1
|
Waheeb TS, Abdulkader MA, Ghareeb DA, Moustafa ME. Neuroprotective efficacy of berberine and caffeine against rotenone-induced neuroinflammatory and oxidative disturbances associated with Parkinson's disease via inhibiting α-synuclein aggregation and boosting dopamine release. Inflammopharmacology 2025; 33:2129-2150. [PMID: 40057928 PMCID: PMC11991993 DOI: 10.1007/s10787-025-01661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 04/13/2025]
Abstract
Parkinson's disease (PD) is characterized by motor impairment, glial-mediated inflammation, redox imbalance, and α-synuclein (α-syn) aggregation. Conventional therapies relieve early PD symptoms, but they do not repair dopaminergic neurons. Berberine (BBR) and caffeine (CAF), both natural alkaloids, exhibited neuroprotective effects in many neurodegenerative disorders. Consequently, we hypothesized that the combination of BBR and CAF therapies would offer protection against PD-related impairments in the rotenone (ROT)-induced rat model when compared to the commercial drug, metformin (MTF). Our results showed that the combined administration of BBR (25 mg/kg/day) and CAF (2.5 mg/kg/day) for four weeks prevented motor deficits, weight reduction, dopamine (DA) depletion, and monoamine oxidase (MAO) activity in ROT-induced rats in comparison with monotherapy of BBR and CAF along with MTF. This combination produced a notable neuroprotective effect by reducing tumor necrosis factor (TNF)-α and interleukin-16 (IL-6) in midbrain of rats. BBR and CAF combinations markedly normalized tyrosine hydroxylase (TH) levels and decreased total α-syn and α-syn-pser129 aggregation and increased protein phosphatase 2A (PP2A) levels. Histological analysis indicated that damaged neurons exhibited significant amelioration with the co-administration of BBR and CAF. The molecular docking results indicated that both BBR and CAF had notable binding affinity for the protein pocket surrounding the α-syn, PP2A, and TH in comparison to MTF. They are predicted to serve as effective inhibitors of enzyme-mediated phosphorylation of α-syn-pser129. Conclusively, combined BBR and CAF administration presents a novel strategy for neuroprotection by blocking the initial events in PD incidence, demonstrating considerable anti-oxidative and anti-inflammatory benefits relative to MTF.
Collapse
Affiliation(s)
- Tasnim S Waheeb
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohammad A Abdulkader
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, Alexandria, 21648, Egypt
| | - Mohamed E Moustafa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
2
|
Mohammadi M, Salehi S, Habibzadeh A, Mohammadi A, Mirzaasgari Z. Neuroprotective Effects of Metformin in Stroke Patients: A Systematic Review and Meta-analysis of Cohort Studies. Clin Neuropharmacol 2025; 48:51-59. [PMID: 40072880 DOI: 10.1097/wnf.0000000000000625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
OBJECTIVES People with diabetes are 1.5 times more likely to experience stroke than those without diabetes, underlining the urgent need to address this issue. Metformin is often the initial medication chosen to manage diabetes mellitus (DM). The purpose of our systematic review and meta-analysis is to explore the potential neuroprotective effects of metformin in individuals who have received it prior to stroke. METHOD Our study encompassed cohort studies that drew a comparison between the severity and diverse outcomes of stroke among individuals with DM who were administered metformin prior to the stroke event and those with DM who did not receive the treatment. RESULTS Ten studies met the eligibility criteria. Prestroke metformin use was associated with a significantly lower National Institutes of Health Stroke Scale score (mean difference = -1.29, 95% confidence interval: -2.11 to -0.47) in ischemic stroke. Metformin pretreatment in ischemic stroke was associated with increased odds of favorable outcome (mRS < 2) at 90 days (odds ratio [OR] = 1.45, 95% confidence interval [CI]: 1.06 to 1.99), but it was not significant at discharge. Metformin was found to be associated with reduced mortality (OR = 0.52, 95% CI: 0.42 to 0.64) in ischemic stroke. In hemorrhagic stroke, the results showed a significantly lower intracranial hemorrhage volume in prestroke metformin use (mean difference = -4.77, 95% CI: -6.56 to -2.98). CONCLUSIONS We found that prestroke metformin use in diabetic patients yielded neuroprotective effects. In ischemic strokes, metformin reduces stroke severity and 90-day mortality; it also improves 90-day functional outcomes. In hemorrhagic strokes, prestroke metformin use can also cause less intracranial hemorrhage volume. Further clinical trials are needed to confirm its efficacy and verify its benefits in stroke management.
Collapse
Affiliation(s)
| | - Sadaf Salehi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Aynaz Mohammadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirzaasgari
- Department of Neurology, Firoozgar Hospital, School of Medicine, Iran University of Medical Science, Fasa, Iran
| |
Collapse
|
3
|
Enderami A, Shariati B, Zarghami M, Aliasgharian A, Ghazaiean M, Darvishi‐Khezri H. Metformin and Cognitive Performance in Patients With Type 2 Diabetes: An Umbrella Review. Neuropsychopharmacol Rep 2025; 45:e12528. [PMID: 39871536 PMCID: PMC11772738 DOI: 10.1002/npr2.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/29/2025] Open
Abstract
Contradictory results for the association between metformin intake and changes in cognitive function have been reported. We attempted to overview systematic reviews and meta-analyses showing the role of metformin, as mono or combination therapy, in cognitive performance alterations among patients with type 2 diabetes mellitus (T2DM) and to determine the quality of the evidence as well. To find the English-written reviews, a literature search was conducted on PubMed, Web of Science, Scopus, Cochrane Library, Trip, and Google Scholar by May 1, 2023. The literature search unearthed 2672 records, 10 of which were included in the study. Metformin may provide cognitive benefits for patients with type 2 diabetes, as evidence suggests potential improvements in memory and a reduced risk of neurodegenerative diseases. Even though the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) score alterations correspond to raising concerns about cognitive decline, Mini-Mental State Examination (MMSE) and selective reminding test (SRT) score improvements support metformin's role in improving specific cognitive domains. As such, metformin may exert differential impacts on various aspects of cognitive performance in these patients. However, the inconsistency and low quality of current evidence point toward the need for accurate research to elucidate whether metformin's cognitive effects are protective, neutral, or context-dependent based on patient profiles.
Collapse
Affiliation(s)
- Athena Enderami
- Department of Psychiatry, School of MedicineMazandaran University of Medical SciencesSariIran
| | - Behnam Shariati
- Mental Health Research CenterIran University of Medical SciencesTehranIran
| | - Mehran Zarghami
- Department of Psychiatry, School of Medicine and Psychiatry and Behavioral Sciences Research CenterAddiction Institute, Mazandaran University of Medical SciencesSariIran
| | - Aily Aliasgharian
- Thalassemia Research Center (TRC)Hemoglobinopathy Institute, Mazandaran University of Medical SciencesSariIran
| | - Mobin Ghazaiean
- Gut and Liver Research CenterNon‐communicable Disease Institute, Mazandaran University of Medical SciencesSariIran
| | - Hadi Darvishi‐Khezri
- Thalassemia Research Center (TRC)Hemoglobinopathy Institute, Mazandaran University of Medical SciencesSariIran
| |
Collapse
|
4
|
Chele D, Sirbu CA, Mitrica M, Toma M, Vasiliu O, Sirbu AM, Authier FJ, Mischianu D, Munteanu AE. Metformin's Effects on Cognitive Function from a Biovariance Perspective: A Narrative Review. Int J Mol Sci 2025; 26:1783. [PMID: 40004246 PMCID: PMC11855408 DOI: 10.3390/ijms26041783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the effects of metformin on brain functions focusing on the variability of the results reported in the literature. While some studies suggest that metformin may have neuroprotective effects in diabetic patients, others report an insignificant impact of metformin on cognitive function, or even a negative effect. We propose that this inconsistency may be due to intrinsic cellular-level variability among individuals, which we term "biovariance". Biovariance persists even in demographically homogeneous samples due to complex and stochastic biological processes. Additionally, the complex metabolic actions of metformin, including its influence on neuroenergetics and neuronal survival, may produce different effects depending on individual metabolic characteristics.
Collapse
Affiliation(s)
- Dimitrie Chele
- Department of Neurology, Elias Emergency University Hospital, 011461 Bucharest, Romania;
| | - Carmen-Adella Sirbu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Marian Mitrica
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
| | - Mihai Toma
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| | - Octavian Vasiliu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Department of Psychiatry, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Anca-Maria Sirbu
- National Institute of Medical Expertise and Recovery of Work Capacity, Panduri 22, 050659 Bucharest, Romania
| | - Francois Jerome Authier
- Neuromuscular Reference Center, Henri Mondor University Hospital, Assistance Publique–Hôpitaux de Paris, 94000 Créteil, France
- INSERM U955-Team Relaix, Faculty of Health, Paris Est-Creteil University, 94010 Créteil, France
| | - Dan Mischianu
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Department No. 3, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Alice Elena Munteanu
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| |
Collapse
|
5
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Targeting Ferroptosis in Parkinson's: Repurposing Diabetes Drugs as a Promising Treatment. Int J Mol Sci 2025; 26:1516. [PMID: 40003982 PMCID: PMC11855881 DOI: 10.3390/ijms26041516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the promising potential of repurposing type 2 diabetes (T2D) medications for the treatment of Parkinson's disease (PD), highlighting the shared pathophysiological mechanisms between these two age-related conditions, such as oxidative stress, mitochondrial dysfunction, and ferroptosis. The overlap suggests that existing diabetes drugs could target the common pathways involved in both conditions. Specifically, the review discusses how T2D medications, including metformin (Met), peroxisome-proliferator-activated receptor gamma (PPAR-γ) agonists, sodium-glucose cotransporter-2 (SGLT2) inhibitors, incretins, and dipeptidyl-peptidase 4 (DPP-4) inhibitors, can improve mitochondrial function, reduce neuroinflammation and oxidative stress, and potentially inhibit ferroptosis. The connection between ferroptosis and existing treatments, including diabetes medication, are only beginning to be explored. The limited data can be attributed also to the complexity of mechanisms involved in ferroptosis and Parkinson's disease and to the fact that the specific role of ferroptosis in Parkinson's disease pathogenesis has not been a primary focus until recent. Despite the promising preclinical evidence, clinical findings are mixed, underscoring the need for further research to elucidate these drugs' roles in neurodegeneration. Repurposing existing diabetes medications that have well-established safety profiles for Parkinson's disease treatment could significantly reduce the time and cost associated with drug development and could offer a more comprehensive approach to managing Parkinson's disease compared to treatments targeting a single mechanism.
Collapse
Affiliation(s)
| | | | - Carmen Beatrice Dogaru
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (C.M.); (I.S.)
| | | |
Collapse
|
6
|
Szablewski L. Associations Between Diabetes Mellitus and Neurodegenerative Diseases. Int J Mol Sci 2025; 26:542. [PMID: 39859258 PMCID: PMC11765393 DOI: 10.3390/ijms26020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Different mechanisms of associations between these diseases and diabetes mellitus have been suggested. For example, it is postulated that an impaired intracellular insulin signaling pathway, together with hyperglycemia and hyperinsulinemia, may cause pathological changes, such as dysfunction of the mitochondria, oxidative stress inflammatory responses, etc. The association between diabetes mellitus and neurodegenerative diseases, as well as the mechanisms of these associations, needs further investigation. The aim of this review is to describe the associations between diabetes mellitus, especially type 1 (T1DM) and type 2 diabetes mellitus, and selected neurodegenerative diseases, i.e., Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Suggested mechanisms of these associations are also described.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Montanari M, Mercuri NB, Martella G. Exceeding the Limits with Nutraceuticals: Looking Towards Parkinson's Disease and Frailty. Int J Mol Sci 2024; 26:122. [PMID: 39795979 PMCID: PMC11719863 DOI: 10.3390/ijms26010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
One of the most pressing challenges facing society today is the rising prevalence of physical and cognitive frailty. This geriatric condition makes older adults more vulnerable to disability, illness, and a heightened risk of mortality. In this scenario, Parkinson's disease (PD) and geriatric frailty, which share several common characteristics, are becoming increasingly prevalent worldwide, underscoring the urgent need for innovative strategies. Nutraceuticals are naturally occurring bioactive compounds contained in foods, offering health benefits over and above essential nutrition. By examining the literature from the past decade, this review highlights how nutraceuticals can act as complementary therapies, addressing key processes, such as oxidative stress, inflammation, and neuroprotection. Notably, the antioxidant action of nutraceuticals appears particularly beneficial in regard to PD and geriatric frailty. For instance, antioxidant-rich nutraceuticals may mitigate the oxidative damage linked to levodopa therapy in PD, potentially reducing the side effects and enhancing treatment sustainability. Similarly, the antioxidant effects of nutraceuticals may amplify the benefits of physical activity, enhancing muscle function, cognitive health, and resilience, thereby reducing the risk of frailty. This review proposes a holistic approach integrating nutraceuticals with exercise, pharmacotherapy, and lifestyle adjustments. It promises to transform the management of ARD, prolong life, and improve the quality of life and well-being of older people.
Collapse
Affiliation(s)
- Martina Montanari
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy;
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Wellbeing, Nutrition and Sport, Faculty of Humanities Educations and Sports, Pegaso Telematics University, 80145 Naples, Italy
| |
Collapse
|
8
|
Sian-Hulsmann J, Riederer P, Michel TM. Metabolic Dysfunction in Parkinson's Disease: Unraveling the Glucose-Lipid Connection. Biomedicines 2024; 12:2841. [PMID: 39767747 PMCID: PMC11673947 DOI: 10.3390/biomedicines12122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Despite many years of research into the complex neurobiology of Parkinson's disease, the precise aetiology cannot be pinpointed down to one causative agent but rather a multitude of mechanisms. Current treatment options can alleviate symptomsbut only slightly slow down the progression and not cure the disease and its underlying causes. Factors that play a role in causing the debilitating neurodegenerative psycho-motoric symptoms include genetic alterations, oxidative stress, neuroinflammation, general inflammation, neurotoxins, iron toxicity, environmental influences, and mitochondrial dysfunction. Recent findings suggest that the characteristic abnormal protein aggregation of alpha-synuclein and destruction of substantia nigra neurons might be due to mitochondrial dysfunction related to disturbances in lipid and glucose metabolism along with insulin resistance. The latter mechanism of action might be mediated by insulin receptor substrate docking to proteins that are involved in neuronal survival and signaling related to cell destruction. The increased risk of developing Type 2 Diabetes Mellitus endorses a connection between metabolic dysfunction and neurodegeneration. Here, we explore and highlight the potential role of glycolipid cellular insults in the pathophysiology of the disorder, opening up new promising avenues for the treatment of PD. Thus, antidiabetic drugs may be employed as neuromodulators to hinder the progression of the disorder.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Human Anatomy and Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | - Peter Riederer
- Research Unit of Psychiatry, Department of Psychiatry, Odense, Region of Southern Denmark, University Hospital of Southern Denmark, 5000 Odense, Denmark;
| | - Tanja Maria Michel
- Research Unit of Psychiatry, Department of Psychiatry, Odense, Region of Southern Denmark, University Hospital of Southern Denmark, 5000 Odense, Denmark;
| |
Collapse
|
9
|
Chmiela T, Jarosz-Chobot P, Gorzkowska A. Glucose Metabolism Disorders and Parkinson's Disease: Coincidence or Indicator of Dysautonomia? Healthcare (Basel) 2024; 12:2462. [PMID: 39685083 DOI: 10.3390/healthcare12232462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Parkinson's disease (PD) and type 2 diabetes mellitus (T2DM) are both age-related diseases. Evidence from recent studies suggests a link between them. The existence of an interaction between autonomic nervous system dysfunction and the dysregulation of glucose metabolism is one of the proposed mechanisms to explain the complicated relationship between these diseases. The aims of this study are to assess the incidence of glycemic dysregulation in people with PD and to identify clinical factors that may predispose patients with PD to the occurrence of metabolic disturbances. Methods: In total, 35 individuals diagnosed with PD and 20 healthy control subjects matched in terms of age and gender participated in a study consisting of clinical and biometric assessments along with 14 days of continuous glucose monitoring (CGM) using the Freestyle Libre system. In the group of patients with PD, a comparative analysis was performed between patients with and without autonomic dysfunction. The severity of autonomic dysfunction was assessed using the SCOPA-AUT. Results: Participants diagnosed with PD demonstrated a trend toward lower morning glucose levels compared to the control group. PD patients with autonomic symptoms had greater glucose variability and a deeper trend toward lower glucose levels in the mornings. The presence of autonomic dysfunction, especially orthostatic hypotension and micturition disturbance, and the severity of autonomic symptoms were associated with greater glycemic variability. Conclusions: The occurrence of autonomic disorders in the course of Parkinson's disease predisposes patients to more profound glycemic dysregulation.
Collapse
Affiliation(s)
- Tomasz Chmiela
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Przemysława Jarosz-Chobot
- Department of Children's Diabetology and Lifestyle Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Agnieszka Gorzkowska
- Department of Neurology, School of Health Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
10
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
11
|
Müller T, Gerlach M, Hefner G, Hiemke C, Jost WH, Riederer P. Therapeutic drug monitoring in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1247-1262. [PMID: 39227478 PMCID: PMC11489222 DOI: 10.1007/s00702-024-02828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
A patient-tailored therapy of the heterogeneous, neuropsychiatric disorder of Parkinson's disease (PD) aims to improve dopamine sensitive motor symptoms and associated non-motor features. A repeated, individual adaptation of dopamine substituting compounds is required throughout the disease course due to the progress of neurodegeneration. Therapeutic drug monitoring of dopamine substituting drugs may be an essential tool to optimize drug applications. We suggest plasma determination of levodopa as an initial step. The complex pharmacology of levodopa is influenced by its short elimination half-life and the gastric emptying velocity. Both considerably contribute to the observed variability of plasma concentrations of levodopa and its metabolite 3-O-methyldopa. These amino acids compete with other aromatic amino acids as well as branched chain amino acids on the limited transport capacity in the gastrointestinal tract and the blood brain barrier. However, not much is known about plasma concentrations of levodopa and other drugs/drug combinations in PD. Some examples may illustrate this lack of knowledge: Levodopa measurements may allow further insights in the phenomenon of inappropriate levodopa response. They may result from missing compliance, interactions e.g. with treatments for other mainly age-related disorders, like hypertension, diabetes, hyperlipidaemia, rheumatism or by patients themselves independently taken herbal medicines. Indeed, uncontrolled combination of compounds for accompanying disorders as given above with PD drugs might increase the risk of side effects. Determination of other drugs used to treat PD in plasma such as dopamine receptor agonists, amantadine and inhibitors of catechol-O-methyltransferase or monoamine oxidase B may refine and improve the value of calculations of levodopa equivalents. How COMT-Is change levodopa plasma concentrations? How other dopaminergic and non-dopaminergic drugs influence levodopa levels? Also, delivery of drugs as well as single and repeated dosing and continuous levodopa administrations with a possible accumulation of levodopa, pharmacokinetic behaviour of generic and branded compounds appear to have a marked influence on efficacy of drug treatment and side effect profile. Their increase over time may reflect progression of PD to a certain degree. Therapeutic drug monitoring in PD is considered to improve the therapeutic efficacy in the course of this devastating neurologic disorder and therefore is able to contribute to the patients' precision medicine. State-of-the-art clinical studies are urgently needed to demonstrate the usefulness of TDM for optimizing the treatment of PD.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088, Berlin, Germany
| | - Manfred Gerlach
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Hefner
- Psychiatric Hospital, Vitos Clinic for Forensic Psychiatry, Kloster-Eberbach-Straße 4, 65346, Eltville, Germany
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of Mainz, Mainz, Germany
| | | | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel Platz 1, 97080, Würzburg, Germany.
| |
Collapse
|
12
|
Huang KH, Yang Y, Gau SY, Tsai TH, Lee CY. Association between dipeptidyl peptidase-4 inhibitor use and risk of Parkinson's disease among patients with diabetes mellitus: a retrospective cohort study. Aging (Albany NY) 2024; 16:11994-12007. [PMID: 39177655 PMCID: PMC11386917 DOI: 10.18632/aging.206074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/11/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND How a person's Parkinson disease (PD) risk is affected by dipeptidyl peptidase-4 (DPP-4) inhibitors remains unclear. We evaluated the association of PD risk with use of these inhibitors in individuals diagnosed as having diabetes mellitus (DM). METHODS Individuals diagnosed as having new-onset DM were enrolled into the case group and comparison group, comprising patients who received a DPP-4 inhibitor and a sulfonylurea, respectively. These groups were matched through propensity score matching on the basis of income level, gender, urbanization level, enrollment year, age, and diabetes complications severity index score. The case group was divided into subgroups on the basis of whether they had a cumulative defined daily dose (cDDD) of <75, 75-150, or >150. The DPP-4 inhibitor-PD risk association was evaluated through a Cox proportional hazards model. The Bonferroni adjustment test was employed to adjust P-values and reduce the false positive rate. RESULTS Compared with those in the comparison group (treatment with a sulfonylurea), patients with a DPP-4 inhibitor cDDD of >150 had a hazard ratio (HR) of 1.30 for PD development (95% confidence interval [CI]: 0.97-1.73; adjusted P = .263); the HRs for patients with a cDDD of <75 or 75-150 were 0.95 (95% CI: 0.71-1.27; adjusted P = .886) and 1.06 (95% CI: 0.75-1.50; adjusted P = .886), respectively. We noted nonsignificant differences regarding the associations between the use of the various DPP-4 inhibitors (linagliptin, saxagliptin, sitagliptin, and vildagliptin) and PD risk after adjustment for any individual inhibitor (adjusted P > .05). CONCLUSIONS DPP-4 inhibitors were discovered in this study to not be associated with increased PD risk. This result was confirmed when the analysis was conducted individually for the 4 investigated DPP-4 inhibitors (sitagliptin, saxagliptin, linagliptin, and vildagliptin).
Collapse
Affiliation(s)
- Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
| | - Yih Yang
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
13
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
14
|
Muleiro Alvarez M, Cano-Herrera G, Osorio Martínez MF, Vega Gonzales-Portillo J, Monroy GR, Murguiondo Pérez R, Torres-Ríos JA, van Tienhoven XA, Garibaldi Bernot EM, Esparza Salazar F, Ibarra A. A Comprehensive Approach to Parkinson's Disease: Addressing Its Molecular, Clinical, and Therapeutic Aspects. Int J Mol Sci 2024; 25:7183. [PMID: 39000288 PMCID: PMC11241043 DOI: 10.3390/ijms25137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Parkinson's disease (PD) is a gradually worsening neurodegenerative disorder affecting the nervous system, marked by a slow progression and varied symptoms. It is the second most common neurodegenerative disease, affecting over six million people in the world. Its multifactorial etiology includes environmental, genomic, and epigenetic factors. Clinical symptoms consist of non-motor and motor symptoms, with motor symptoms being the classic presentation. Therapeutic approaches encompass pharmacological, non-pharmacological, and surgical interventions. Traditional pharmacological treatment consists of administering drugs (MAOIs, DA, and levodopa), while emerging evidence explores the potential of antidiabetic agents for neuroprotection and gene therapy for attenuating parkinsonian symptoms. Non-pharmacological treatments, such as exercise, a calcium-rich diet, and adequate vitamin D supplementation, aim to slow disease progression and prevent complications. For those patients who have medically induced side effects and/or refractory symptoms, surgery is a therapeutic option. Deep brain stimulation is the primary surgical option, associated with motor symptom improvement. Levodopa/carbidopa intestinal gel infusion through percutaneous endoscopic gastrojejunostomy and a portable infusion pump succeeded in reducing "off" time, where non-motor and motor symptoms occur, and increasing "on" time. This article aims to address the general aspects of PD and to provide a comparative comprehensive review of the conventional and the latest therapeutic advancements and emerging treatments for PD. Nevertheless, further studies are required to optimize treatment and provide suitable alternatives.
Collapse
Affiliation(s)
- Mauricio Muleiro Alvarez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Gabriela Cano-Herrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - María Fernanda Osorio Martínez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | | | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Renata Murguiondo Pérez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Jorge Alejandro Torres-Ríos
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ximena A. van Tienhoven
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ernesto Marcelo Garibaldi Bernot
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
- Secretaria de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de México 11200, Mexico
| |
Collapse
|
15
|
Komici K, Pansini A, Bencivenga L, Rengo G, Pagano G, Guerra G. Frailty and Parkinson's disease: the role of diabetes mellitus. Front Med (Lausanne) 2024; 11:1377975. [PMID: 38882667 PMCID: PMC11177766 DOI: 10.3389/fmed.2024.1377975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease associated with a progressive loss of dopaminergic neurons, clinically characterized by motor and non-motor signs. Frailty is a clinical condition of increased vulnerability and negative health outcomes due to the loss of multiple physiological reserves. Chronic hyperglycemia and insulin resistance, which characterize diabetes mellitus (DM), have been reported to alter dopaminergic activity, increase the risk of PD, and influence the development of frailty. Even though diabetes may facilitate the development of frailty in patients with PD, this relationship is not established and a revision of the current knowledge is necessary. Furthermore, the synergy between DM, PD, and frailty may drive clinical complexity, worse outcomes, and under-representation of these populations in the research. In this review, we aimed to discuss the role of diabetes in the development of frailty among patients with PD. We summarized the clinical characteristics and outcomes of patients with concomitant DM, PD, and frailty. Finally, interventions to prevent frailty in this population are discussed.
Collapse
Affiliation(s)
- Klara Komici
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
- Istituti Clinici Scientifici Maugeri IRCCS-Scientific Institute of Telese Terme, Telese Terme, BN, Italy
| | - Gennaro Pagano
- Roche Pharma Research and Early Development (pRED), Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
- University of Exeter Medical School, London, United Kingdom
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
16
|
Pourfridoni M, Hedayati-Moghadam M, Fathi S, Fathi S, Mirrashidi FS, Askarpour H, Shafieemojaz H, Baghcheghi Y. Beneficial effects of metformin treatment on memory impairment. Mol Biol Rep 2024; 51:640. [PMID: 38727848 DOI: 10.1007/s11033-024-09445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 07/12/2024]
Abstract
Memory issues are a prevalent symptom in different neurodegenerative diseases and can also manifest in certain psychiatric conditions. Despite limited medications approved for treating memory problems, research suggests a lack of sufficient options in the market. Studies indicate that a significant percentage of elderly individuals experience various forms of memory disorders. Metformin, commonly prescribed for type 2 diabetes, has shown neuroprotective properties through diverse mechanisms. This study explores the potential of metformin in addressing memory impairments. The current research gathered its data by conducting an extensive search across electronic databases including PubMed, Web of Science, Scopus, and Google Scholar. Previous research suggests that metformin enhances brain cell survival and memory function in both animal and clinical models by reducing oxidative stress, inflammation, and cell death while increasing beneficial neurotrophic factors. The findings of the research revealed that metformin is an effective medication for enhancing various types of memory problems in numerous studies. Given the rising incidence of memory disorders, it is plausible to utilize metformin, which is an affordable and accessible drug. It is often recommended as a treatment to boost memory.
Collapse
Affiliation(s)
- Mohammad Pourfridoni
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shirin Fathi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shiva Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Sadat Mirrashidi
- Departrment of Pediatrics, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hedyeh Askarpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hadi Shafieemojaz
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran.
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
17
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Froldi G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals (Basel) 2024; 17:478. [PMID: 38675438 PMCID: PMC11054066 DOI: 10.3390/ph17040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a synthetic biguanide used as an antidiabetic drug in type 2 diabetes mellitus, achieved by studying the bioactive metabolites of Galega officinalis L. It is also used off-label for various other diseases, such as subclinical diabetes, obesity, polycystic ovary syndrome, etc. In addition, metformin is proposed as an add-on therapy for several conditions, including autoimmune diseases, neurodegenerative diseases, and cancer. Although metformin has been used for many decades, it is still the subject of many pharmacodynamic and pharmacokinetic studies in light of its extensive use. Metformin acts at the mitochondrial level by inhibiting the respiratory chain, thus increasing the AMP/ATP ratio and, subsequently, activating the AMP-activated protein kinase. However, several other mechanisms have been proposed, including binding to presenilin enhancer 2, increasing GLP1 release, and modification of microRNA expression. Regarding its pharmacokinetics, after oral administration, metformin is absorbed, distributed, and eliminated, mainly through the renal route, using transporters for cationic solutes, since it exists as an ionic molecule at physiological pH. In this review, particular consideration has been paid to literature data from the last 10 years, deepening the study of clinical trials inherent to new uses of metformin, the differences in effectiveness and safety observed between the sexes, and the unwanted side effects. For this last objective, metformin safety was also evaluated using both VigiBase and EudraVigilance, respectively, the WHO and European databases of the reported adverse drug reactions, to assess the extent of metformin side effects in real-life use.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
19
|
Pezzoli G, Cereda E, Calandrella D, Barichella M, Bonvegna S, Isaias IU. Metformin use is associated with reduced mortality risk in diabetic patients with Parkinson's disease. Clin Nutr ESPEN 2024; 60:309-312. [PMID: 38479927 DOI: 10.1016/j.clnesp.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) and type-2 diabetes (T2D) arguably share pathophysiologic mechanisms, resulting in a more severe phenotype and progression and diabetes is currently considered a risk factor of PD. Besides, research suggests antidiabetic therapies as potential disease-modifying strategies. The main aim was to assess the impact of a metformin-inclusive antidiabetic treatment on patient all-cause mortality. METHODS A nested case-control prospective study including newly diagnosed PD patients reporting the onset of T2D within ±2 years from the onset of PD (n = 159) and matched (1:5; gender, year of PD onset and age at PD onset) non-diabetic cases (n = 795) followed until death or censoring. Patients on a metformin-inclusive treatment regimen were compared to those receiving other oral anti-diabetics (OADs). RESULTS Among patients with T2D, 123 were treated with a drug regimen containing metformin (alone [65.0%] or in combination with other drugs [35.0%]) and 36 were prescribed other OADs. During a median PD duration of 96 months [IQR, 60-144], 171 patients died. Diabetes was not associated with reduced survival: fully-adjusted HR = 1.19 [95%CI, 0.81-1.76] (P = 0.37). After stratifying for T2D treatment, a metformin-inclusive regimen was not associated with increased risk of death (HR = 1.06 [95%CI, 0.61-1.84]; P = 0.83), while patients receiving other OADs had reduced survival (HR = 1.83 [95%CI, 1.01-3.32]; P = 0.034). CONCLUSIONS Metformin use was not associated with increased risk of death in diabetic patients with PD reporting concomitant onset of the two diseases. Metformin appears to be a promising disease-modifying therapy given also the preclinical background, low cost and satisfactory safety and tolerability. Further studies are warranted to investigate its impact on disease progression.
Collapse
Affiliation(s)
- Gianni Pezzoli
- Parkinson Institute Milan, ASST G.Pini-CTO, via Bignami 1, Milan, Italy; Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Daniela Calandrella
- Parkinson Institute Milan, ASST G.Pini-CTO, via Bignami 1, Milan, Italy; Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | | | | | - Ioannis U Isaias
- Parkinson Institute Milan, ASST G.Pini-CTO, via Bignami 1, Milan, Italy; Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Kim HK, Lee W, Ryu IH, Kim JK, Kim H, Yoo TK. Association between metformin use and the risk of developing open-angle glaucoma among patients with diabetes: a retrospective cohort study and meta-analysis. Int Ophthalmol 2024; 44:6. [PMID: 38316664 DOI: 10.1007/s10792-024-02945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/07/2023] [Indexed: 02/07/2024]
Abstract
PURPOSE Recent studies examining the neuroprotective effects of metformin on open-angle glaucoma (OAG) have failed to provide consistent results. In this study, we investigated the association between metformin use and OAG. METHODS Data were obtained from a sample cohort of the Korean National Health Insurance database. Patients diagnosed with type-2 diabetes (T2DM) between 2004 and 2013 were included. We performed propensity score-matched analysis in a matched cohort (N = 20,646). The risk of the newly developed OAG was estimated using a Cox proportional hazards model. Including the present study, the meta-analysis included five studies to calculate the pooled risk for OAG based on metformin use. RESULTS In the adjusted model, the analysis revealed no statistical association between metformin use and OAG incidence (hazard ratio [HR] 1.05; 95% confidence interval [CI] 0.79-1.40; P = 0.738). The highest tercile of metformin use demonstrated no statistical significance (HR 0.93 [95% CI 0.63-1.37]; P = 0.703). No significant dose-dependent association was observed between the cumulative dose and incidence of OAG (P-value for trend = 0.336). In a meta-analysis of four published articles and the present study, the common-effects and random-effects models indicated conflicting results in terms of significance. The random effects model demonstrated no significant association (pooled risk ratio 0.53; 95% CI 0.24-1.19; P = 0.123). CONCLUSION We found no significant association between metformin use and OAG incidence in patients with T2DM in this population-based cohort study and meta-analysis. Further studies are needed to investigate the association between metformin use and the risk of OAG among patients with T2DM.
Collapse
Affiliation(s)
- Hong Kyu Kim
- Department of Ophthalmology, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Wanhyung Lee
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ik Hee Ryu
- Department of Ophthalmology, B&VIIT Eye Center, Seoul, Republic of Korea
| | - Jin Kuk Kim
- Department of Ophthalmology, B&VIIT Eye Center, Seoul, Republic of Korea
| | | | - Tae Keun Yoo
- Department of Ophthalmology, B&VIIT Eye Center, Seoul, Republic of Korea.
- Department of Refractive Surgery; VISUWORKS, B&VIIT Eye Center, B2 GT Tower, 1317-23, Seocho-Dong, Seocho-Gu, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Kuate Defo A, Bakula V, Pisaturo A, Labos C, Wing SS, Daskalopoulou SS. Diabetes, antidiabetic medications and risk of dementia: A systematic umbrella review and meta-analysis. Diabetes Obes Metab 2024; 26:441-462. [PMID: 37869901 DOI: 10.1111/dom.15331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
AIMS The objective of this umbrella review and meta-analysis was to evaluate the effect of diabetes on risk of dementia, as well as the mitigating effect of antidiabetic treatments. MATERIALS AND METHODS We conducted a systematic umbrella review on diabetes and its treatment, and a meta-analysis focusing on treatment. We searched MEDLINE/PubMed, Embase, PsycINFO, CINAHL and the Cochrane Library for systematic reviews and meta-analyses assessing the risk of cognitive decline/dementia in individuals with diabetes until 2 July 2023. We conducted random-effects meta-analyses to obtain risk ratios and 95% confidence intervals estimating the association of metformin, thiazolidinediones, pioglitazone, dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, meglitinides, insulin, sulphonylureas, glucagon-like peptide-1 receptor agonists (GLP1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) with risk of dementia from cohort/case-control studies. The subgroups analysed included country and world region. Risk of bias was assessed with the AMSTAR tool and Newcastle-Ottawa Scale. RESULTS We included 100 reviews and 27 cohort/case-control studies (N = 3 046 661). Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with significant reduction in risk of dementia. When studies examining metformin were divided by country, the only significant effect was for the United States. Moreover, the effect of metformin was significant in Western but not Eastern populations. No significant effect was observed for dipeptidyl peptidase-4 inhibitors, α-glucosidase inhibitors, or insulin, while meglitinides and sulphonylureas were associated with increased risk. CONCLUSIONS Metformin, thiazolidinediones, pioglitazone, GLP1RAs and SGLT2is were associated with reduced risk of dementia. More longitudinal studies aimed at determining their relative benefit in different populations should be conducted.
Collapse
Affiliation(s)
- Alvin Kuate Defo
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Veselko Bakula
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Christopher Labos
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Simon S Wing
- Division of Endocrinology & Metabolism, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Stella S Daskalopoulou
- Vascular Health Unit, Research Institute of the McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Internal Medicine, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Doran W, Tunnicliffe L, Muzambi R, Rentsch CT, Bhaskaran K, Smeeth L, Brayne C, Williams DM, Chaturvedi N, Eastwood SV, Dunachie SJ, Mathur R, Warren-Gash C. Incident dementia risk among patients with type 2 diabetes receiving metformin versus alternative oral glucose-lowering therapy: an observational cohort study using UK primary healthcare records. BMJ Open Diabetes Res Care 2024; 12:e003548. [PMID: 38272537 PMCID: PMC10823924 DOI: 10.1136/bmjdrc-2023-003548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION 4.2 million individuals in the UK have type 2 diabetes, a known risk factor for dementia and mild cognitive impairment (MCI). Diabetes treatment may modify this association, but existing evidence is conflicting. We therefore aimed to assess the association between metformin therapy and risk of incident all-cause dementia or MCI compared with other oral glucose-lowering therapies (GLTs). RESEARCH DESIGN AND METHODS We conducted an observational cohort study using the Clinical Practice Research Datalink among UK adults diagnosed with diabetes at ≥40 years between 1990 and 2019. We used an active comparator new user design to compare risks of dementia and MCI among individuals initially prescribed metformin versus an alternative oral GLT using Cox proportional hazards regression controlling for sociodemographic, lifestyle and clinical confounders. We assessed for interaction by age and sex. Sensitivity analyses included an as-treated analysis to mitigate potential exposure misclassification. RESULTS We included 211 396 individuals (median age 63 years; 42.8% female), of whom 179 333 (84.8%) initiated on metformin therapy. Over median follow-up of 5.4 years, metformin use was associated with a lower risk of dementia (adjusted HR (aHR) 0.86 (95% CI 0.79 to 0.94)) and MCI (aHR 0.92 (95% CI 0.86 to 0.99)). Metformin users aged under 80 years had a lower dementia risk (aHR 0.77 (95% CI 0.68 to 0.85)), which was not observed for those aged ≥80 years (aHR 0.95 (95% CI 0.87 to 1.05)). There was no interaction with sex. The as-treated analysis showed a reduced effect size compared with the main analysis (aHR 0.90 (95% CI 0.83 to 0.98)). CONCLUSIONS Metformin use was associated with lower risks of incident dementia and MCI compared with alternative GLT among UK adults with diabetes. While our findings are consistent with a neuroprotective effect of metformin against dementia, further research is needed to reduce risks of confounding by indication and assess causality.
Collapse
Affiliation(s)
- William Doran
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Louis Tunnicliffe
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Rutendo Muzambi
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Christopher T Rentsch
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Krishnan Bhaskaran
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Liam Smeeth
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Dylan M Williams
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Sophie V Eastwood
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Susanna J Dunachie
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rohini Mathur
- Centre for Primary Care, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Charlotte Warren-Gash
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
23
|
Tahmi M, Benitez R, Luchsinger JA. Metformin as a Potential Prevention Strategy for Alzheimer's Disease and Alzheimer's Disease Related Dementias. J Alzheimers Dis 2024; 101:S345-S356. [PMID: 39422959 DOI: 10.3233/jad-240495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Metformin is a safe and effective medication for type 2 diabetes (T2D) that has been proposed to decrease the risk of aging related disorders including Alzheimer's disease (AD) and Alzheimer's disease related disorders(ADRD). Objective This review seeks to summarize findings from studies examining the association of metformin with AD/ADRD related outcomes. Methods This is a narrative review of human studies, including observational studies and clinical trials, examining the association of metformin with cognitive and brain outcomes. We used PubMed as the main database for our literature search with a focus on English language human studies including observational studies and clinical trials. We prioritized studies published from 2013 until February 15, 2024. Results Observational human studies are conflicting, but those with better study designs suggest that metformin use in persons with T2D is associated with a lower risk of dementia. However, these observational studies are limited by the use of administrative data to ascertain metformin use and/or cognitive outcomes. There are few clinical trials in persons without T2D that have small sample sizes and short durations but suggest that metformin could prevent AD/ADRD. There are ongoing studies including large clinical trials with long duration that are testing the effect of metformin on AD/ADRD outcomes in persons without T2D at risk for dementia. Conclusions Clinical trial results are needed to establish the effect of metformin on the risk of AD and ADRD.
Collapse
Affiliation(s)
- Mouna Tahmi
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Richard Benitez
- Departments of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - José A Luchsinger
- Departments of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
24
|
de la Monte SM. Conquering Insulin Network Dysfunctions in Alzheimer's Disease: Where Are We Today? J Alzheimers Dis 2024; 101:S317-S343. [PMID: 39422949 PMCID: PMC11807374 DOI: 10.3233/jad-240069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Functional impairments in the brain's insulin and insulin-like growth factor (IGF) signal transduction networks are recognized mediators of dysregulated energy metabolism, a major driver of the Alzheimer's disease (AD) neurodegeneration cascade. AD-associated insulin-deficient and insulin-resistant states mimic those of diabetes mellitus and affect all cell types in the brain. Besides accounting for abundant amyloid-β and hyperphosphorylated tau lesions in AD, insulin/IGF pathway dysfunctions cause cortical atrophy, loss of synaptic plasticity, white matter myelin/oligodendrocyte degeneration, astrocyte and microglial neuroinflammation and oxidative stress, deficits in energy metabolism, mitochondrial dysfunction, and microvascular disease. These same neuropathological processes have been linked to cognitive impairment in type 2 diabetes mellitus, Parkinson's disease, and vascular dementia. Strategies to address metabolic mediators of cognitive impairment have been borrowed from diabetes and other insulin-resistant diseases and leveraged on preclinical AD model data. The repurposing of diabetes drugs led to clinical trials with intranasal insulin, followed by insulin sensitizers including metformin and peroxisome-proliferator-activated receptor agonists, and then incretin mimetics primarily targeting GLP-1 receptors. In addition, other glucose-lowering agents have been tested for their efficacy in preventing cognitive declines. The strengths and limitations of these approaches are discussed. The main conclusion of this review is that we have now arrived at a stage in which it is time to address long-term deficits in trophic factor availability and receptor responsiveness, signaling abnormalities that extend beyond insulin and include IGFs and interconnected pathways, and the need for multi-pronged rather than single-pronged therapeutic targeting to remediate AD and other forms of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
25
|
Lin YH, Hsu CC, Liu JS, Chang KC, Huang JA. Use of dipeptidyl peptidase-4 inhibitors was associated with a lower risk of Parkinson's disease in diabetic patients. Sci Rep 2023; 13:22489. [PMID: 38110464 PMCID: PMC10728170 DOI: 10.1038/s41598-023-49870-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetes mellitus is a risk factor for Parkinson's disease (PD). While animal studies have supported the benefits of incretin-based therapies, including dipeptidyl peptidase-4 (DPP4) inhibitors, in PD, clinical research has yielded controversial results. This cohort study aimed to assess the relationship between PD incidence and the utilization of DPP4 inhibitor in diabetic patients. Using Taiwan's National Health Insurance Research Database from 2009 to 2018, diabetic patients receiving metformin plus at least one second-line oral antidiabetic (OAD) were enrolled. The patients were categorized as DPP4 inhibitor users and non-users. Propensity score matching was employed to establish a 1:1 ratio between DPP4 inhibitor users and non-users. Among the 205,910 patients enrolled, 149 were diagnosed with PD during follow-up. The incidence rate was 0.29 per 1000 person-years for DPP4 inhibitor users and 0.55 per 1000 person-years for the non-users. DPP4 inhibitor users exhibited a significantly lower risk of PD (adjusted hazard ratio, 0.51; 95% CI 0.39-0.68). Among DPP4 inhibitor users, vildagliptin showed the strongest correlation with a reduction in the risk of PD. This study demonstrates that the use of DPP4 inhibitors along with metformin in diabetic patients is associated with a lower risk of PD compared to those using other OADs.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Division of Neurology, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, 40705, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, 33044, Taiwan
| | - Jia-Sin Liu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
| | - Kuo-Cheng Chang
- Division of Neurology, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, 40705, Taiwan.
| | - Jin-An Huang
- Division of Neurology, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, 40705, Taiwan.
- Department of Health Business Administration, Hungkuang University, Taichung, 43302, Taiwan.
| |
Collapse
|
26
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
27
|
Mantik KEK, Kim S, Gu B, Moon S, Kwak HB, Park DH, Kang JH. Repositioning of Anti-Diabetic Drugs against Dementia: Insight from Molecular Perspectives to Clinical Trials. Int J Mol Sci 2023; 24:11450. [PMID: 37511207 PMCID: PMC10380685 DOI: 10.3390/ijms241411450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance as a hallmark of type 2 DM (T2DM) plays a role in dementia by promoting pathological lesions or enhancing the vulnerability of the brain. Numerous studies related to insulin/insulin-like growth factor 1 (IGF-1) signaling are linked with various types of dementia. Brain insulin resistance in dementia is linked to disturbances in Aβ production and clearance, Tau hyperphosphorylation, microglial activation causing increased neuroinflammation, and the breakdown of tight junctions in the blood-brain barrier (BBB). These mechanisms have been studied primarily in Alzheimer's disease (AD), but research on other forms of dementia like vascular dementia (VaD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) has also explored overlapping mechanisms. Researchers are currently trying to repurpose anti-diabetic drugs to treat dementia, which are dominated by insulin sensitizers and insulin substrates. Although it seems promising and feasible, none of the trials have succeeded in ameliorating cognitive decline in late-onset dementia. We highlight the possibility of repositioning anti-diabetic drugs as a strategy for dementia therapy by reflecting on current and previous clinical trials. We also describe the molecular perspectives of various types of dementia through the insulin/IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Keren Esther Kristina Mantik
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sujin Kim
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Bonsang Gu
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
28
|
Battini V, Cirnigliaro G, Leuzzi R, Rissotto E, Mosini G, Benatti B, Pozzi M, Nobile M, Radice S, Carnovale C, Dell’Osso B, Clementi E. The potential effect of metformin on cognitive and other symptom dimensions in patients with schizophrenia and antipsychotic-induced weight gain: a systematic review, meta-analysis, and meta-regression. Front Psychiatry 2023; 14:1215807. [PMID: 37502816 PMCID: PMC10370497 DOI: 10.3389/fpsyt.2023.1215807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Metformin has shown good efficacy in the management of antipsychotic-induced metabolic syndrome (MetS) in patients with schizophrenia or schizoaffective disorders. Its ability to induce antidepressant behavioural effects and improve cognitive functions has also been investigated: yet information has not been systematized. The aim of this study was therefore to investigate the effects of metformin on cognitive and other symptom dimension in schizophrenic patients treated with antipsychotics through a systematic review and meta-analysis. Methods We searched PubMed, ClinicalTrials.Gov, Embase, PsycINFO, and WHO ICTRP database up to February 2022, Randomised Controlled Trials (RCT) evaluating patients diagnosed with schizophrenia and related disorders, who were treated with metformin as add-on therapy to antipsychotics for the treatment of weight gain and in which changes in psychiatric symptoms and cognitive functions were evaluated. Results A total of 19 RCTs met the inclusion criteria. Meta-analysis was performed on 12 eligible studies. We found a positive trend after 24 weeks of treatment in schizophrenic patients with stable conditions [SMD (95%CI) = -0.40 (-0.82;0.01), OR (95%CI) = 0.5 (-2.4;3.4)]. Better performance was detected in the Brief Assessment of Cognition in Schizophrenia and Positive and Negative Syndrome Scale (PANSS) with low heterogeneity among studies. One study reported changes in BACS-verbal memory subdomain in favour of placebo [MD (95%CI) = -16.03 (-23.65;8.42)]. Gastrointestinal disorders, xerostomia, and extrapyramidal syndrome were the most reported adverse effects. Psychiatric adverse events were also described: in particular, symptoms attributable to a relapse of schizophrenia. Conclusion Some degree of efficacy was found for Metformin in improving cognitive and other symptom dimensions in patients with Schizophrenia. Given the clinical relevance of this potential pharmacological effect, longer specific studies using adequate psychometric scales are strongly recommended. Likewise, how metformin acts in this context needs to be evaluated in order to enhance its efficacy or find more efficacious drugs.
Collapse
Affiliation(s)
- Vera Battini
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Giovanna Cirnigliaro
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Rodolfo Leuzzi
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Eleonora Rissotto
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mosini
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Beatrice Benatti
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
- CRC “Aldo Ravelli” for Neurotechnology & Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Marco Pozzi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Maria Nobile
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Sonia Radice
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Bernardo Dell’Osso
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
- CRC “Aldo Ravelli” for Neurotechnology & Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
- Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford Medical School, Stanford University, Stanford, CA, United States
- Centro per lo studio dei meccanismi molecolari alla base delle patologie neuro-psico-geriatriche, Università degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| |
Collapse
|
29
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
30
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
31
|
Long-term use of metformin and Alzheimer's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:1107-1115. [PMID: 36849855 DOI: 10.1007/s10787-023-01163-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by extracellular deposition of amyloid beta (Aβ) leading to cognitive decline. Evidence from epidemiological studies has shown the association between type 2 diabetes mellitus (T2DM) and the development of AD. T2DM and peripheral insulin resistance (IR) augment the risk of AD with the development of brain IR with inhibition of neuronal insulin receptors. These changes impair clearance of Aβ, increase secretion of Aβ1-42, reduce brain glucose metabolism, and abnormal deposition of Aβ plaques. Insulin-sensitizing drug metformin inhibits aggregation of Aβ by increasing the activity of the insulin-degrading enzyme (IDE) and neprilysin (NEP) levels. Additionally, different studies raised conflicting evidence concerning long-term metformin therapy in T2DM patients, as it may increase the risk of AD or it may prevent the progression of AD. Therefore, the objective of this review was to clarify the beneficial and detrimental effects of long-term metformin therapy in T2DM patients and risk of AD. Evidence from clinical trial studies revealed the little effect of metformin on AD. Various animal studies showed that metformin increases Aβ formation by activation of amyloid precursor protein (APP)-cleaving enzymes with the generation of insoluble tau species. Of note, the metformin effect on cognitive function relative to AD pathogenesis is mostly assessed in animal model studies. The duration of metformin therapy was short in most animal studies, this finding cannot apply to the long-term duration of metformin in humans. Therefore, large-scale prospective and comparative studies involving long-term metformin therapy in both diabetic and non-diabetic patients are required to exclude the effect of T2DM-induced AD.
Collapse
|
32
|
Cullinane PW, de Pablo Fernandez E, König A, Outeiro TF, Jaunmuktane Z, Warner TT. Type 2 Diabetes and Parkinson's Disease: A Focused Review of Current Concepts. Mov Disord 2023; 38:162-177. [PMID: 36567671 DOI: 10.1002/mds.29298] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
Highly reproducible epidemiological evidence shows that type 2 diabetes (T2D) increases the risk and rate of progression of Parkinson's disease (PD), and crucially, the repurposing of certain antidiabetic medications for the treatment of PD has shown early promise in clinical trials, suggesting that the effects of T2D on PD pathogenesis may be modifiable. The high prevalence of T2D means that a significant proportion of patients with PD may benefit from personalized antidiabetic treatment approaches that also confer neuroprotective benefits. Therefore, there is an immediate need to better understand the mechanistic relation between these conditions and the specific molecular pathways affected by T2D in the brain. Although there is considerable evidence that processes such as insulin signaling, mitochondrial function, autophagy, and inflammation are involved in the pathogenesis of both PD and T2D, the primary aim of this review is to highlight the evidence showing that T2D-associated dysregulation of these pathways occurs not only in the periphery but also in the brain and how this may facilitate neurodegeneration in PD. We also discuss the challenges involved in disentangling the complex relationship between T2D, insulin resistance, and PD, as well as important questions for further research. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eduardo de Pablo Fernandez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.,Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
33
|
Chen PC, Hong CT, Chen WT, Chan L, Chien LN. Metformin Adherence Reduces the Risk of Dementia in Patients With Diabetes: A Population-based Cohort Study. Endocr Pract 2023; 29:247-253. [PMID: 36657564 DOI: 10.1016/j.eprac.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Metformin is widely used as the first-line drug for type 2 diabetes mellitus and has numerous benefits apart from lowering blood glucose. However, metformin-retained regimen is challenged by newly launching, powerful glucose-lowering antiglycemic agents. This population-based cohort study examined the association between metformin adherence and the risk of dementia and Parkinson's disease (PD). METHODS Diabetic patients with metformin-included combination antiglycemic therapy were identified from the National Health Insurance Research Database and categorized into metformin-adherent and -nonadherent groups according to the medical record of the first year prescription. Patients contraindicated with metformin, severe diabetic complications, and poor drug compliance were excluded. The study outcome was the diagnosis of dementia or PD. RESULTS A total of 31 384 matched pairs were included after using propensity score matching and both groups were followed up for an average of 5 years. Metformin adherence was associated with a significantly lower risk of dementia (adjusted hazard risk ratio = 0.72, P < .001) but not PD (adjusted hazard risk ratio = 0.97, P = .825). Subgroup analysis revealed that the risk of dementia was significantly reduced in metformin-adherent patients, both male and female, aged >65 or ≤ 65 years, and with or without concurrent insulin treatment. This effect was not influenced by concurrent insulin treatment, which may eliminate the bias caused by the severity of diabetes mellitus. CONCLUSION Despite the launching of numerous new oral antiglycemic agents, metformin may provide further benefit on lowering risk of dementia beyond conventional glycemic control according to the real-world evidence.
Collapse
Affiliation(s)
- Po-Chih Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Wan-Ting Chen
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei City, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| | - Li-Nien Chien
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei City, Taiwan; Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan; School of Health Care Administration, College of Management, Taipei Medical University, Taipei City, Taiwan; Master of Public Health Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
34
|
METTL14 Regulates Intestine Cellular Senescence through m 6A Modification of Lamin B Receptor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9096436. [PMID: 36578521 PMCID: PMC9792243 DOI: 10.1155/2022/9096436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
N-6-Methyladenosine (m6A) modification is involved in multiple biological processes including aging. However, the regulation of m6A methyltransferase-like 14 (METTL14) in aging remains unclear. Here, we revealed that the level of m6A modification and the expression of METTL14 were particularly decreased in the intestine of aged mice as compared to young mice. Similar results were confirmed in Drosophila melanogaster. Knockdown of Mettl14 in Drosophila resulted in a short lifespan, associated disrupted intestinal integrity, and reduced climbing ability. In human CCD-18Co cells, knockdown of METTL14 accelerated cellular senescence, and the overexpression of METTL14 rescued senescent phenotypes. We also identified the lamin B receptor (LBR) as a target gene for METTL14-mediated m6A modification. Knockdown of METTL14 decreased m6A level of LBR, resulted in LBR mRNA instability, and thus induced cellular senescence. Our findings suggest that METTL14 plays an essential role in the m6A modification-dependent aging process via the regulation of LBR and provides a potential target for cellular senescence.
Collapse
|
35
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Yu H, Sun T, He X, Wang Z, Zhao K, An J, Wen L, Li JY, Li W, Feng J. Association between Parkinson's Disease and Diabetes Mellitus: From Epidemiology, Pathophysiology and Prevention to Treatment. Aging Dis 2022; 13:1591-1605. [PMID: 36465171 PMCID: PMC9662283 DOI: 10.14336/ad.2022.0325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 08/27/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson's disease (PD) are both age-related diseases of global concern being among the most common chronic metabolic and neurodegenerative diseases, respectively. While both diseases can be genetically inherited, environmental factors play a vital role in their pathogenesis. Moreover, DM and PD have common underlying molecular mechanisms, such as misfolded protein aggregation, mitochondrial dysfunction, oxidative stress, chronic inflammation, and microbial dysbiosis. Recently, epidemiological and experimental studies have reported that DM affects the incidence and progression of PD. Moreover, certain antidiabetic drugs have been proven to decrease the risk of PD and delay its progression. In this review, we elucidate the epidemiological and pathophysiological association between DM and PD and summarize the antidiabetic drugs used in animal models and clinical trials of PD, which may provide reference for the clinical translation of antidiabetic drugs in PD treatment.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhen Wang
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Kaidong Zhao
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jia-Yi Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Wen Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
37
|
Yamanashi T, Anderson ZEEM, Modukuri M, Chang G, Tran T, Marra PS, Wahba NE, Crutchley KJ, Sullivan EJ, Jellison SS, Comp KR, Akers CC, Meyer AA, Lee S, Iwata M, Cho HR, Shinozaki E, Shinozaki G. The potential benefit of metformin to reduce delirium risk and mortality: a retrospective cohort study. Aging (Albany NY) 2022; 14:8927-8943. [PMID: 36399107 PMCID: PMC9740381 DOI: 10.18632/aging.204393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE Metformin has been reported to improve age-related disorders, including dementia, and to lower mortality. This study was conducted to investigate whether metformin use lower delirium risk, as well as long-term mortality. METHODS In this retrospective cohort study, previously recruited 1,404 subjects were analyzed. The relationship between metformin use and delirium, and the relationship between metformin use and 3-year mortality were investigated. MAIN FINDINGS 242 subjects were categorized into a type 2 diabetes mellitus (DM)-without-metformin group, and 264 subjects were categorized into a DM-with-metformin group. Prevalence of delirium was 36.0% in the DM-without-metformin group, and 29.2% in the DM-with-metformin group. A history of metformin use reduced the risk of delirium in patients with DM (OR, 0.50 [95% CI, 0.32 to 0.79]) after controlling for confounding factors. The 3-year mortality in the DM-without-metformin group (survival rate, 0.595 [95% CI, 0.512 to 0.669]) was higher than in the DM-with-metformin group (survival rate, 0.695 [95% CI, 0.604 to 0.770]) (p=0.035). A history of metformin use decreased the risk of 3-year mortality after adjustment for confounding factors (HR, 0.69 [95% CI, 0.48 to 0.98]). CONCLUSIONS Metformin use may lower the risk of delirium and mortality in DM patients.
Collapse
Affiliation(s)
- Takehiko Yamanashi
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA 94305, USA,University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA,Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago-Shi, Tottori, Japan
| | - Zoe-Ella EM Anderson
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Manisha Modukuri
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Gloria Chang
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Tammy Tran
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Pedro S. Marra
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Nadia E. Wahba
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Kaitlyn J. Crutchley
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Eleanor J. Sullivan
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Sydney S. Jellison
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Katie R. Comp
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Cade C. Akers
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Alissa A. Meyer
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| | - Sangil Lee
- University of Iowa Carver College of Medicine, Department of Emergency Medicine, Iowa City, IA 52242, USA
| | - Masaaki Iwata
- Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago-Shi, Tottori, Japan
| | - Hyunkeun R. Cho
- University of Iowa College of Public Health, Department of Biostatistics, Iowa City, IA 52242, USA
| | - Eri Shinozaki
- University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, IA 52242, USA
| | - Gen Shinozaki
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA 94305, USA,University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
O'Brien JT, Chouliaras L, Sultana J, Taylor JP, Ballard C. RENEWAL: REpurposing study to find NEW compounds with Activity for Lewy body dementia-an international Delphi consensus. Alzheimers Res Ther 2022; 14:169. [PMID: 36369100 PMCID: PMC9650797 DOI: 10.1186/s13195-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy body dementia (which includes both dementia with Lewy bodies and Parkinson's disease dementia) apart from cholinesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II or III clinical trials in Lewy body dementia.
Collapse
Affiliation(s)
- John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Janet Sultana
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
39
|
Faizan M, Sarkar A, Singh MP. Type 2 diabetes mellitus augments Parkinson's disease risk or the other way around: Facts, challenges and future possibilities. Ageing Res Rev 2022; 81:101727. [PMID: 36038113 DOI: 10.1016/j.arr.2022.101727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
About 10% of the adult population is living with type 2 diabetes mellitus (T2DM) and 1% of the population over 60 years of age is suffering from Parkinson's disease (PD). A school of thought firmly believes that T2DM, an age-related disease, augments PD risk. Such relationship is reflected from the severity of PD symptoms in drug naive subjects possessing T2DM. Onset of Parkinsonian feature in case controls possessing T2DM corroborates the role of hyperglycemia in PD. A few cohort, meta-analysis and animal studies have shown an increased PD risk owing to insulin resistance. High fat diet and role of insulin signaling in the regulation of sugar metabolism, oxidative stress, α-synuclein aggregation and accumulation, inflammatory response and mitochondrial function in PD models and sporadic PD further connect the two. Although little is reported about the implication of PD in hyperglycemia and T2DM, a few studies have also contradicted. Ameliorative effect of anti-diabetic drugs on Parkinsonian symptoms and vague outcome of anti-PD medications in T2DM patients also suggest a link. The article reviews the literature supporting augmented risk of one by the other, analysis of proof of the concept, facts, challenges, future possibilities and standpoint on the subject.
Collapse
Affiliation(s)
- Mohd Faizan
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Alika Sarkar
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
40
|
Newby D, Linden AB, Fernandes M, Molero Y, Winchester L, Sproviero W, Ghose U, Li QS, Launer LJ, Duijn CMV, Nevado-Holgado AJ. Comparative effect of metformin versus sulfonylureas with dementia and Parkinson's disease risk in US patients over 50 with type 2 diabetes mellitus. BMJ Open Diabetes Res Care 2022; 10:10/5/e003036. [PMID: 36109050 PMCID: PMC9478804 DOI: 10.1136/bmjdrc-2022-003036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Type 2 diabetes is a risk factor for dementia and Parkinson's disease (PD). Drug treatments for diabetes, such as metformin, could be used as novel treatments for these neurological conditions. Using electronic health records from the USA (OPTUM EHR) we aimed to assess the association of metformin with all-cause dementia, dementia subtypes and PD compared with sulfonylureas. RESEARCH DESIGN AND METHODS A new user comparator study design was conducted in patients ≥50 years old with diabetes who were new users of metformin or sulfonylureas between 2006 and 2018. Primary outcomes were all-cause dementia and PD. Secondary outcomes were Alzheimer's disease (AD), vascular dementia (VD) and mild cognitive impairment (MCI). Cox proportional hazards models with inverse probability of treatment weighting (IPTW) were used to estimate the HRs. Subanalyses included stratification by age, race, renal function, and glycemic control. RESULTS We identified 96 140 and 16 451 new users of metformin and sulfonylureas, respectively. Mean age was 66.4±8.2 years (48% male, 83% Caucasian). Over the 5-year follow-up, 3207 patients developed all-cause dementia (2256 (2.3%) metformin, 951 (5.8%) sulfonylurea users) and 760 patients developed PD (625 (0.7%) metformin, 135 (0.8%) sulfonylurea users). After IPTW, HRs for all-cause dementia and PD were 0.80 (95% CI 0.73 to 0.88) and 1.00 (95% CI 0.79 to 1.28). HRs for AD, VD and MCI were 0.81 (0.70-0.94), 0.79 (0.63-1.00) and 0.91 (0.79-1.04). Stronger associations were observed in patients who were younger (<75 years old), Caucasian, and with moderate renal function. CONCLUSIONS Metformin users compared with sulfonylurea users were associated with a lower risk of all-cause dementia, AD and VD but not with PD or MCI. Age and renal function modified risk reduction. Our findings support the hypothesis that metformin provides more neuroprotection for dementia than sulfonylureas but not for PD, but further work is required to assess causality.
Collapse
Affiliation(s)
- Danielle Newby
- Psychiatry, University of Oxford, Oxford, UK
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | | | - Yasmina Molero
- Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institute, Stockholm, Sweden
- Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | - Qingqin S Li
- Neuroscience, Janssen Research and Development, Titusville, New Jersey, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, Maryland, USA
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
41
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
42
|
Gonçalves CA, Sesterheim P, Wartchow KM, Bobermin LD, Leipnitz G, Quincozes-Santos A. Why antidiabetic drugs are potentially neuroprotective during the Sars-CoV-2 pandemic: The focus on astroglial UPR and calcium-binding proteins. Front Cell Neurosci 2022; 16:905218. [PMID: 35966209 PMCID: PMC9374064 DOI: 10.3389/fncel.2022.905218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
We are living in a terrifying pandemic caused by Sars-CoV-2, in which patients with diabetes mellitus have, from the beginning, been identified as having a high risk of hospitalization and mortality. This viral disease is not limited to the respiratory system, but also affects, among other organs, the central nervous system. Furthermore, we already know that individuals with diabetes mellitus exhibit signs of astrocyte dysfunction and are more likely to develop cognitive deficits and even dementia. It is now being realized that COVID-19 incurs long-term effects and that those infected can develop several neurological and psychiatric manifestations. As this virus seriously compromises cell metabolism by triggering several mechanisms leading to the unfolded protein response (UPR), which involves endoplasmic reticulum Ca2+ depletion, we review here the basis involved in this response that are intimately associated with the development of neurodegenerative diseases. The discussion aims to highlight two aspects-the role of calcium-binding proteins and the role of astrocytes, glial cells that integrate energy metabolism with neurotransmission and with neuroinflammation. Among the proteins discussed are calpain, calcineurin, and sorcin. These proteins are emphasized as markers of the UPR and are potential therapeutic targets. Finally, we discuss the role of drugs widely prescribed to patients with diabetes mellitus, such as statins, metformin, and calcium channel blockers. The review assesses potential neuroprotection mechanisms, focusing on the UPR and the restoration of reticular Ca2+ homeostasis, based on both clinical and experimental data.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Krista M. Wartchow
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
43
|
Sanchez-Mirasierra I, Ghimire S, Hernandez-Diaz S, Soukup SF. Targeting Macroautophagy as a Therapeutic Opportunity to Treat Parkinson's Disease. Front Cell Dev Biol 2022; 10:921314. [PMID: 35874822 PMCID: PMC9298504 DOI: 10.3389/fcell.2022.921314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy, an evolutionary conserved catabolic process in the eukaryotic cell, regulates cellular homeostasis and plays a decisive role in self-engulfing proteins, protein aggregates, dysfunctional or damaged organelles, and invading pathogens. Growing evidence from in vivo and in vitro models shows that autophagy dysfunction plays decisive role in the pathogenesis of various neurodegenerative diseases, including Parkinson's disease (PD). PD is an incurable and second most common neurodegenerative disease characterised by neurological and motor dysfunction accompanied of non-motor symptoms that can also reduce the life quality of patients. Despite the investment in research, the aetiology of the disease is still unknown and the therapies available are aimed mostly at ameliorating motor symptoms. Hence, therapeutics regulating the autophagy pathway might play an important role controlling the disease progression, reducing neuronal loss and even ameliorating non-motor symptoms. In this review, we highlight potential therapeutic opportunities involved in different targeting options like an initiation of autophagy, Leucine-rich repeat kinase 2 (LRRK2) inhibition, mitophagy, lysosomes, lipid metabolism, immune system, gene expression, biomarkers, and also non-pharmacological interventions. Thus, strategies to identify therapeutics targeting the pathways modulating autophagy might hold a future for therapy development against PD.
Collapse
Affiliation(s)
| | - Saurav Ghimire
- Universite Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | |
Collapse
|
44
|
Ji S, Zhao X, Zhu R, Dong Y, Huang L, Zhang T. Metformin and the risk of dementia based on an analysis of 396,332 participants. Ther Adv Chronic Dis 2022; 13:20406223221109454. [PMID: 35847477 PMCID: PMC9277541 DOI: 10.1177/20406223221109454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background: AMPK has attracted widespread interest as a potential therapeutic target for age-related diseases, given its key role in controlling energy homeostasis. Metformin (Met) has historically been used to treat Type 2 diabetes and has been shown to counteract age-related diseases. However, studies regarding the relationship between Met and a variety of age-related classifications of cognitive decline have reported mixed findings. Objective: To assess the potential effect of Met on the onset of dementia and discuss the possible biological mechanisms involved. Methods: This study was registered in the PROSPERO database (CRD420201251468). PubMed, Embase, and Cochrane Library were searched from inception to 25 May 2021, for population-based cohort studies. Effect estimates with 95% confidence intervals (CIs) were pooled using the random-effects model. Meta-regression and subgroup analyses were performed to explore sources of heterogeneity and the stability of the results. Results: Fourteen population-based cohort studies (17 individual comparisons) involving 396,332 participants were identified. Meta-analysis showed that Met exposure was significantly associated with reduced risk of all subtypes of dementias [relative risk (RR) = 0.79, 95% CI = 0.68–0.91; p < 0.001]. Conversely, no significant reduction in risk was observed for those who received Met monotherapy at the onset of vascular dementia (VD), Parkinson’s disease (PD), and Alzheimer’s disease (AD). The effect was more prominent in patients who had long-term Met exposure (⩾4 years) (RR = 0.38, 95% CI = 0.32–0.46; p < 0.001), while no such significant effect was found with short-term Met exposure (1–2 years) (RR = 1.20, 95% CI = 0.87–1.66; p < 0.001). Moreover, no association was observed for Met exposure in participants of European descent (RR = 1.01, 95% CI = 0.66–1.54; p = 0.003) compared with those from other countries. Conclusion: Based on the evidence from population-based cohort studies, our findings suggest that the AMPK activator, Met, is a potential geroprotective agent for dementias, particularly among long-term Met users. Due to the significant heterogeneity among the included studies, we should interpret the results with caution.
Collapse
Affiliation(s)
- Shiliang Ji
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xingxing Zhao
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou, China
| | - Ruifang Zhu
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yongchao Dong
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lifeng Huang
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou 215153, China
| | - Taiquan Zhang
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou 215153, China
| |
Collapse
|
45
|
Nabizadeh F, Kankam SB, Balabandian M, Hashemi SM, Sharifkazemi H, Rostami MR. Metformin use and brain atrophy in nondemented elderly individuals with diabetes. Exp Gerontol 2022; 166:111890. [PMID: 35843348 DOI: 10.1016/j.exger.2022.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE There is a shred of growing evidence demonstrating that diabetic patients are at higher risk of developing Alzheimer's disease compared to the general population. The previous investigation showed the protective effect of metformin for delaying dementia in diabetic patients. However, there are limited data on the effect of metformin on structural changes. This study aims to investigate the effect of metformin on hippocampal and cortical volumes in non-demented diabetic individuals. METHOD We entered 157 non-demented diabetic subjects including 89 mild cognitive impairment (MCI), and 68 cognitively healthy individuals from Alzheimer's disease Neuroimaging Initiative (ADNI) which were then categorized as metformin users and non-users. We used the ANCOVA model for measuring the association between metformin use and hippocampal and cortical volumes. RESULTS Among 157 subjects with a mean age of 71.8 (±7.7) included in this study, 76 individuals were stratified as metformin users. Results of the univariate model indicate that metformin users had a higher right (p = 0.003) and left parietal lobe volume (p = 0.004). Moreover, the volume of left cingulate was higher in those who used metformin compared to those not used it (p = 0.027). Our results were also significant for the right frontal lobe and indicated that metformin users had higher volume (p = 0.035). There were no significant differences in the hippocampus, occipital, and temporal regions. CONCLUSION Our findings showed the protective effects of metformin on brain volumes in non-demented elderly individuals with diabetes. Comparing the groups show strong enough results regarding the lower atrophy in metformin users.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Mohammad Balabandian
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Reza Rostami
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
46
|
Luo A, Ning P, Lu H, Huang H, Shen Q, Zhang D, Xu F, Yang L, Xu Y. Association Between Metformin and Alzheimer's Disease: A Systematic Review and Meta-Analysis of Clinical Observational Studies. J Alzheimers Dis 2022; 88:1311-1323. [PMID: 35786654 DOI: 10.3233/jad-220180] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND As one of the widely used drugs for the management of type 2 diabetes mellites (T2DM), metformin is increasingly believed to delay cognitive deterioration and therapeutically for Alzheimer's disease (AD) patients especially those with T2DM. However, studies of the potential neuroprotective effects of metformin in AD patients have reported contradictory results. OBJECTIVE This study aimed to evaluate the association between metformin and the risk of developing AD. METHODS We systematically searched the PubMed, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases to identify clinical observational studies on the relationship between AD risk and metformin use published before December 20, 2021. Two investigators independently screened records, extracted data, and assessed the quality of the studies. Pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated using random-effect models. RESULTS After screening a total of 1,670 records, we included 10 studies involving 229,110 participants. The meta-analysis showed no significant association between AD incidence and metformin exposure (OR 1.17, 95% CI 0.88-1.56, p = 0.291). However, subgroup analysis showed that among Asians, the risk of AD was significantly higher among metformin users than those who did not (OR 1.71, 95% CI 1.24-2.37, p = 0.001). CONCLUSION The available evidence does not support the idea that metformin reduces risk of AD, and it may, in fact, increase the risk in Asians. Further well-designed randomized controlled trials are required to understand the role played by metformin and other antidiabetic drugs in the prevention of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Anling Luo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Haitao Lu
- Department of Neurology, Third People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Hongyan Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Qiuyan Shen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Dan Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Fang Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Li Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| |
Collapse
|
47
|
Zhang Y, Zhang Y, Shi X, Han J, Lin B, Peng W, Mei Z, Lin Y. Metformin and the risk of neurodegenerative diseases in patients with diabetes: A meta-analysis of population-based cohort studies. Diabet Med 2022; 39:e14821. [PMID: 35213749 DOI: 10.1111/dme.14821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
AIMS The association between metformin use and neurodegenerative disease (ND) onset remains controversial. In this systematic review and meta-analysis, we aimed to determine the relationship between metformin use and ND risk based on data from population-based cohort studies. METHODS Articles were systematically searched in PubMed, EMBASE and Cochrane Library databases. Pooled relative risks (RRs) with 95% CIs were obtained using a random-effects model. Subgroup analyses, sensitivity analyses and meta-regression were performed to identify the sources of heterogeneity and strengthen the results. RESULTS Twelve population-based cohort studies involving 194,792 participants (94,462 metformin users and 100,330 metformin non-users) were eligible for inclusion in this meta-analysis. The pooled RR of NDs reached 0.77 (95% CI 0.67-0.88) when comparing metformin users with non-users. The effects were more prominent in long-term metformin users (≥4 years) (RR 0.29, 95% CI 0.13-0.44) and studies from Asian countries (RR 0.69, 95% CI 0.64-0.74). The effect estimates were stable when stratified by subtypes of NDs, study designs, and control definitions (p for interaction >0.05). Meta-regression did not identify the coefficients as the sources of heterogeneity (all p > 0.05). CONCLUSIONS This systematic review and meta-analysis found that metformin use, especially long-term use, was associated with lower ND risk. However, because there was substantial heterogeneity among studies, high-quality randomized controlled trials are still needed to confirm this finding.
Collapse
Affiliation(s)
- Yunnan Zhang
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Xiujin Shi
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jialun Han
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Baidi Lin
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wenxing Peng
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Yang Lin
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Huang KH, Chang YL, Gau SY, Tsai TH, Lee CY. Dose-Response Association of Metformin with Parkinson's Disease Odds in Type 2 Diabetes Mellitus. Pharmaceutics 2022; 14:946. [PMID: 35631532 PMCID: PMC9147745 DOI: 10.3390/pharmaceutics14050946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Studies have demonstrated that patients with diabetes mellitus who receive metformin have a lower risk of developing Parkinson’s disease (PD). However, studies have also suggested that metformin may increase the risk of PD. In this study, we investigated whether metformin use was associated with the risk of PD in type 2 diabetes mellitus (T2DM). Methods. In this population-based cross-sectional study, patients with T2DM diagnosed between 2001 and 2018 were enrolled. We categorized these patients as metformin users or nonusers. Participants below 50 years old were excluded. Two models were employed to evaluate the associations of metformin exposure and use intensity with PD after 3 and 5 years of follow-up. Results. Patients with T2DM who received <300 cumulative defined daily doses (cDDD) of metformin and those with metformin use intensity of <10 DDD/month had respective odds ratios (ORs) for PD of 0.88 (95% confidence interval [CI] = 0.83−0.94) and 0.87 (95% CI = 0.81−0.93) in a 3-year follow-up. In a 5-year follow-up, such patients had respective ORs for PD of 0.94 (95% CI = 0.90−0.98) and 0.93 (95% CI = 0.89−0.98). Patients with T2DM who received ≥300 cDDD of metformin or used metformin with intensity of ≥10 DDD/month experienced no neuroprotective effects after 3 or 5 years. Conclusions. Metformin was associated with PD odds in T2DM in a dose−response association manner. Patients who received low dosage and intensity of metformin use were associated with lower odds of PD, while higher dosage and intensity of metformin use had no neuroprotective effect.
Collapse
Affiliation(s)
- Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung 40402, Taiwan; (K.-H.H.); (T.-H.T.)
| | - Ya-Lan Chang
- Department of Pharmacology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan;
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung 40402, Taiwan; (K.-H.H.); (T.-H.T.)
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan;
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
49
|
Diabetic patients treated with metformin during early stages of Alzheimer's disease show a better integral performance: data from ADNI study. GeroScience 2022; 44:1791-1805. [PMID: 35445359 DOI: 10.1007/s11357-022-00568-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/10/2022] [Indexed: 11/04/2022] Open
Abstract
We evaluated the effect of the antidiabetic drug metformin on patients enrolled in the ADNI study considering patients with mild cognitive impairment (MCI) due to Alzheimer's disease (AD). Employing data from this observational study, we performed a principal component analysis focusing on the cognitive sphere by evaluating data from neuropsychological tests included in a modified version of the Alzheimer's Disease Cooperative Study-Preclinical Alzheimer Cognitive Composite (ADCS-PACC). Second, we included the levels of amyloid-β, tau, and phosphorylated tau in CSF. We found that MCI metformin-treated patients were globally characterized as subjects with a better cognitive performance and CSF biomarkers profile than the mean population of MCI patients. On the other hand, control subjects and type 2 diabetes patients (T2D) were paired by age, gender, ApoE allele, and years of education, defining three groups: MCI, MCI + T2D, and MCI + T2D + metformin. We evaluated the effect of T2D and metformin treatment employing the PACC score and composites defined from standardized ADNI variables to evaluate the memory and learning function. We found that MCI + T2D patients had a worse cognitive performance than MCI patients, but this deleterious effect was not observed in MCI + T2D + metformin patients. These cognitive variations were associated with changes in cortical thickness and hippocampal volume. Finally, no differences were found in metabolic plasmatic parameters (glycemia, cholesterol, triglycerides). Our study-employing different strategies for data analysis from the global study ADNI-shows a beneficial effect of metformin treatment on cognitive performance, CSF biomarkers profile, and neuroanatomical measures in MCI due to AD patients.
Collapse
|
50
|
Zolfaghari S, Lewandowski N, Pelletier A, Naeimi SA, Gagnon JF, Brillon-Corbeil M, Montplaisir JY, Postuma RB. Cardiovascular Risk Factors and Phenoconversion to Neurodegenerative Synucleinopathies in Idiopathic REM Sleep Behavior Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:927-933. [PMID: 35001898 PMCID: PMC9789479 DOI: 10.3233/jpd-212984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several studies have suggested that atherosclerotic diseases and diabetes may be risk factors for α-synucleinopathies. This prospective cohort study evaluated whether cardiovascular diseases and metabolic risk factors alter the rate or type of phenoconversion from idiopathic/isolated REM sleep behavior disorder (iRBD) to parkinsonism or dementia. Polysomnography-confirmed iRBD patients recruited between 2004 and 2020 were followed annually. Baseline history of cardiovascular disorders, hypertension, hypercholesterolemia, and diabetes were compared among patients who developed outcomes versus those who remained outcome-free. No atherosclerotic risk factors were associated with development of α-synucleinopathies. Patients with hypercholesterolemia were somewhat more likely to develop dementia with Lewy bodies rather than Parkinson's disease.
Collapse
Affiliation(s)
- Sheida Zolfaghari
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Amelie Pelletier
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Seyed Ali Naeimi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Marina Brillon-Corbeil
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Jacques Y. Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Ronald B. Postuma
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada,
Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada,Correspondence to: Dr. Ronald B. Postuma, Department of Neurology, L7-305, Montreal General Hospital, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada. Tel.: +1 514 934 8026; Fax: +1 514 934 8265; E-mail:
| |
Collapse
|