1
|
Reasoner EA, Chan HJ, Aballo TJ, Plouff KJ, Noh S, Ge Y, Jin S. In Situ Metal-Organic Framework Growth in Serum Encapsulates and Depletes Abundant Proteins for Integrated Plasma Proteomics. ACS NANO 2025; 19:13968-13981. [PMID: 40168247 DOI: 10.1021/acsnano.4c18028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Protein biomarkers in human serum provide critical insights into various physiological conditions and diseases, enabling early diagnosis, prognosis, and personalized treatment. However, detecting low-abundance protein biomarkers is challenging due to the presence of highly abundant proteins that make up ∼99% of the plasma proteome. Here, we report the use of in situ metal-organic framework (MOF) growth in serum to effectively deplete highly abundant serum proteins for integrated proteomic analysis. Through biomolecule-mediated nucleation of a zeolitic imidazolate framework (ZIF-8), abundant plasma proteins are selectively encapsulated within ZIF-8 and removed from serum via centrifugation, leaving a depleted protein fraction in the supernatant. Bottom-up proteomics analysis confirmed significant depletion of the topmost abundant proteins, many at depletion levels exceeding 95%. Such depletion enabled the identification of 277 total proteins in the supernatant (uncaptured) fraction in a single-shot analysis, including 54 proteins that were only identified after depletion, 12 drug targets, and many potential disease biomarkers. Top-down proteomics characterization of the captured and uncaptured protein fractions at the proteoform-level confirmed this method is not biased toward any specific proteoform of individual proteins. These results demonstrate that in situ MOF growth can selectively and effectively deplete high-abundance proteins from serum in a simple, low cost, one-pot synthesis to enable integrated top-down and bottom-up proteomic analysis of serum protein biomarkers.
Collapse
Affiliation(s)
- Emily A Reasoner
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Timothy J Aballo
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kylie J Plouff
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Seungwoo Noh
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Awde Alfonso HG, Tártara LI, Paredes AJ, Palma SD, Formica ML. Enhanced in vivo performance of topical ocular acetazolamide nanocrystals: A novel approach for glaucoma treatment. Int J Pharm 2025; 674:125440. [PMID: 40089041 DOI: 10.1016/j.ijpharm.2025.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
High intraocular pressure (IOP) is the main risk factor for glaucoma progression. Acetazolamide (AZM) presents a potent IOP-lowering effect but is only administered orally due to its low aqueous solubility and ocular permeability. This study aimed to develop AZM nanocrystals (AZM-NC) as an alternative for its topical ocular delivery. AZM-NC were obtained by wet bead milling technique followed by spray-drying, and a mixture design study was conducted to evaluate the optimal drug-to-stabilizer ratio regarding colloidal properties and stability. AZM-NC exhibited an average particle size of 299.7 ± 8.8 nm, a polydispersity index of 0.13 ± 0.01, and a zeta potential of -29.0 ± 0.9 mV, which remained mostly unchanged for at least 60 days when the dried powder was stored at room temperature. Fourier-transformed spectroscopy and powder X-ray diffraction analyses revealed no chemical or crystallinity changes in AZM-NC compared with AZM, respectively. Additionally, AZM-NC demonstrated increased drug saturation concentration, globular shapes, and higher adhesive properties than normal-sized AZM powder. Topical ocular administration of AZM-NC in albino male rabbits showed no clinical signs of ocular damage. Further, in vivo studies revealed a significant IOP reduction of up to 32 % of the basal IOP (-4.8 ± 1.2 mmHg, p < 0.05) in normotensive rabbit eyes (n = 7), after 4 h of AZM-NC suspension topical application, compared to groups treated with AZM suspension, normal saline solution and, AZOPT® (-1.8 ± 1.4 mmHg). Thus, AZM-NC could present a promising approach for developing an eye drop formulation for the localized management of glaucoma.
Collapse
Affiliation(s)
- Hamoudi Ghassan Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Luis Ignacio Tártara
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; Cátedra de Física Biomédica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa, 1085, Córdoba 5000, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina.
| |
Collapse
|
3
|
Nencetti S, Cuffaro D, Ciccone L, Nocentini A, Di Stefano M, Poli G, Macchia M, Tuccinardi T, Nuti E, Supuran CT, Rossello A, Orlandini E. A series of benzensulfonamide derivatives as new potent carbonic anhydrase IX and XII inhibitors. Future Med Chem 2025; 17:271-285. [PMID: 39878534 PMCID: PMC11792798 DOI: 10.1080/17568919.2025.2453420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
AIM Human carbonic anhydrases (hCAs) are involved in many physiological processes including respiration, pH control, ion transport, bone resorption, and gastric fluid secretion. Recently, CA IX and CA XII have been studied for their role in cancer diseases, motivating the design of inhibitors of these isoforms. MATERIAL AND METHOD Here, we used the tail approach to design a new series of monoaryl (1a-i) and bicyclic (1j-n) benzensulfonamide derivatives CA IX and CA XII inhibitors. All synthesized compounds were investigated toward a panel of hCAs, and most of them exhibited potent CA inhibitory activity for CA II, CA IX and CA XII with Ki values. In silico studies were performed to investigate the binding mode between inhibitors and CA. RESULTS AND CONCLUSION The best compound was 1i that showed a low nanomolar range of Ki value as CA inhibitor (Ki = 9.4, 5.6 and 6.3 nM hCA II, IX and XII, respectively).
Collapse
Affiliation(s)
| | | | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Italy
| | | | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Claudiu T. Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Sesto Fiorentino, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio” Università di, Pisa, Italy
| | - Elisabetta Orlandini
- Research Center “E. Piaggio” Università di, Pisa, Italy
- Department of Earth Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Fan Z, Chirinos J, Yang X, Shu J, Li Y, O’Brien JM, Witschey W, Rader DJ, Gur R, Zhao B. The landscape of plasma proteomic links to human organ imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.25320532. [PMID: 39867388 PMCID: PMC11759249 DOI: 10.1101/2025.01.14.25320532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Plasma protein levels provide important insights into human disease, yet a comprehensive assessment of plasma proteomics across organs is lacking. Using large-scale multimodal data from the UK Biobank, we integrated plasma proteomics with organ imaging to map their phenotypic and genetic links, analyzing 2,923 proteins and 1,051 imaging traits across multiple organs. We uncovered 5,067 phenotypic protein-imaging associations, identifying both organ-specific and organ-shared proteomic relations, along with their enriched protein-protein interaction networks and biological pathways. By integrating external gene expression data, we observed that plasma proteins associated with the brain, liver, lung, pancreas, and spleen tended to be primarily produced in the corresponding organs, while proteins associated with the heart, body fat, and skeletal muscle were predominantly expressed in the liver. We also mapped key protein predictors of organ structures and showed the effective stratification capability of plasma protein-based prediction models. Furthermore, we identified 8,116 genetic-root putative causal links between proteins and imaging traits across multiple organs. Our study presents the most comprehensive pan-organ imaging proteomics map, bridging molecular and structural biology and offering a valuable resource to contextualize the complex roles of molecular pathways underlying plasma proteomics in organ systems.
Collapse
Affiliation(s)
- Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julio Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaochen Yang
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Juan Shu
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yujue Li
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Joan M. O’Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Diseases, Philadelphia, PA 19104, USA
| | - Walter Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben Gur
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Population Aging Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Eye-Brain Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Pardeshi SR, Gholap AD, Hatvate NT, Gharat KD, Naik JB, Omri A. Advances in dorzolamide hydrochloride delivery: harnessing nanotechnology for enhanced ocular drug delivery in glaucoma management. DISCOVER NANO 2024; 19:199. [PMID: 39656411 PMCID: PMC11631835 DOI: 10.1186/s11671-024-04154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Dorzolamide hydrochloride (DRZ) is a carbonic anhydrase inhibitor utilized in managing elevated intraocular pressure (IOP) associated with glaucoma. However, its clinical effectiveness is hindered by a short half-life, low residence time, and the need for frequent dosing, highlighting the necessity for innovative delivery systems. This work reviews recent advancements in DRZ delivery, particularly focusing on cyclodextrin complexation and nanotechnology applications. It explores the potential of cyclodextrin derivatives to enhance DRZ's bioavailability. DRZ cyclodextrin complexes or nanoparticulate systems maintain high drug concentrations in the eye while minimizing irritation and viscosity-related issues. Nanotechnology introduces nanoparticle-based carriers such as polymeric nanoparticles, solid lipid nanoparticles, liposomes, niosomes, and nanoemulsions. These formulations enable sustained drug release, improved corneal permeation, and enhanced patient compliance. Clinical trials have shown that DRZ nanoparticle eye drops and nanoliposome formulations offer efficacy comparable to conventional therapies, with the potential for better tolerability. Overall, this review highlights significant progress in DRZ delivery systems, suggesting their potential to transform glaucoma treatment by addressing current limitations and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Sagar R Pardeshi
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India
| | - Navnath T Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna, Maharashtra, 431203, India
| | - Khushmita D Gharat
- Department of Quality Assurance, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India
| | - Jitendra B Naik
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, Maharashtra, 425001, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
6
|
Salvetat ML, Toro MD, Pellegrini F, Scollo P, Malaguarnera R, Musa M, Mereu L, Tognetto D, Gagliano C, Zeppieri M. Advancing Glaucoma Treatment During Pregnancy and Breastfeeding: Contemporary Management Strategies and Prospective Therapeutic Developments. Biomedicines 2024; 12:2685. [PMID: 39767592 PMCID: PMC11727364 DOI: 10.3390/biomedicines12122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025] Open
Abstract
The management of glaucoma in pregnancy and breastfeeding requires a careful evaluation of treatment choices to guarantee the well-being of both the mother and the developing fetus. This review explores the intricacies of controlling glaucoma in pregnant and breastfeeding women, including a comprehensive overview of existing glaucoma treatment methods, clinical guidelines, and future therapeutic approaches. The efficacy and safety profiles of traditional treatment approaches, such as topical and systemic medicines and surgical treatments, are evaluated specifically about their use during pregnancy and breastfeeding. The significance of personalized treatment programs to achieve a balance between controlling intraocular pressure and ensuring the safety of the fetus and the newborn and the importance of a multidisciplinary approach that includes ophthalmologists, obstetricians, and other healthcare experts are underlined. Non-pharmacological therapies, lifestyle adjustments, and the importance of patient education in the management of glaucoma during pregnancy and the post-partum period are also examined. Advancing our comprehension of and strategy toward glaucoma can reduce the effects of glaucoma on maternal, fetal, and newborn well-being.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, Via Montereale 24, 33170 Pordenone, Italy;
| | - Mario Damiano Toro
- Eye Clinic, Public Health Department, Federico II University, Via Pansini 5, 80131 Naples, Italy
- Department of Special Surgery, University of Jordan, Queen Rania St, Amman 11942, Jordan
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, Via Montereale 24, 33170 Pordenone, Italy;
| | - Paolo Scollo
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Gynecology and Obstetrics Unit, Cannizzaro Hospital, 95126 Catania, Italy
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Liliana Mereu
- Gynecology and Obstetrics Unit, Policlinico G. Rodolico, Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Daniele Tognetto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
7
|
Lee HY, Elkamhawy A, Al-Karmalawy AA, Nada H, Giovannuzzi S, Supuran CT, Lee K. Chalcone-based benzenesulfonamides as potent and selective inhibitors for human carbonic anhydrase II: Design, synthesis, in vitro, and in silico studies. Arch Pharm (Weinheim) 2024; 357:e2400069. [PMID: 39240035 DOI: 10.1002/ardp.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024]
Abstract
Sulfonamides are promising classical carbonic anhydrase (CA; EC 4.2.1.1) inhibitors, being used for several medical purposes such as diuretics, anticonvulsants, topically acting antiglaucoma agents, for antiobesity and anticancer therapies. Herein, a series of chalcone-based benzenesulfonamides (3a‒m) was synthesized and assessed for its inhibitory activity against a panel of four human carbonic anhydrases (hCA isoforms I, II, IX, and XII). Most compounds displayed single- to double-digit nanomolar inhibition constants (Kis), with some derivatives being more potent and/or selective than the standard drug acetazolamide (AAZ). Among the synthesized compounds, 3g compound demonstrated the highest inhibitory activity against the hCA II isoform (Ki = 2.5 nM) with 30-, 9-, and 11-fold selectivity for hCA II over the I, IX, and XII isoforms, respectively. Structure-activity relationships for different substitution patterns were analyzed. Additionally, a molecular docking study showed that compound 3g bound to hCA II by coordinating with the zinc ion through the deprotonated benzenesulfonamide moiety, in addition to a hydrogen bond formed between an oxygen of the sulfonamide moiety and Thr199. Moreover, the chalcone core participated in van der Waals interactions with some active site residues, such as Ile91, Val121, and Leu198. Consequently, this report introduces a successful approach toward identifying compound 3g as a highly potent and selective chalcone-based benzenesulfonamide inhibitor of hCA II worthy of further investigation.
Collapse
Affiliation(s)
- Hwa Young Lee
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Ahmed Elkamhawy
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Hossam Nada
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
8
|
Khan RS, Frishman WH. Beyond the Local Effect: An Examination of Cardiovascular and Other Systemic Complications of Ophthalmologic Drugs. Cardiol Rev 2024:00045415-990000000-00347. [PMID: 39724552 DOI: 10.1097/crd.0000000000000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Ophthalmologic drugs may be delivered to the eye via a number of ways, including topical drops and gels, intraocular injections, and parenteral or oral administration. The inadvertent systemic absorption of these drugs may lead to a myriad of side effects, ranging from benign cosmetic changes to potentially fatal cardiovascular complications. Historically, glaucoma treatment, including β-blockers and α-agonists, have been particularly examined for such events. However, recent studies suggest that the systemic absorption of many drugs commonly used in ophthalmology may lead to acute and serious secondary reactions. The following review examines ocular drugs delivered through various pathways, the mechanisms by which they may be systemically absorbed, and the potential adverse events that may ensue.
Collapse
Affiliation(s)
- Rida S Khan
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | | |
Collapse
|
9
|
Lee HP, Tsung TH, Tsai YC, Chen YH, Lu DW. Glaucoma: Current and New Therapeutic Approaches. Biomedicines 2024; 12:2000. [PMID: 39335514 PMCID: PMC11429057 DOI: 10.3390/biomedicines12092000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma is identified by the loss of retinal ganglion cells (RGCs). The primary approach to managing glaucoma is to control intraocular pressure (IOP). Lately, there has been an increasing focus on neuroprotective therapies for glaucoma because of the limited effectiveness of standard methods in reducing IOP and preventing ongoing vision deterioration in certain glaucoma patients. Various drug-based techniques with neuroprotective properties have demonstrated the ability to decrease the mortality of retinal ganglion cells. This study will analyze the currently recommended drug-based techniques for neuroprotection in the prospective treatment of glaucoma.
Collapse
Affiliation(s)
- Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
10
|
Jiang J, Kong K, Fang X, Wang D, Zhang Y, Wang P, Yang Z, Zhang Y, Liu X, Aung T, Li F, Yu-Wai-Man P, Zhang X. CRISPR-Cas9-mediated deletion of carbonic anhydrase 2 in the ciliary body to treat glaucoma. Cell Rep Med 2024; 5:101524. [PMID: 38670096 PMCID: PMC11148640 DOI: 10.1016/j.xcrm.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
The carbonic anhydrase 2 (Car2) gene encodes the primary isoenzyme responsible for aqueous humor (AH) production and plays a major role in the regulation of intraocular pressure (IOP). The CRISPR-Cas9 system, based on the ShH10 adenovirus-associated virus, can efficiently disrupt the Car2 gene in the ciliary body. With a single intravitreal injection, Car2 knockout can significantly and sustainably reduce IOP in both normal mice and glaucoma models by inhibiting AH production. Furthermore, it effectively delays and even halts glaucomatous damage induced by prolonged high IOP in a chronic ocular hypertension model, surpassing the efficacy of clinically available carbonic anhydrase inhibitors such as brinzolamide. The clinical application of CRISPR-Cas9 based disruption of Car2 is an attractive therapeutic strategy that could bring additional benefits to patients with glaucoma.
Collapse
Affiliation(s)
- Jiaxuan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Xiuli Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Deming Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Yinhang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Zefeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Yuwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Xiaoyi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China
| | - Tin Aung
- Singapore Eye Research Institute and Singapore National Eye Centre, Singapore, Singapore; National University of Singapore, Singapore, Singapore
| | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China.
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou 510060, China.
| |
Collapse
|
11
|
Denner TC, Heise NV, Serbian I, Angeli A, Supuran CT, Csuk R. An asiatic acid derived trisulfamate acts as a nanomolar inhibitor of human carbonic anhydrase VA. Steroids 2024; 205:109381. [PMID: 38325751 DOI: 10.1016/j.steroids.2024.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
This investigation delves into the inhibitory capabilities of a specific set of triterpenoic acids on diverse isoforms of human carbonic anhydrase (hCA). Oleanolic acid (1), maslinic acid (2), betulinic acid (3), platanic acid (4), and asiatic acid (5) were chosen as representative triterpenoids for evaluation. The synthesis involved acetylation of parent triterpenoic acids 1-5, followed by sequential reactions with oxalyl chloride and benzylamine, de-acetylation of the amides, and subsequent treatment with sodium hydride and sulfamoyl chloride, leading to the formation of final compounds 21-25. Inhibition assays against hCAs I, II, VA, and IX demonstrated noteworthy outcomes. A derivative of betulinic acid, compound 23, exhibited a Ki value of 88.1 nM for hCA VA, and a derivative of asiatic acid, compound 25, displayed an even lower Ki value of 36.2 nM for the same isoform. Notably, the latter compound displayed enhanced inhibitory activity against hCA VA when compared to the benchmark compound acetazolamide (AAZ), which had a Ki value of 63.0 nM. Thus, this compound surpasses the inhibitory potency and isoform selectivity of the standard compound acetazolamide (AAZ). In conclusion, the research offers insights into the inhibitory potential of selected triterpenoic acids across diverse hCA isoforms, emphasizing the pivotal role of structural attributes in determining isoform-specific inhibitory activity. The identification of compound 25 as a robust and selective hCA VA inhibitor prompts further exploration of its therapeutic applications.
Collapse
Affiliation(s)
- Toni C Denner
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany
| | - Niels V Heise
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany
| | - Immo Serbian
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50010 Sesto Florentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50010 Sesto Florentino, Florence, Italy
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany.
| |
Collapse
|
12
|
Mathew DJ, Sivak JM. Lipid mediators in glaucoma: Unraveling their diverse roles and untapped therapeutic potential. Prostaglandins Other Lipid Mediat 2024; 171:106815. [PMID: 38280539 DOI: 10.1016/j.prostaglandins.2024.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and visual field loss, and remains a leading cause of irreversible blindness. Elevated intraocular pressure (IOP) is a critical risk factor that requires effective management. Emerging research underscores dual roles of bioactive lipid mediators in both IOP regulation, and the modulation of neurodegeneration and neuroinflammation in glaucoma. Bioactive lipids, encompassing eicosanoids, specialized pro-resolving mediators (SPMs), sphingolipids, and endocannabinoids, have emerged as crucial players in these processes, orchestrating inflammation and diverse effects on aqueous humor dynamics and tissue remodeling. Perturbations in these lipid mediators contribute to retinal ganglion cell loss, vascular dysfunction, oxidative stress, and neuroinflammation. Glaucoma management primarily targets IOP reduction via pharmacological agents and surgical interventions, with prostaglandin analogues at the forefront. Intriguingly, additional lipid mediators offer promise in attenuating inflammation and providing neuroprotection. Here we explore these pathways to shed light on their intricate roles, and to unveil novel therapeutic avenues for glaucoma management.
Collapse
Affiliation(s)
- D J Mathew
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - J M Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada.
| |
Collapse
|
13
|
Patton GN, Lee HJ. Chemical Insights into Topical Agents in Intraocular Pressure Management: From Glaucoma Etiopathology to Therapeutic Approaches. Pharmaceutics 2024; 16:274. [PMID: 38399328 PMCID: PMC10891530 DOI: 10.3390/pharmaceutics16020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma encompasses a group of optic neuropathies characterized by complex and often elusive etiopathology, involvihttng neurodegeneration of the optic nerve in conjunction with abnormal intraocular pressure (IOP). Currently, there is no cure for glaucoma, and treatment strategies primarily aim to halt disease progression by managing IOP. This review delves into the etiopathology, diagnostic methods, and treatment approaches for glaucoma, with a special focus on IOP management. We discuss a range of active pharmaceutical ingredients used in glaucoma therapy, emphasizing their chemical structure, pharmacological action, therapeutic effectiveness, and safety/tolerability profiles. Notably, most of these therapeutic agents are administered as topical formulations, a critical aspect considering patient compliance and drug delivery efficiency. The classes of glaucoma therapeutics covered in this review include prostaglandin analogs, beta blockers, alpha agonists, carbonic anhydrase inhibitors, Rho kinase inhibitors, and miotic (cholinergic) agents. This comprehensive overview highlights the importance of topical administration in glaucoma treatment, offering insights into the current state and future directions of pharmacological management in glaucoma.
Collapse
Affiliation(s)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
14
|
Kaushik M, Tiwari P, Dada T, Dada R. Beyond the optic nerve: Genetics, diagnosis, and promising therapies for glaucoma. Gene 2024; 894:147983. [PMID: 37952746 DOI: 10.1016/j.gene.2023.147983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Glaucoma stands as a leading global cause of blindness, affecting millions. It entails optic nerve damage and vision loss, categorized into open-angle and closed-angle glaucoma with subtypes like POAG, ACG, XFG, PCG, PDG, and developmental glaucoma. The pathophysiological and genetic factors behind glaucoma remain partially understood, with past studies linking intraocular pressure (IOP) levels to retinal ganglion cell death. Open-angle glaucoma involves elevated resistance to aqueous outflow via the trabecular meshwork, while angle-closure glaucoma typically sees drainage pathways obstructed by the iris. Genes have been identified for POAG, ACG, XFG, PCG, PDG, and developmental glaucoma, allowing for early-onset detection and the emergence of gene therapy as an effective treatment. Nevertheless, diagnostic and treatment options have their constraints, necessitating large-scale, well-designed studies to deepen our grasp of genetics' role in glaucoma's pathogenesis. This review delves into glaucoma's risk factors, pathophysiology, genetics, diagnosis, and available treatment options, including gene therapy. Additionally, it suggests alternative therapies like yoga and meditation as adjunct treatments for glaucoma prevention. Overall, this review advances our comprehension of the pathophysiology and genetic associations of glaucoma while highlighting the potential of gene therapy as a treatment avenue. Further research is imperative to fully elucidate the genetic mechanisms underpinning glaucoma and to devise effective treatments.
Collapse
Affiliation(s)
- Meenakshi Kaushik
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Prabhakar Tiwari
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Tanuj Dada
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, New Delhi, India
| | - Rima Dada
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
15
|
Shean R, Yu N, Guntipally S, Nguyen V, He X, Duan S, Gokoffski K, Zhu Y, Xu B. Advances and Challenges in Wearable Glaucoma Diagnostics and Therapeutics. Bioengineering (Basel) 2024; 11:138. [PMID: 38391624 PMCID: PMC10886103 DOI: 10.3390/bioengineering11020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Glaucoma is a leading cause of irreversible blindness, and early detection and treatment are crucial for preventing vision loss. This review aims to provide an overview of current diagnostic and treatment standards, recent medical and technological advances, and current challenges and future outlook for wearable glaucoma diagnostics and therapeutics. Conventional diagnostic techniques, including the rebound tonometer and Goldmann Applanation Tonometer, provide reliable intraocular pressure (IOP) measurement data at single-interval visits. The Sensimed Triggerfish and other emerging contact lenses provide continuous IOP tracking, which can improve diagnostic IOP monitoring for glaucoma. Conventional therapeutic techniques include eye drops and laser therapies, while emerging drug-eluting contact lenses can solve patient noncompliance with eye medications. Theranostic platforms combine diagnostic and therapeutic capabilities into a single device. Advantages of these platforms include real-time monitoring and personalized medication dosing. While there are many challenges to the development of wearable glaucoma diagnostics and therapeutics, wearable technologies hold great potential for enhancing glaucoma management by providing continuous monitoring, improving medication adherence, and reducing the disease burden on patients and healthcare systems. Further research and development of these technologies will be essential to optimizing patient outcomes.
Collapse
Affiliation(s)
- Ryan Shean
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Ning Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sourish Guntipally
- Terasaki Institute for Biomedical Innovation, 21100 Erwin Street, Los Angeles, CA 90064, USA
| | - Van Nguyen
- Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, 410 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Sidi Duan
- Department of Materials Science and Engineering, University of California, 410 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kimberly Gokoffski
- Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, 21100 Erwin Street, Los Angeles, CA 90064, USA
| | - Benjamin Xu
- Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
García-Llorca A, Carta F, Supuran CT, Eysteinsson T. Carbonic anhydrase, its inhibitors and vascular function. Front Mol Biosci 2024; 11:1338528. [PMID: 38348465 PMCID: PMC10859760 DOI: 10.3389/fmolb.2024.1338528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
It has been known for some time that Carbonic Anhydrase (CA, EC 4.2.1.1) plays a complex role in vascular function, and in the regulation of vascular tone. Clinically employed CA inhibitors (CAIs) are used primarily to lower intraocular pressure in glaucoma, and also to affect retinal blood flow and oxygen saturation. CAIs have been shown to dilate vessels and increase blood flow in both the cerebral and ocular vasculature. Similar effects of CAIs on vascular function have been observed in the liver, brain and kidney, while vessels in abdominal muscle and the stomach are unaffected. Most of the studies on the vascular effects of CAIs have been focused on the cerebral and ocular vasculatures, and in particular the retinal vasculature, where vasodilation of its vessels, after intravenous infusion of sulfonamide-based CAIs can be easily observed and measured from the fundus of the eye. The mechanism by which CAIs exert their effects on the vasculature is still unclear, but the classic sulfonamide-based inhibitors have been found to directly dilate isolated vessel segments when applied to the extracellular fluid. Modification of the structure of CAI compounds affects their efficacy and potency as vasodilators. CAIs of the coumarin type, which generally are less effective in inhibiting the catalytically dominant isoform hCA II and unable to accept NO, have comparable vasodilatory effects as the primary sulfonamides on pre-contracted retinal arteriolar vessel segments, providing insights into which CA isoforms are involved. Alterations of the lipophilicity of CAI compounds affect their potency as vasodilators, and CAIs that are membrane impermeant do not act as vasodilators of isolated vessel segments. Experiments with CAIs, that shed light on the role of CA in the regulation of vascular tone of vessels, will be discussed in this review. The role of CA in vascular function will be discussed, with specific emphasis on findings with the effects of CA inhibitors (CAI).
Collapse
Affiliation(s)
- Andrea García-Llorca
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Fabrizio Carta
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Ophthalmology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
17
|
Wu J, Wei J, Chen H, Dang Y, Lei F. Rho Kinase (ROCK) Inhibitors for the Treatment of Glaucoma. Curr Drug Targets 2024; 25:94-107. [PMID: 38155465 PMCID: PMC10964082 DOI: 10.2174/0113894501286195231220094646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Glaucoma is the most common cause of irreversible blindness worldwide. It is characterized by progressive optic nerve degeneration and loss of visual field. Pathological increased intraocular pressure is its main modifiable risk factor. Rho kinase inhibitors are developed as a new class of glaucoma medication that increases outflow facility from the conventional aqueous humor outflow pathway. Additionally, they also have neuroprotective and anti-scarring effects that can might increase the success rate of glaucoma filtration surgery. This review aims to summarize the current concept of Rho kinase inhibitors in the treatment of glaucoma from beach to bedside.
Collapse
Affiliation(s)
- Junhui Wu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Science and Technology/College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jing Wei
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Science and Technology/College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Haoliang Chen
- Department of Ophthalmology, Sanmenxia Eye Hospital/Sanmenxia Central Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, China
| | - Yalong Dang
- Department of Ophthalmology, Sanmenxia Eye Hospital/Sanmenxia Central Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, China
| | - Fang Lei
- Department of Ophthalmology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
18
|
Mueller A, Lam I, Kishor K, Lee RK, Bhattacharya S. Secondary glaucoma: Toward interventions based on molecular underpinnings. WIREs Mech Dis 2024; 16:e1628. [PMID: 37669762 DOI: 10.1002/wsbm.1628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Glaucoma is a heterogeneous group of progressive diseases that leads to irreversible blindness. Secondary glaucoma refers to glaucoma caused by a known underlying condition. Pseudoexfoliation and pigment dispersion syndromes are common causes of secondary glaucoma. Their respective deposits may obstruct the trabecular meshwork, leading to aqueous humor outflow resistance, ocular hypertension, and optic neuropathy. There are no disease-specific interventions available for either. Pseudoexfoliation syndrome is characterized by fibrillar deposits (pseudoexfoliative material) on anterior segment structures. Over a decade of multiomics analyses taken together with the current knowledge on pseudoexfoliative glaucoma warrant a re-think of mechanistic possibilities. We propose that the presence of nucleation centers (e.g., vitamin D binding protein), crosslinking enzymes (e.g., transglutaminase 2), aberrant extracellular matrix, flawed endocytosis, and abnormal aqueous-blood barrier contribute to the formation of proteolytically resistant pseudoexfoliative material. Pigment dispersion syndrome is characterized by abnormal iridolenticular contact that disrupts iris pigment epithelium and liberates melanin granules. Iris melanogenesis is aberrant in this condition. Cytotoxic melanogenesis intermediates leak out of melanosomes and cause iris melanocyte and pigment epithelium cell death. Targeting melanogenesis can likely decrease the risk of pigmentary glaucoma. Skin and melanoma research provides insights into potential therapeutics. We propose that specific prostanoid agonists and fenofibrates may reduce melanogenesis by inhibiting cholesterol internalization and de novo synthesis. Additionally, melatonin is a potent melanogenesis suppressor, antioxidant, and hypotensive agent, rendering it a valuable agent for pigmentary glaucoma. In pseudoexfoliative glaucoma, where environmental insults drive pseudoexfoliative material formation, melatonin's antioxidant and hypotensive properties may offer adjunct therapeutic benefits. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Anna Mueller
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Isabel Lam
- Idaho College of Osteopathic Medicine, Meridian, Idaho, USA
| | - Krishna Kishor
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sanjoy Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
19
|
Hedengran A, Kolko M. The molecular aspect of anti-glaucomatous eye drops - are we harming our patients? Mol Aspects Med 2023; 93:101195. [PMID: 37459821 DOI: 10.1016/j.mam.2023.101195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/14/2023]
Abstract
Glaucoma is one of the leading causes of irreversible blindness. Progression is halted with a reduction in intraocular pressure (IOP), which is most often achieved with eye drops. A major challenge in the topical treatment of glaucoma patients is the many side effects and the resulting reduced adherence. Side effects may of course be due to the molecular properties of the active pharmaceutical ingredients (APIs). There are currently six different APIs available: prostaglandin analogues, β-adrenergic inhibitors, α-adrenergic agonists, carbonic anhydrase inhibitors, rho-kinase inhibitors and muscarinic 3 agonists. But the additives used in eye drops are also known to cause damage to the ocular surface and to some extent also to the deeper tissues. Said additives are considered inactive molecular components and are added to secure for instance viscosity and pH value, and to prevent contamination. There has been an increasing focus on the harmful effects of preservatives, with the most commonly used preservative benzalkonium chloride (BAK) being particularly controversial. BAK has long been recognized as a toxin that increases the risk of ocular discomfort. This can affect the adherence and ultimately result in lack of disease control. Other issues include the addition of certain buffers, such as phosphates, and varying pH values. This review will address the different molecular components of the IOP-lowering eye drops and what to be aware of when prescribing topical glaucoma treatment.
Collapse
Affiliation(s)
- Anne Hedengran
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen N, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Valdemar Hansens Vej 1-23, 2600, Glostrup, Denmark.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen N, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Valdemar Hansens Vej 1-23, 2600, Glostrup, Denmark.
| |
Collapse
|
20
|
Salvetat ML, Pellegrini F, Spadea L, Salati C, Zeppieri M. Pharmaceutical Approaches to Normal Tension Glaucoma. Pharmaceuticals (Basel) 2023; 16:1172. [PMID: 37631087 PMCID: PMC10458083 DOI: 10.3390/ph16081172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Normal tension glaucoma (NTG) is defined as a subtype of primary open-angle glaucoma (POAG) in which the intraocular pressure (IOP) values are constantly within the statistically normal range without treatment and represents approximately the 30-40% of all glaucomatous cases. The pathophysiology of this condition is multifactorial and is still not completely well known. Several theories have been proposed to explain the onset and progression of this disease, which can be divided into IOP-dependent and IOP-independent factors, suggesting different therapeutic strategies. The current literature strongly supports the fundamental role of IOP in NTG. The gold standard treatment for NTG tends to be based on the lowering IOP even if "statistically normal". Numerous studies have shown, however, that the IOP reduction alone is not enough to slow down or stop the disease progression in all cases, suggesting that other IOP-independent risk factors may contribute to the NTG pathogenesis. In addition to IOP-lowering strategies, several different therapeutic approaches for NTG have been proposed, based on vaso-active, antioxidant, anti-inflammatory and/or neuroprotective substances. To date, unfortunately, there are no standardized or proven treatment alternatives for NTG when compared to traditional IOP reduction treatment regimes. The efficacy of the IOP-independent strategies in decreasing the risk or treating NTG still remains inconclusive. The aim of this review is to highlight strategies reported in the current literature to treat NTG. The paper also describes the challenges in finding appropriate and pertinent treatments for this potentially vision-threatening disease. Further comprehension of NTG pathophysiology can help clinicians determine when to use IOP-lowering treatments alone and when to consider additional or alternatively individualized therapies focused on particular risk factors, on a case-by-case basis.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
21
|
Orii Y, Kunikane E, Yamada Y, Morioka M, Iwasaki K, Arimura S, Mizuno A, Inatani M. Ocular Distribution of Brimonidine and Brinzolamide after Topical Instillation of a 0.1% Brimonidine Tartrate and 1% Brinzolamide Fixed-Combination Ophthalmic Suspension: An Interventional Study. J Clin Med 2023; 12:4175. [PMID: 37445209 DOI: 10.3390/jcm12134175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
PURPOSE To evaluate the concentrations of brimonidine and brinzolamide in the vitreous and aqueous humor after instillation of a 0.1% brimonidine tartrate and 1% brinzolamide fixed-combination ophthalmic suspension. METHODS The present investigation involved patients with macular holes or idiopathic epiretinal membranes who were planning to undergo vitrectomy. One week prior to surgery, the patients received twice-daily topical treatment with 0.1% brimonidine tartrate and 1% brinzolamide fixed-combination ophthalmic suspension. Before vitrectomy, vitreous and aqueous humor samples were collected, and the mean concentrations of brimonidine and brinzolamide were determined through liquid chromatography-tandem spectrometry. RESULTS Ten eyes (nine phakic and one pseudophakic eyes; 10 patients) were examined. The concentration of brimonidine in vitreous and aqueous humor samples was 5.02 ± 2.24 and 559 ± 670 nM, respectively. The concentration of brimonidine in the vitreous humor, which is needed to activate α2 receptors, was >2 nM in all patients. The concentration of brinzolamide was 8.96 ± 4.65 and 1100 ± 813 nM, respectively. However, there was no significant correlation between the concentrations of brimonidine in the vitreous and aqueous humor samples. CONCLUSIONS Sufficient concentrations of brimonidine were detected in all vitreous samples. The dissociated correlation of the drug concentrations between aqueous and vitreous humors implies the possibility of another pathway to vitreous humor, different from the pathway to aqueous humor.
Collapse
Affiliation(s)
- Yusuke Orii
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | | | - Yutaka Yamada
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masakazu Morioka
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kentaro Iwasaki
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shogo Arimura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Akemi Mizuno
- Senju Pharmaceutical Co., Ltd., Osaka 541-0048, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
22
|
Eysteinsson T, García-Llorca A, Hardarson AO, Vullo D, Carta F, Supuran CT. Membrane Permeability Is Required for the Vasodilatory Effect of Carbonic Anhydrase Inhibitors in Porcine Retinal Arteries. Int J Mol Sci 2023; 24:ijms24098140. [PMID: 37175846 PMCID: PMC10179589 DOI: 10.3390/ijms24098140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
It has been demonstrated previously that a variety of carbonic anhydrase inhibitors (CAIs) can induce vasodilation in pre-contracted retinal arteriolar segments although with different efficacy and potency. Since the CAIs tested so far are able to permeate cell membranes and inhibit both intracellular and extracellular isoforms of the enzyme, it is not clear whether extra- or intracellular isoforms or mechanisms are mediating their vasodilatory effects. By means of small wire myography, we have tested the effects of four new CAIs on wall tension in pre-contracted retinal arteriolar segments that demonstrably do not enter cell membranes but have high affinity to both cytosolic and membrane-bound isoforms of CA. At concentrations between 10-6 M to 10-3 M, none of the four membrane impermeant CAIs had any significant effect on arteriolar wall tension, while the membrane permeant CAI benzolamide (10-3 M) fully dilated all arteriolar segments tested. This suggests that CAI act as vasodilators through cellular mechanisms located in the cytoplasm of vascular cells.
Collapse
Affiliation(s)
- Thor Eysteinsson
- Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, IS101 Reykjavik, Iceland
| | - Andrea García-Llorca
- Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, IS101 Reykjavik, Iceland
| | - Arnar Oessur Hardarson
- Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, IS101 Reykjavik, Iceland
| | - Daniela Vullo
- Sezione di Scienze Farmaceutiche e Nutraceutiche, Neurofarba Department, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Fabrizio Carta
- Sezione di Scienze Farmaceutiche e Nutraceutiche, Neurofarba Department, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Claudiu T Supuran
- Sezione di Scienze Farmaceutiche e Nutraceutiche, Neurofarba Department, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| |
Collapse
|
23
|
The Multifarious Effects of Various Glaucoma Pharmacotherapy on Corneal Endothelium: A Narrative Review. Ophthalmol Ther 2023; 12:1457-1478. [PMID: 36930417 PMCID: PMC10164223 DOI: 10.1007/s40123-023-00699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Corneal endothelium is a single cell layer that is mainly responsible for maintaining corneal clarity. Endothelial damage secondary to toxicity, stress, or genetic predisposition are common and in conjunction with the low regenerative ability of the cells, making their preservation critical for maintaining visual acuity. Patients with glaucoma, who are estimated to be close to 80 million worldwide, have a plethora of reasons for developing endothelial damage, being exposed to a spectrum that extends from various medical and surgical interventions to the disease itself. The wide spectrum of glaucoma pharmacotherapy that has been recently extended by addition of newer classes of medications has been the focus of extensive research on its effects on corneal endothelium. Both basic and clinical research have attempted to shine a light on the complex mechanisms associated with the effects of glaucoma medication on corneal endothelium and to answer the important question as to whether these findings are clinically significant. The aim of this review is to summarize and present current literature of the various findings, both from in vivo and in vitro studies that have focused on the complex relationship between different classes of glaucoma medication and their effect on corneal endothelium.
Collapse
|
24
|
Microwave-Assisted Synthesis of 3-Hydroxy-2-oxindoles and Pilot Evaluation of Their Antiglaucomic Activity. Int J Mol Sci 2023; 24:ijms24065101. [PMID: 36982181 PMCID: PMC10049166 DOI: 10.3390/ijms24065101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Glaucoma is a widespread neurodegenerative disease for which increased intraocular pressure (IOP) is a primary modifiable risk factor. Recently, we have observed that compounds with oxindole scaffolds are involved in the regulation of intraocular pressure and therefore have potential antiglaucomic activity. In this article, we present an efficient method for obtaining novel 2-oxindole derivatives via microwave-assisted (MW) decarboxylative condensation of substituted isatins with malonic and cyanoacetic acids. Various 3-hydroxy-2-oxindoles were synthesized using MW activation for 5–10 min with high yields (up to 98%). The influence of novel compounds applied in instillations on IOP was studied in vivo on normotensive rabbits. The lead compound was found to reduce the IOP by 5.6 Torr (ΔIOP for the widely used antiglaucomatousic drug timolol 3.5 Torr and for melatonin 2.7 Torr).
Collapse
|
25
|
Zhang JH, Wang MJ, Tan YT, Luo J, Wang SC. A bibliometric analysis of apoptosis in glaucoma. Front Neurosci 2023; 17:1105158. [PMID: 36814788 PMCID: PMC9939748 DOI: 10.3389/fnins.2023.1105158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Glaucoma is the first irreversible and second blindness disease, which is characterized by the death of retinal ganglion cells (RGCs) and degeneration of the optic nerve. Previous works have indicated that apoptosis is the main reason for RGC death in glaucoma. Although many studies have investigated the mechanism of apoptosis and different strategies targeting apoptosis to protect the RGCs and finally recover the impaired vision in the glaucoma. However, the global trend and hotspots of apoptosis in glaucoma have not been well illustrated and discussed. METHODS Documents were extracted from the Web of Science Core Collection on November 2, 2022. We selected articles and reviews published in English from January 1, 1999 to November 1, 2022 to perform visual analysis and statistical analysis of countries, institutions, authors, references and keywords by VOSviewer 1.6.18 and CiteSpace 5.8. RESULTS The publications about apoptosis in glaucoma show an increasing trend over time. Besides, the authors, institutions in the US and China published the most numbers of articles with the highest citation, which may be leading the research in the field of apoptosis in glaucoma. Last, series of advanced research results, technology and treatment for glaucoma, such as the discovery of key regulatory mechanisms on RGC apoptosis are emerging and will provide precise strategies for the treatment of glaucoma. CONCLUSION This research will broaden our comprehension about the role of apoptosis in the process of glaucoma, and provide guidelines for us in basic research and disease treatment in the further.
Collapse
Affiliation(s)
- Jia-Heng Zhang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medicine 5-Year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mei-Juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, Shandong, China
| | - Ya-Ting Tan
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Shu-Chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|