1
|
Gao X, Zhang G, Wang F, Ruan W, Sun S, Zhang Q, Liu X. Emerging roles of EGFL family members in neoplastic diseases: Molecular mechanisms and targeted therapies. Biochem Pharmacol 2025; 236:116847. [PMID: 40044051 DOI: 10.1016/j.bcp.2025.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Epidermal growth factor-like proteins (EGFLs) contain more than a single EGF/EGF-like domain within their protein structure. To date, ten EGFL family members (EGFL1-10) have been characterized across diverse tissues and developmental stages under different conditions. In this review, we conclude that EGFLs are instrumental in regulating biological activities and pathological processes. Under physiological conditions, EGFLs participate in angiogenesis, neurogenesis, osteogenesis, and other processes. Under pathological conditions, EGFLs are linked with different diseases, particularly cancers. Furthermore, we highlight recent advancements in the study of EGFLs in biological conditions and cancers. In addition, the regulatory role and key underlying mechanism of EGFLs in mediating tumorigenesis are discussed. This paper also examines potential antagonists that target EGFL family members in cancer therapeutics. In summary, this comprehensive review elucidates the critical role of EGFLs in neoplastic diseases and highlights their potential as therapeutic targets.
Collapse
Affiliation(s)
- Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Guopeng Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Feitong Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Wenhui Ruan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China
| | - Shishuo Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China; Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China.
| |
Collapse
|
2
|
Hsu HT, Lin YM, Hsing MT, Yeh KT, Lu JW, Yang SF. Cytoplasmic Expression of the EGFL6 Protein Is an Independent Prognostic Factor for Shortened Patient Survival in Human Hepatocellular Carcinoma. In Vivo 2024; 38:2455-2463. [PMID: 39187367 PMCID: PMC11363759 DOI: 10.21873/invivo.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Hepatocellular carcinoma (HCC) is the most common primary liver tumor and the second leading cause of cancer-related deaths worldwide. The current study aimed to investigate the clinical relevance of the epidermal growth factor-like domain multiple 6 (EGFL6) expression in HCC and to evaluate whether the expression of EGFL6 in HCC has diagnostic and prognostic significance. PATIENTS AND METHODS This study aimed to investigate EGFL6 protein expression levels in 260 HCC tissue specimens using immunohistochemical analyses. The immunohistochemical study demonstrated strong EGFL6 expression in the cytoplasm of non-tumor or normal hepatocytes. RESULTS The findings revealed that 98 patients exhibited low EGFL6 expression, while 162 patients displayed high EGFL6 expression. We explored the associations between cytoplasmic EGFL6 expression and the clinicopathological features of HCC. Decreased cytoplasmic EGFL6 expression exhibited significant correlations with worse cellular differentiation, higher T classification, vascular invasion, higher stage, and tumor recurrence. Survival analyses, using Kaplan-Meier survival curves for HCC patients, revealed that those with reduced cytoplasmic EGFL6 expression experienced significantly worse disease-free survival (DFS) and disease-specific survival (DSS). Univariate and multivariate analyses identified EGFL6 as an independent predictor for decreased expression, differentiation grade, vascular invasion, stage, or recurrence in cases of DFS or DSS in HCC. CONCLUSION This study represents, to the best of our knowledge, the first investigation into the expression of EGFL6 protein in HCC. Taken together, our findings strongly suggest that EGFL6 likely plays a crucial role in the pathogenesis of HCC and indicates that targeting EGFL6 could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Hui-Ting Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
- School of Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Ming-Tai Hsing
- Department of Neurosurgery, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark;
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
3
|
Song X, Cheng X, Jin X, Ruan S, Xu X, Lu F, Wu X, Lu F, Feng M, Zhang L, Ge R, Chen H, Hong Z, Hong D. EGFL6 promotes bone metastasis of lung adenocarcinoma by increasing cancer cell malignancy and bone resorption. Clin Exp Metastasis 2023:10.1007/s10585-023-10219-5. [PMID: 37378837 DOI: 10.1007/s10585-023-10219-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Lung adenocarcinoma is the most common and aggressive type of lung cancer with the highest incidence of bone metastasis. Epidermal growth factor-like domain multiple 6 (EGFL6) is an exocrine protein, and the expression of EGFL6 is correlated with survival of patient with lung adenocarcinoma. However, the association between EGFL6 expression in lung adenocarcinoma and bone metastasis has not been investigated. In this study, we found that EGFL6 levels in lung adenocarcinoma tissues correlate with bone metastasis and TNM stages in surgical patients. In vitro, overexpression of EGFL6 in lung adenocarcinoma cells promoted their proliferation, migration, and invasion ability compared with control by enhancing EMT process and activating Wnt/β-catenin and PI3K/AKT/mTOR pathways. In the nude mouse model, overexpression of EGFL6 enhanced tumor growth and caused greater bone destruction. Moreover, the exocrine EGFL6 of human lung adenocarcinoma cells increased osteoclast differentiation of bone marrow mononuclear macrophages (BMMs) of mice via the NF-κB and c-Fos/NFATc1 signaling pathways. However, exocrine EGFL6 had no effect on osteoblast differentiation of bone marrow mesenchymal stem cells (BMSCs). In conclusion, high expression of EGFL6 in lung adenocarcinomas is associated with bone metastasis in surgical patients. The underlying mechanism may be the increased metastatic properties of lung adenocarcinoma cells with high EGFL6 level and the enhanced osteoclast differentiation and bone resorption by exocrine EGFL6 from tumors. Therefore, EGFL6 is a potential therapeutic target to reduce the ability of lung adenocarcinomas to grow and metastasize and to preserve bone mass in patients with bone metastases from lung adenocarcinomas.
Collapse
Affiliation(s)
- Xiaoting Song
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Xu Cheng
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Xiangang Jin
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Shengyu Ruan
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Xianquan Xu
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Feng Lu
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Xinhui Wu
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Fangying Lu
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China
- Wenzhou Medical University, Wenzhou, China
| | - Mingxuan Feng
- Department of Orthopedics, Taizhou Central Hospital affiliated to Taizhou College, Taizhou, China
| | - Liwei Zhang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China
| | - Renshan Ge
- Wenzhou Medical University, Wenzhou, China
| | - Haixiao Chen
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenghua Hong
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China.
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China.
| | - Dun Hong
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No.150 Ximen Road, Linhai, 317000, Zhejiang, China.
- Bone Metabolism and Development Research Center, Taizhou Hospital affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
4
|
Tang H, Fayomi AP, Bai S, Gupta N, Cascio S, Yang D, Buckanovich RJ. Generation and characterization of humanized affinity-matured EGFL6 antibodies for ovarian cancer therapy. Gynecol Oncol 2023; 171:49-58. [PMID: 36804621 PMCID: PMC10040429 DOI: 10.1016/j.ygyno.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVES Epidermal growth factor EGF-like domain multiple-6 (EGFL6) is highly expressed in high grade serous ovarian cancer and promotes both endothelial cell proliferation/angiogenesis and cancer cell proliferation/metastasis. As such it has been implicated as a therapeutic target. As a secreted factor, EGFL6 is a candidate for antibody therapy. The objectives of this study were to create and validate humanized affinity-matured EGFL6 neutralizing antibodies for clinical development. METHODS A selected murine EGFL6 antibody was humanized using CDR grafting to create 26 variant humanized antibodies. These were screened and the lead candidate was affinity matured. Seven humanized affinity-matured EGFL6 antibodies were screened for their ability to block EGFL6 activity on cancer cells in vitro, two of which were selected and tested their therapeutic activity in vivo. RESULTS Humanized affinity matured antibodies demonstrated high affinity for EGFL6 (150 pM to 2.67 nM). We found that several humanized affinity-matured EGFL6 antibodies specifically bound to recombinant, and native human EGFL6. Two lead antibodies were able to inhibit EGFL6-mediated (i) cancer cell migration, (ii) proliferation, and (iii) increase in ERK phosphorylation in cancer cells in vitro. Both lead antibodies restricted growth of an EGFL6 expressing ovarian cancer patient derived xenograft. Analysis of treated human tumor xenografts indicated that anti-EGFL6 therapy suppressed angiogenesis, inhibited tumor cell proliferation, and promoted tumor cell apoptosis. CONCLUSIONS Our studies confirm the ability of these humanized affinity-matured antibodies to neutralize EGFL6 and acting as a therapeutic to restrict cancer growth. This work supports the development of these antibody for first-in-human clinical trials.
Collapse
Affiliation(s)
- Huijuan Tang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adetunji P Fayomi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Navneet Gupta
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Cascio
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Su G, Wang W, Xu L, Li G. Progress of EGFL6 in angiogenesis and tumor development. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:436-443. [PMID: 36507067 PMCID: PMC9729941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022]
Abstract
The epidermal growth factor (EGF) superfamily includes the protein 6 with an epidermal growth factor-like protein (EGFL6). EGFL6 has a signal peptide domain with an amino terminus and a MAM domain with a carboxy terminus. There are four whole EGF-like repeat regions and one partial EGF-like repeat region. Three of these regions include calcium-binding structures and an arg-gly-asp (RGD) integrin interaction motif. The epidermal growth factor-like (EGFL) and EGF domains have identical amino acid residues. Cell division, differentiation, mortality, cell adhesion, and migration are all affected by EGFL6. EGFL proteins are involved in a broad range of biological activities, making it important in tumor development and angiogenesis. We highlighted the latest development of EGFL6 research on tumor proliferation, invasion, and migration in this review.
Collapse
Affiliation(s)
- Guanyu Su
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Wei Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, China
| |
Collapse
|
6
|
Gebara N, Correia Y, Wang K, Bussolati B. Angiogenic Properties of Placenta-Derived Extracellular Vesicles in Normal Pregnancy and in Preeclampsia. Int J Mol Sci 2021; 22:5402. [PMID: 34065595 PMCID: PMC8160914 DOI: 10.3390/ijms22105402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the main processes that coordinate the biological events leading to a successful pregnancy, and its imbalance characterizes several pregnancy-related diseases, including preeclampsia. Intracellular interactions via extracellular vesicles (EVs) contribute to pregnancy's physiology and pathophysiology, and to the fetal-maternal interaction. The present review outlines the implications of EV-mediated crosstalk in the angiogenic process in healthy pregnancy and its dysregulation in preeclampsia. In particular, the effect of EVs derived from gestational tissues in pro and anti-angiogenic processes in the physiological and pathological setting is described. Moreover, the application of EVs from placental stem cells in the clinical setting is reported.
Collapse
Affiliation(s)
- Natalia Gebara
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Yolanda Correia
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; (Y.C.); (K.W.)
| | - Keqing Wang
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; (Y.C.); (K.W.)
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| |
Collapse
|
7
|
Sung TY, Huang HL, Cheng CC, Chang FL, Wei PL, Cheng YW, Huang CC, Lee YC, HuangFu WC, Pan SL. EGFL6 promotes colorectal cancer cell growth and mobility and the anti-cancer property of anti-EGFL6 antibody. Cell Biosci 2021; 11:53. [PMID: 33726836 PMCID: PMC7962215 DOI: 10.1186/s13578-021-00561-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of a reliable tumor target for advanced colorectal cancer (CRC) therapeutic approaches is critical since current treatments are limited. Epidermal growth factor-like domain 6 (EGFL6) has been reported to be associated with cancer development. Here, we focused on the role of EGFL6 in CRC progression and its clinical relevance. In addition, an anti-EGFL6 antibody was generated by phage display technology to investigate its potential therapeutic efficacy in CRC. RESULTS EGFL6 expression significantly increased in the colon tissues from CRC patients and mice showing spontaneous tumorigenesis, but not in normal tissue. Under hypoxic condition, EGFL6 expression was enhanced at both protein and transcript levels. Moreover, EGFL6 could promote cancer cell migration invasion, and proliferation of CRC cells via up-regulation of the ERK/ AKT pathway. EGFL6 also regulated cell migration, invasion, proliferation, and self-renewal through EGFR/αvβ3 integrin receptors. Treatment with the anti-EGFL6 antibody EGFL6-E5-IgG showed tumor-inhibition and anti-metastasis abilities in the xenograft and syngeneic mouse models, respectively. Moreover, EGFL6-E5-IgG treatment had no adverse effect on angiogenesis and wound healing CONCLUSIONS: We demonstrated that EGFL6 plays a role in CRC tumorigenesis and tumor progression, indicating that EGFL6 is a potential therapeutic target worth further investigation.
Collapse
Affiliation(s)
- Ting-Yi Sung
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan
| | - Han-Li Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan.,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Chun-Chun Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Fu-Ling Chang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Po-Li Wei
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, 11031, Taipei, Taiwan.,Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, 11031, Taipei, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Wen Cheng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chiao Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, No. 252, Wuxing St., 11031, Taipei, Taiwan.
| | - Yu-Ching Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan.
| | - Wei-Chun HuangFu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Shi S, Ma T, Xi Y. A Pan-Cancer Study of Epidermal Growth Factor-Like Domains 6/7/8 as Therapeutic Targets in Cancer. Front Genet 2021; 11:598743. [PMID: 33391349 PMCID: PMC7773905 DOI: 10.3389/fgene.2020.598743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
With highly homologous epidermal growth factor (EGF)-like (EGFL) domains, the members of the EGFL family play crucial roles in growth, invasion, and metastasis of tumors and are closely associated with the apoptosis of tumor cells and tumor angiogenesis. Furthermore, their contribution to immunoreaction and tumor microenvironment is highly known. In this study, a comprehensive analysis of EGFL6, -7, and -8 was performed on the basis of their expression profiles and their relationship with the rate of patient survival. Through a pan-cancer study, their effects were correlated with immune subtypes, tumor microenvironment, and drug resistance. Using The Cancer Genome Atlas pan-cancer data, expression profiles of EGFL6, -7, and -8, and their association with the patient survival rate and tumor microenvironment were analyzed in 33 types of cancers. The expression of the EGFL family was different in different cancer types, revealing the heterogeneity among cancers. The results showed that the expression of EGFL8 was lower than EGFL6 and EGFL7 among all cancer types, wherein EGFL7 had the highest expression. The univariate Cox proportional hazard regression model showed that EGFL6 and EGFL7 were the risk factors to predict poor prognosis of cancers. Survival analysis was then used to verify the relationship between gene expression and patient survival. Furthermore, EGFL6, EGFL7, and EGFL8 genes revealed a clear association with immune infiltrate subtypes; they were also related to the infiltration level of stromal cells and immune cells with different degrees. Moreover, they were negatively correlated with the characteristics of cancer stem cells measured by DNAs and RNAs. In addition, EGFL6, -7, and -8 were more likely to contribute to the resistance of cancer cells. Our systematic analysis of EGFL gene expression and their correlation with immune infiltration, tumor microenvironment, and prognosis of cancer patients emphasized the necessity of studying each EGFL member as a separate entity within each particular type of cancer. Simultaneously, EGFL6, -7, and -8 signals were verified as promising targets for cancer therapies, although further laboratory validation is still required.
Collapse
Affiliation(s)
- Shanping Shi
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - Ting Ma
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - Yang Xi
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Tang CT, Zhang QW, Wu S, Tang MY, Liang Q, Lin XL, Gao YJ, Ge ZZ. Thalidomide targets EGFL6 to inhibit EGFL6/PAX6 axis-driven angiogenesis in small bowel vascular malformation. Cell Mol Life Sci 2020; 77:5207-5221. [PMID: 32008086 PMCID: PMC7671996 DOI: 10.1007/s00018-020-03465-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Small bowel vascular malformation disease (SBVM) is the most common cause of obscure gastrointestinal bleeding (OGIB). Several studies suggested that EGFL6 was able to promote the growth of tumor endothelial cells by forming tumor vessels. To date, it remains unclear how EGFL6 promotes pathological angiogenesis in SBVM and whether EGFL6 is a target of thalidomide. METHODS We took advantage of SBVM plasma and tissue samples and compared the expression of EGFL6 between SBVM patients and healthy people via ELISA and Immunohistochemistry. We elucidated the underlying function of EGFL6 in SBVM in vitro and by generating a zebrafish model that overexpresses EGFL6, The cycloheximide (CHX)-chase experiment and CoIP assays were conducted to demonstrate that thalidomide can promote the degradation of EGFL6 by targeting CRBN. RESULTS The analysis of SBVM plasma and tissue samples revealed that EGFL6 was overexpressed in the patients compared to healthy people. Using in vitro and in vivo assays, we demonstrated that an EMT pathway triggered by the EGFL6/PAX6 axis is involved in the pathogenesis of SBVM. Furthermore, through in vitro and in vivo assays, we elucidated that thalidomide can function as anti-angiogenesis medicine through the regulation of EGFL6 in a proteasome-dependent manner. Finally, we found that CRBN can mediate the effect of thalidomide on EGFL6 expression and that the CRBN protein interacts with EGFL6 via a Lon N-terminal peptide. CONCLUSION Our findings revealed a key role for EGFL6 in SBVM pathogenesis and provided a mechanism explaining why thalidomide can cure small bowel bleeding resulting from SBVM.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Qing-Wei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Shan Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Ming-Yu Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Qian Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Xiao-Lu Lin
- Department of Digestive Endoscopy, Provincial Clinic Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yun-Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
10
|
Huo FC, Zhu WT, Liu X, Zhou Y, Zhang LS, Mou J. Epidermal growth factor-like domain multiple 6 (EGFL6) promotes the migration and invasion of gastric cancer cells by inducing epithelial-mesenchymal transition. Invest New Drugs 2020; 39:304-316. [PMID: 32949323 DOI: 10.1007/s10637-020-01004-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor-like domain multiple 6 (EGFL6) is implicated in tumor growth, metastasis and angiogenesis, and its ectopic alteration has been detected in aggressive malignancies. However, the pathophysiologic roles and molecular mechanisms of EGFL6 in gastric cancer (GC) remain to be elucidated. In this study, we investigated EGFL6 expression in GC cell lines and tissues using western blotting and immunohistochemistry. We found that EGFL6 was elevated expression in GC cell lines and tissues. The high expression of EGFL6 significantly was correlated with histological grade, depth of invasion, lymph node involvement, distant metastasis and TNM stage in GC and predicted poorer prognosis, and it could act an independent prognostic factor for GC patients. EGFL6 enhanced the proliferation, migration and invasion of GC cells. In addition, we identified the possible molecular mechanisms of EGFL6-involved epithelial-mesenchymal transition (EMT). EGFL6 regulated EMT process and induced metastasis partly through FAK/PI3K/AKT/mTOR, Notch and MAPK signaling pathways. In conclusion, EGFL6 confers an oncogenic function in GC progression and may be proposed as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Wen-Tao Zhu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Xu Liu
- Department of general surgery, Xuzhou Children's Hospital, Xuzhou Medical University, Quan shan District, Xuzhou, 221000, Jiangsu, China
| | - Yun Zhou
- Department of Radiation Oncology, Xuzhou Central Hospital, Xuzhou, 221000, Jiangsu, China
| | - Lan-Sheng Zhang
- Department of Oncological Radiotherapy, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
| | - Jie Mou
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
- School of Pharmacy, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
11
|
Puderecki M, Szumiło J, Marzec-Kotarska B. Novel prognostic molecular markers in lung cancer. Oncol Lett 2020; 20:9-18. [PMID: 32565929 DOI: 10.3892/ol.2020.11541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Lung carcinoma, especially in its most commonly diagnosed non-small cell histological form, is a challenge to diagnose and treat worldwide, due to the prognosis in patients with this type of cancer being poor and mortality rates being high. However, a number of patients with this type of lung carcinoma exhibit a longer than average overall survival. The specific molecular background of non-small-cell lung cancer that favors longer survival has not yet been determined. The aim of the current study was to review articles published in the years 2017-2018 and create a list of the most important and strongest non-conventional factors that could be used in the future assessment of the prognosis of patients with adenocarcinoma and squamous cell carcinoma of the lung who cannot undergo current targeted therapy. Analysis identified multiple prognostic factors in non-small cell lung carcinoma, including tumor mutational burden, which was revealed to be independent of the tumor stage or grade as well as other factors, including age, sex or targeted therapy effects. The selected molecular factors exhibit the potential to be used in the treatment of patients with specific problematic lung cancer, and may contribute to setting recommendations for the diagnosis, prognosis and treatment of individual patients with lung cancer.
Collapse
Affiliation(s)
- Michał Puderecki
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland
| | - Barbara Marzec-Kotarska
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
12
|
Kang J, Wang J, Tian J, Shi R, Jia H, Wang Y. The emerging role of EGFL6 in angiogenesis and tumor progression. Int J Med Sci 2020; 17:1320-1326. [PMID: 32624687 PMCID: PMC7330666 DOI: 10.7150/ijms.45129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor-like domain-containing protein 6 (EGFL6) belongs to the epidermal growth factor (EGF) superfamily. EGFL6 is expressed at higher levels in embryos and various malignant tumors than in normal tissues. Recent studies suggest that EGFL6 participates in the development of a variety of tumors. In this review, we summarize findings that support the role for EGFL6 in tumor proliferation, invasion and migration. Furthermore, our review results indicate the mechanism of EGFL6 activity angiogenesis. We also describe work toward the preparation of monoclonal antibodies against EGFL6. Altogether, the work of this review promotes understanding of the role of EGFL6 in tumor development, the mechanism of that action, and the potential of EGFL6 as a therapeutic target for tumor prevention and treatment.
Collapse
Affiliation(s)
- Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruyi Shi
- Department of Cell biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|