimumab treatment had worse OS and a lower rate of clinical benefit than patients without such decreases. Therefore, we suggest frequencies of both Vδ1+ and Vδ2+ cells as candidate biomarkers for outcome in melanoma patients following ipilimumab. Further studies are needed to validate these results and to clarify whether they represent prognostic associations or whether γδ T-cells are specifically and/or functionally linked to the mode of action of ipilimumab.
Collapse
Affiliation(s)
- Kilian Wistuba-Hamprecht
- Department of Dermatology, University Medical Center, Tübingen, Germany; Department of Internal Medicine II, University Medical Center, Tübingen, Germany.
| | - Alexander Martens
- Department of Dermatology, University Medical Center, Tübingen, Germany; Department of Internal Medicine II, University Medical Center, Tübingen, Germany
| | - Karin Haehnel
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany
| | | | - Jianda Yuan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Phillip Wong
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuela Romano
- Department of Oncology, Immunotherapy Unit, INSERM U932, Institut Curie, Paris, France
| | - Amir Khammari
- Department of Oncodermatology, INSERM Research Unit 892, University Hospital, Nantes, France
| | - Brigitte Dreno
- Department of Oncodermatology, INSERM Research Unit 892, University Hospital, Nantes, France
| | | | | | - Ilja Demuth
- Research Group on Geriatrics, Charité - Universitaetsmedizin, Berlin, Germany; Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Germany
| | | | - Anis Larbi
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bastian Schilling
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | | | - Graham Pawelec
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany; School of Science and Technology, College of Arts and Science, Nottingham Trent University, Nottingham, UK; Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Claus Garbe
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center, Tübingen, Germany
| |
Collapse
|
15
|
Wistuba-Hamprecht K, Di Benedetto S, Schilling B, Sucker A, Schadendorf D, Garbe C, Weide B, Pawelec G. Phenotypic characterization and prognostic impact of circulating γδ and αβ T-cells in metastatic malignant melanoma. Int J Cancer 2015; 138:698-704. [PMID: 26383054 DOI: 10.1002/ijc.29818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 11/07/2022]
Abstract
Human T cells carrying γδ T-cell receptors (TCRs) represent a minor population relative to those with αβ TCRs. There has been much interest recently in the possibility of using these γδ T-cells in cancer therapy because they can kill tumor cells in vitro in an MHC-unrestricted manner, and possess potential regulatory capability and antigen-presenting capacity. The presence of γδ T-cells in late-stage melanoma patients and their relationship with survival has not been extensively explored, although relatively lower percentages of total γδ T-cells and Vδ2+ cells have been reported. Here, we present a detailed analysis of associations of γδ T-cell subsets and differentiation stages with survival in Stage IV patients, compared with CD4+ and CD8+ αβ T-cells. We found an increased Vδ1:Vδ2-ratio and a decreased CD4:CD8-ratio in patients compared to healthy controls, on the basis both of relative frequencies and absolute cell counts per μL blood. Nonetheless, Kaplan-Meier analyses showed that a higher than median frequency of Vδ1+ cells was negatively associated with survival, whereas there were no positive or negative associations with frequencies of Vδ2+ cells. Correlations of cell differentiation status with survival revealed a negative association of early-differentiated Vδ1+ T cells with survival, both on the basis of relative frequencies and absolute counts. There was also a positive correlation between the frequencies of early-differentiated CD8+ αβ T-cells and survival. Our findings suggest peripheral blood frequencies of Vδ1+ T-cells as a potential prognostic marker in melanoma. The mechanisms by which higher abundance of Vδ1+ cells are associated with poorer survival require determination.
Collapse
Affiliation(s)
- Kilian Wistuba-Hamprecht
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany.,Department of Dermatology, University Medical Center, Tübingen, Germany
| | | | - Bastian Schilling
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, and the German Cancer Consortium (DKTK), Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, and the German Cancer Consortium (DKTK), Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, and the German Cancer Consortium (DKTK), Essen, Germany
| | - Claus Garbe
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center, Tübingen, Germany.,Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany
| |
Collapse
|
16
|
Meraviglia S, Lo Presti E, Dieli F, Stassi G. γδ T cell-based anticancer immunotherapy: progress and possibilities. Immunotherapy 2015; 7:949-51. [PMID: 26569071 DOI: 10.2217/imt.15.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Serena Meraviglia
- Central Laboratory of Advanced Diagnosis & Biomedical Research (CLADIBIOR), Department of Biopathology, University of Palermo, Palermo, Italy
| | - Elena Lo Presti
- Central Laboratory of Advanced Diagnosis & Biomedical Research (CLADIBIOR), Department of Biopathology, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis & Biomedical Research (CLADIBIOR), Department of Biopathology, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical & Oncological Sciences, University of Palermo, Via del Vespro 131, Palermo 90134, Italy
| |
Collapse
|
17
|
Couzi L, Pitard V, Moreau JF, Merville P, Déchanet-Merville J. Direct and Indirect Effects of Cytomegalovirus-Induced γδ T Cells after Kidney Transplantation. Front Immunol 2015; 6:3. [PMID: 25653652 PMCID: PMC4301015 DOI: 10.3389/fimmu.2015.00003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/04/2015] [Indexed: 01/30/2023] Open
Abstract
Despite effective anti-viral therapies, cytomegalovirus (CMV) is still associated with direct (CMV disease) and indirect effects (rejection and poor graft survival) in kidney transplant recipients. Recently, an unconventional T cell population (collectively designated as Vδ2neg γδ T cells) has been characterized during the anti-CMV immune response in all solid-organ and bone-marrow transplant recipients, neonates, and healthy people. These CMV-induced Vδ2neg γδ T cells undergo a dramatic and stable expansion after CMV infection, in a conventional “adaptive” manner. Similarly, as CMV-specific CD8+ αβ T cells, they exhibit an effector/memory TEMRA phenotype and cytotoxic effector functions. Activation of Vδ2neg γδ T cells by CMV-infected cells involves the γδ T cell receptor (TCR) and still ill-defined co-stimulatory molecules such as LFA-1. A multiple of Vδ2neg γδ TCR ligands are apparently recognized on CMV-infected cells, the first one identified being the major histocompatibility complex-related molecule endothelial protein C receptor. A singularity of CMV-induced Vδ2neg γδ T cells is to acquire CD16 expression and to exert an antibody-dependent cell-mediated inhibition on CMV replication, which is controlled by a specific cytokine microenvironment. Beyond the well-demonstrated direct anti-CMV effect of Vδ2neg γδ T cells, unexpected indirect effects of these cells have been also observed in the context of kidney transplantation. CMV-induced Vδ2neg γδ T cells have been involved in surveillance of malignancy subsequent to long-term immunosuppression. Moreover, CMV-induced CD16+ γδ T cells are cell effectors of antibody-mediated rejection of kidney transplants, and represent a new physiopathological contribution to the well-known association between CMV infection and poor graft survival. All these basic and clinical studies paved the road to the development of a future γδ T cell-based immunotherapy. In the meantime, γδ T cell monitoring should prove a valuable immunological biomarker in the management of CMV infection.
Collapse
Affiliation(s)
- Lionel Couzi
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Service de Néphrologie, Transplantation, Dialyse, Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
| | - Vincent Pitard
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France
| | - Jean-François Moreau
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Centre Hospitalier Universitaire de Bordeaux, Laboratoire d'immunologie , Bordeaux , France
| | - Pierre Merville
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Service de Néphrologie, Transplantation, Dialyse, Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
| | - Julie Déchanet-Merville
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France
| |
Collapse
|
18
|
Lo Presti E, Dieli F, Meraviglia S. Tumor-Infiltrating γδ T Lymphocytes: Pathogenic Role, Clinical Significance, and Differential Programing in the Tumor Microenvironment. Front Immunol 2014; 5:607. [PMID: 25505472 PMCID: PMC4241840 DOI: 10.3389/fimmu.2014.00607] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/12/2014] [Indexed: 01/12/2023] Open
Abstract
There is increasing clinical evidence indicating that the immune system may either promote or inhibit tumor progression. Several studies have demonstrated that tumors undergoing remission are largely infiltrated by T lymphocytes [tumor-infiltrating lymphocytes (TILs)], but on the other hand, several studies have shown that tumors may be infiltrated by TILs endowed with suppressive features, suggesting that TILs are rather associated with tumor progression and unfavorable prognosis. γδ T lymphocytes are an important component of TILs that may contribute to tumor immunosurveillance, as also suggested by promising reports from several small phase-I clinical trials. Typically, γδ T lymphocytes perform effector functions involved in anti-tumor immune responses (cytotoxicity, production of IFN-γ and TNF-α, and dendritic cell maturation), but under appropriate conditions they may divert from the typical Th1-like phenotype and polarize to Th2, Th17, and Treg cells thus acquiring the capability to inhibit anti-tumor immune responses and promote tumor growth. Recent studies have shown a high frequency of γδ T lymphocytes infiltrating different types of cancer, but the nature of this association and the exact mechanisms underlying it remain uncertain and whether or not the presence of tumor-infiltrating γδ T lymphocytes is a definite prognostic factor remains controversial. In this paper, we will review studies of tumor-infiltrating γδ T lymphocytes from patients with different types of cancer, and we will discuss their clinical relevance. Moreover, we will also discuss on the complex interplay between cancer, tumor stroma, and γδ T lymphocytes as a major determinant of the final outcome of the γδ T lymphocyte response. Finally, we propose that targeting γδ T lymphocyte polarization and skewing their phenotype to adapt to the microenvironment might hold great promise for the treatment of cancer.
Collapse
Affiliation(s)
- Elena Lo Presti
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo , Palermo , Italy ; Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy
| | - Franceso Dieli
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo , Palermo , Italy ; Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy
| | - Serena Meraviglia
- Dipartimento di Biopatologia e Metodologie Biomediche, University of Palermo , Palermo , Italy ; Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo , Palermo , Italy
| |
Collapse
|
19
|
Scheper W, Sebestyen Z, Kuball J. Cancer Immunotherapy Using γδT Cells: Dealing with Diversity. Front Immunol 2014; 5:601. [PMID: 25477886 PMCID: PMC4238375 DOI: 10.3389/fimmu.2014.00601] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022] Open
Abstract
The broad and potent tumor-reactivity of innate-like γδT cells makes them valuable additions to current cancer immunotherapeutic concepts based on adaptive immunity, such as monoclonal antibodies and αβT cells. However, clinical success using γδT cells to treat cancer has so far fallen short. Efforts of recent years have revealed a striking diversity in γδT cell functions and immunobiology, putting these cells forward as true “swiss army knives” of immunity. At the same time, however, this heterogeneity poses new challenges to the design of γδT cell-based therapeutic concepts and could explain their rather limited clinical efficacy in cancer patients. This review outlines the recent new insights into the different levels of γδT cell diversity, including the myriad of γδT cell-mediated immune functions, the diversity of specificities and affinities within the γδT cell repertoire, and the multitude of complex molecular requirements for γδT cell activation. A careful consideration of the diversity of antibodies and αβT cells has delivered great progress to their clinical success; addressing also the extraordinary diversity in γδT cells will therefore hold the key to more effective immunotherapeutic strategies with γδT cells as additional and valuable tools to battle cancer.
Collapse
Affiliation(s)
- Wouter Scheper
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Zsolt Sebestyen
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
20
|
Fournié JJ, Sicard H, Poupot M, Bezombes C, Blanc A, Romagné F, Ysebaert L, Laurent G. What lessons can be learned from γδ T cell-based cancer immunotherapy trials? Cell Mol Immunol 2012; 10:35-41. [PMID: 23241899 DOI: 10.1038/cmi.2012.39] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During the last several years, research has produced a significant amount of knowledge concerning the characteristics of human γδ T lymphocytes. Findings regarding the immune functions of these cells, particularly their natural killer cell-like lytic activity against tumor cells, have raised expectations for the therapeutic applications of these cells for cancer. Pharmaceutical companies have produced selective agonists for these lymphocytes, and several teams have launched clinical trials of γδ T cell-based cancer therapies. The findings from these studies include hematological malignancies (follicular lymphoma, multiple myeloma, acute and chronic myeloid leukemia), as well as solid tumors (renal cell, breast and prostate carcinomas), consisting of samples from more than 250 patients from Europe, Japan and the United States. The results of these pioneering studies are now available, and this short review summarizes the lessons learned and the role of γδ T cell-based strategies in the current landscape of cancer immunotherapies.
Collapse
|
21
|
Ramstead AG, Jutila MA. Complex role of γδ T-cell-derived cytokines and growth factors in cancer. J Interferon Cytokine Res 2012; 32:563-9. [PMID: 23078623 DOI: 10.1089/jir.2012.0073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
γδ T cells are innate lymphocytes that recognize and kill a range of tumor cells and are currently being explored as a target for tumor immunotherapy. However, γδ T cells play a complex role in cancer and can promote, as well as inhibit, tumor growth. In addition to tumor cell killing, γδ T cells express a number of cytokines and other soluble factors in response to tumors. Soluble factors expressed by γδ T cells in these settings include interferon-γ, tumor necrosis factor-α, interleukin (IL)-4, IL-10, transforming growth factor-β, IL-17, and a number of growth factors. These factors have differing and sometimes opposing effects on antitumor immunity and tumor angiogenesis, and likely contribute to the complex role of these cells in cancer. Here, we review studies in both mice and humans that examine differential cytokine secretion by γδ T cells in response to tumors and tumor immunotherapy, and discuss the influence of these γδ T-cell-derived factors on tumor growth.
Collapse
Affiliation(s)
- Andrew G Ramstead
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana 59717, USA
| | | |
Collapse
|
22
|
Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J 2012; 18:160-75. [PMID: 22453018 DOI: 10.1097/ppo.0b013e31824d4465] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunotherapy using autologous T cells has emerged to be a powerful treatment option for patients with metastatic melanoma. These include the adoptive transfer of autologous tumor-infiltrating lymphocytes (TILs), T cells transduced with high-affinity T cell receptors against major tumor antigens, and T cells transduced with chimeric antigen receptors composed of hybrid immunoglobulin light chains with endodomains of T-cell signaling molecules. Among these and other options for T-cell therapy, TILs together with high-dose interleukin 2 have had the longest clinical history with multiple clinical trials in centers across the world consistently demonstrating durable clinical response rates near 50% or more. A distinct advantage of TIL therapy making it still the T-cell therapy of choice is the broad nature of the T-cell recognition against both defined and undefined tumors antigens against all possible major histocompatibility complex, rather than the single specificity and limited major histocompatibility complex coverage of the newer T cell receptors and chimeric antigen receptor transduction technologies. In the past decade, significant inroads have been made in defining the phenotypes of T cells in TIL-mediating tumor regression. CD8+ T cells are emerging to be critical, although the exact subset of CD8+ T cells exhibiting the highest clinical activity in terms of memory and effector markers is still controversial. We present a model in which both effector-memory and more differentiated effector T cells ultimately may need to cooperate to mediate long-term tumor control in responding patients. Although TIL therapy has shown great potential to treat metastatic melanoma, a number of issues have emerged that need to be addressed to bring it more into the mainstream of melanoma care. First, we have a reached the point where a pivotal phase II or phase III trial is needed in an attempt to gain regulatory approval of TILs as standard of care. Second, improvements in how we expand TILs for therapy are needed that minimize the time the T cells are in culture and improve the memory and effector characteristics of the T cells for longer persistence and enhanced anti-tumor activity in vivo. Third, there is a critical need to identify surrogate and predictive biomarkers to better select suitable patients for TIL therapy to improve response rate and duration. Overall, the outlook for TIL therapy for melanoma is very bright. We predict that TILs will indeed emerge to become an approved treatment in the upcoming years through pivotal clinical trials. Moreover, new approaches combining TILs with targeted signaling pathway drugs, such as mutant B-RAF inhibitors, and synergistic immunomodulatory interventions enhancing T-cell costimulation and preventing negative regulation should further increase therapeutic efficacy and durable complete response rates.
Collapse
|
23
|
Hannani D, Ma Y, Yamazaki T, Déchanet-Merville J, Kroemer G, Zitvogel L. Harnessing γδ T cells in anticancer immunotherapy. Trends Immunol 2012; 33:199-206. [PMID: 22364810 DOI: 10.1016/j.it.2012.01.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/21/2011] [Accepted: 01/09/2012] [Indexed: 12/11/2022]
Abstract
γδ T lymphocytes are involved in the stress response to injured epithelia and in tissue homeostasis by limiting the dissemination of malignant or infected cells and by regulating the nature of the subsequent adaptive immune response. γδ T cells have potent MHC-unrestricted cytotoxicity, a high potential for cytokine release and broad-spectrum recognition of cancer cells, and as such, are attractive effectors for cancer immunotherapy. Current expectations are going beyond ex vivo manipulation of the Vγ9Vδ2 T subset, and target novel γδ T cell subsets, properties or receptors, to harness these unconventional T lymphocytes against cancer. This Opinion article discusses novel aspects of γδ T cell function during the course of anticancer therapies, as well as new avenues for their clinical implementation.
Collapse
|
24
|
Petrini I, Pacini S, Galimberti S, Taddei MR, Romanini A, Petrini M. Impaired function of gamma-delta lymphocytes in melanoma patients. Eur J Clin Invest 2011; 41:1186-94. [PMID: 22775565 DOI: 10.1111/j.1365-2362.2011.02524.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Melanoma is an immunogenic tumour but, despite the wide range of immunotherapies tested, only few promising results have been reported to date. Both in vitro and in xenograft models, γδ lymphocyte-mediated cytotoxicity against melanoma cells has been reported. IL-2/zoledronate treatment can expand γδ cells in vitro and in animal models. This could represent an immunotherapeutic strategy against melanoma. To evaluate the feasibility of this approach, we studied γδ lymphocyte phenotype from patients with melanoma, their ability to be expanded by IL-2/zoledronate and their cytotoxic activity against SK-MEL-30 cell line. MATERIALS AND METHODS Peripheral blood samples were collected from 30 patients with melanoma and 10 healthy donors. Percentage of γδ lymphocytes and CD45RO+CD27+, CD45RA+CD27-, CD57+, Vγ9Vδ2 subpopulations were evaluated by flow cytometry. IL-2/zoledronate γδ cell expansion rate and their cytotoxicity against SK-MEL-30 cell line were studied. RESULTS A percentage decrease in circulating Vγ9Vδ2 and an increase in CD45RA+CD27- and CD57+ γδ lymphocytes were observed in melanoma. IL-2/zoledronate expansion rate did not differ between controls and patients with melanoma but cytotoxicity against SK-MEL-30 appeared reduced. CONCLUSIONS Our results show that γδ cell function is impaired in patients with advanced melanoma and suggest a possible role in tumour progression.
Collapse
Affiliation(s)
- Iacopo Petrini
- Department of Oncology, Transplant and New Advances in Medicine, BIOS, Pisa University, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Provinciali M, Re F, Tucci MG, Ricotti F, Lattanzio F. Persistent ex vivo low number and functional in vitro recovery of circulating gammadelta T cells after removal of a cutaneous primary melanoma. Scand J Immunol 2010; 72:142-9. [PMID: 20618773 DOI: 10.1111/j.1365-3083.2010.02413.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently described gammadelta T cells alterations in patients with a cutaneous primary melanoma. To evaluate whether gammadelta T cells alterations persisted after melanoma removal, we performed a follow-up study comparing the number and function of gammadelta T lymphocytes from 19 subjects, 4 years after the removal of a cutaneous primary melanoma, with the data obtained in the same subjects before the surgical intervention and with control donors. The number of circulating gammadelta(+) T cells after melanoma removal was not recovered to the levels found in controls. gammadelta(+) T cells producing TNF-alpha or IFN-gamma were increased after melanoma removal in comparison with the same subjects before surgical intervention or with control donors. After in vitro culture, both the percentage and the expansion of gammadelta T cells were recovered to the values found in controls. In conclusion, the functional capacity of gammadelta T cells was in vitro recovered after melanoma removal, whereas their ex vivo number remained at lower levels than control donors.
Collapse
Affiliation(s)
- M Provinciali
- Advanced Technology Center for Aging Research, INRCA-IRCCS, Scientific-Technological Area, Ancona, Italy.
| | | | | | | | | |
Collapse
|
26
|
Corvaisier M, Moreau-Aubry A, Diez E, Bennouna J, Mosnier JF, Scotet E, Bonneville M, Jotereau F. V gamma 9V delta 2 T cell response to colon carcinoma cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:5481-8. [PMID: 16210656 DOI: 10.4049/jimmunol.175.8.5481] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During analysis of CD8 T cells derived from ascites of a colon cancer patient, we isolated a Vgamma9Vdelta2 T cell clone showing strong reactivity against autologous tumor cell lines. This clone killed a large fraction of allogeneic colon carcinoma and melanoma cell lines, but did not affect a normal colon cell line, colon fibroblasts, or melanocytes. Tumor cell recognition was TCR and NKG2D dependent and induced TNF-alpha and IFN-gamma secretion by the clone; accordingly, tumor targets expressed several NKG2D ligands, such as MHC class I chain-related gene A and UL16-binding protein molecules. Colon tumor recognition by Vgamma9Vdelta2 T cells was highly dependent on isopentenyl pyrophosphate production and ICAM-1 expression by target cells. Finally, similar reactivity patterns against colon carcinoma cell lines were observed using polyclonal Vgamma9Vdelta2 T cells of various origins, and Vgamma9Vdelta2 lymphocytes were present in the majority of colon tumor samples studied. Together, these results suggest that Vgamma9Vdelta2 T cells contribute to the natural immune surveillance against colon cancers. Therefore, this study provides a strong rationale for the use of Vgamma9Vdelta2 T cell agonists in immunotherapies targeting colon tumors.
Collapse
Affiliation(s)
- Murielle Corvaisier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 601, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Argentati K, Re F, Serresi S, Tucci MG, Bartozzi B, Bernardini G, Provinciali M. Reduced number and impaired function of circulating gamma delta T cells in patients with cutaneous primary melanoma. J Invest Dermatol 2003; 120:829-34. [PMID: 12713589 DOI: 10.1046/j.1523-1747.2003.12141.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the peripheral representation, in vitro expansion, cytokine production, and cytotoxicity of gamma delta T lymphocytes from 23 patients with cutaneous primary melanoma and 28 healthy subjects. We demonstrated that the absolute number and the percentage of circulating gamma delta + T cells were significantly reduced in melanoma patients in comparison with healthy subjects. The decrease was due to a reduction of V delta 2 T cells, whereas the number of V delta 1 T cells was not affected. As a consequence, the V delta 2/V delta 1 ratio was inverted in melanoma patients. A lower percentage of gamma delta + T cells producing tumor necrosis factor-alpha or interferon-gamma was found in melanoma patients. After a 10 d in vitro culture, both the percentage and the expansion index of gamma delta T cells, and in particular of V delta 2 subset, were significantly reduced in melanoma patients in comparison with healthy subjects. The cytotoxicity of sorted gamma delta T cells against tumor cell lines and the percentage of gamma delta T cells producing perforins were preserved in melanoma patients. The numerical and functional impairment of gamma delta T cells could contribute to the inadequate immune response found in melanoma patients and offers the potentiality for the planning of new approaches of immune therapy of malignant melanoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal/metabolism
- Cell Separation
- Cells, Cultured
- Flow Cytometry
- Humans
- Interferon-gamma/blood
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Melanoma/blood
- Melanoma/immunology
- Melanoma/therapy
- Membrane Glycoproteins/metabolism
- Middle Aged
- Perforin
- Phenotype
- Pore Forming Cytotoxic Proteins
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Katy Argentati
- Laboratory of Tumor Immunology, Immunology Center, I.N.R.C.A. Research Department, Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|