1
|
Pepe F, Russo G, Barraco N, Bono M, Listì A, Righi L, de Biase D, Maloberti T, Scimone C, Palumbo L, Rocco D, Roscigno G, Gallo E, Buglioni S, Coco M, Muscarella LA, Troncone G, Malapelle U. A Cross-Sectional Study of Variant Interpretation and Reporting of NGS Data Using Tertiary Analysis Software: Navify ® Mutation Profiler. Oncol Ther 2025; 13:115-130. [PMID: 39607606 PMCID: PMC11880482 DOI: 10.1007/s40487-024-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION Personalized medicine has revolutionized the clinical management of patients with solid tumors. However, the large volumes of molecular data derived from next-generation sequencing (NGS) and the lack of harmonized bioinformatics pipelines drastically impact the clinical management of patients with solid tumors. A possible solution to streamline the molecular interpretation and reporting of NGS data would be to adopt automated data analysis software. In this study, we tested the clinical efficiency of the Navify Mutation Profiler (nMP) software in improving the interpretation of NGS data analysis in diagnostic routine samples from patients with solid tumors. METHODS This study included one coordinating institution (Federico II University of Naples) and five other Italian institutions. Variant call format (VCF) files from reference standard samples previously tested by the coordinating institution and from n = 8 diagnostic routine samples (n = 2 from colorectal carcinoma; n = 2 from non-small cell lung cancer; n = 2 from advanced melanoma; and n = 2 from patients with gastrointestinal stromal tumors) and previously analyzed by each participating institution (n = 5) with standardized internal analysis workflows were uploaded onto the Navify® Mutation Profiler (nMP) system (Roche Sequencing Solutions, Pleasanton, CA, USA) for automated analysis and interpretation of DNA and RNA molecular alterations analytical parameters, molecular profiling, and clinical interpretation were carried out by the nMP system and compared with the standard workflow data analyzed by the participating institutions. RESULTS Overall, all VCF files were successfully submitted and interpreted by the nMP system. A concordance agreement rate of 89.6% was observed between the automated and standard workflow systems. In particular, DNA and RNA molecular profiles obtained with the nMP system matched those obtained with standardized approaches in 44 out of 48 patients (91.7%) and in 11 out of 12 (91.7%) cases, respectively. In addition, the nMP system evidenced wild-type variants in 6 out of 7 (85.7%) cases. CONCLUSIONS The nMP system represents a valid, easily manageable, and clinically useful system to interpret NGS data on diagnostic routine samples from patients with solid tumors.
Collapse
Affiliation(s)
- Francesco Pepe
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Nadia Barraco
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Angela Listì
- Department of Oncology, University of Turin, San Luigi Hospital, Turin, Orbassano, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, San Luigi Hospital, Turin, Orbassano, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Claudia Scimone
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Lucia Palumbo
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, 80131, Naples, Italy
| | | | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michelina Coco
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
2
|
Robb TJ, Liu Y, Woodhouse B, Windahl C, Hurley D, McArthur G, Fox SB, Brown L, Guilford P, Minhinnick A, Jackson C, Blenkiron C, Parker K, Henare K, McColl R, Haux B, Young N, Boyle V, Cameron L, Deva S, Reeve J, Print CG, Davis M, Rieger U, Lawrence B. Blending space and time to talk about cancer in extended reality. NPJ Digit Med 2024; 7:261. [PMID: 39343807 PMCID: PMC11439928 DOI: 10.1038/s41746-024-01262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
We introduce a proof-of-concept extended reality (XR) environment for discussing cancer, presenting genomic information from multiple tumour sites in the context of 3D tumour models generated from CT scans. This tool enhances multidisciplinary discussions. Clinicians and cancer researchers explored its use in oncology, sharing perspectives on XR's potential for use in molecular tumour boards, clinician-patient communication, and education. XR serves as a universal language, fostering collaborative decision-making in oncology.
Collapse
Affiliation(s)
- Tamsin J Robb
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yinan Liu
- School of Architecture and Planning, University of Auckland, Auckland, New Zealand
| | - Braden Woodhouse
- Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Daniel Hurley
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Grant McArthur
- University of Melbourne, Melbourne, VIC, Australia
- Victorian Comprehensive Cancer Centre Alliance, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen B Fox
- University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lisa Brown
- University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Alice Minhinnick
- Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | | | - Cherie Blenkiron
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Kate Parker
- Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kimiora Henare
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Rose McColl
- Centre for eResearch, University of Auckland, Auckland, New Zealand
| | - Bianca Haux
- Centre for eResearch, University of Auckland, Auckland, New Zealand
| | - Nick Young
- Centre for eResearch, University of Auckland, Auckland, New Zealand
| | - Veronica Boyle
- School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Laird Cameron
- Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Sanjeev Deva
- Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Jane Reeve
- Radiology Auckland, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Cristin G Print
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michael Davis
- School of Architecture and Planning, University of Auckland, Auckland, New Zealand
| | - Uwe Rieger
- School of Architecture and Planning, University of Auckland, Auckland, New Zealand
| | - Ben Lawrence
- Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand.
| |
Collapse
|
3
|
Kim H, Park KU. Using decision support platforms to enhance cancer diagnostics: the importance of vigilance and wise decision-making. J Clin Pathol 2024:jcp-2024-209706. [PMID: 39209445 DOI: 10.1136/jcp-2024-209706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Hyunji Kim
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea (the Republic of)
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea (the Republic of)
- Department of Laboratory Medicine, Seoul National University College of Medicine, Jongno-gu, Korea (the Republic of)
| |
Collapse
|
4
|
Delabays B, Trajanoska K, Walonoski J, Mooser V. Cardiovascular Pharmacogenetics: From Discovery of Genetic Association to Clinical Adoption of Derived Test. Pharmacol Rev 2024; 76:791-827. [PMID: 39122647 DOI: 10.1124/pharmrev.123.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024] Open
Abstract
Recent breakthroughs in human genetics and in information technologies have markedly expanded our understanding at the molecular level of the response to drugs, i.e., pharmacogenetics (PGx), across therapy areas. This review is restricted to PGx for cardiovascular (CV) drugs. First, we examined the PGx information in the labels approved by regulatory agencies in Europe, Japan, and North America and related recommendations from expert panels. Out of 221 marketed CV drugs, 36 had PGx information in their labels approved by one or more agencies. The level of annotations and recommendations varied markedly between agencies and expert panels. Clopidogrel is the only CV drug with consistent PGx recommendation (i.e., "actionable"). This situation prompted us to dissect the steps from discovery of a PGx association to clinical translation. We found 101 genome-wide association studies that investigated the response to CV drugs or drug classes. These studies reported significant associations for 48 PGx traits mapping to 306 genes. Six of these 306 genes are mentioned in the corresponding PGx labels or recommendations for CV drugs. Genomic analyses also highlighted the wide between-population differences in risk allele frequencies and the individual load of actionable PGx variants. Given the high attrition rate and the long road to clinical translation, additional work is warranted to identify and validate PGx variants for more CV drugs across diverse populations and to demonstrate the utility of PGx testing. To that end, pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond. SIGNIFICANCE STATEMENT: Despite spectacular breakthroughs in human molecular genetics and information technologies, consistent evidence supporting PGx testing in the cardiovascular area is limited to a few drugs. Additional work is warranted to discover and validate new PGx markers and demonstrate their utility. Pre-emptive PGx combining genomic profiling with electronic medical records opens unprecedented opportunities to improve healthcare, for CV diseases and beyond.
Collapse
Affiliation(s)
- Benoît Delabays
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Joshua Walonoski
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Victor Phillip Dahdaleh Institute of Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada (B.D., K.T., V.M.); and Medeloop Inc., Palo Alto, California, and Montreal, QC, Canada (J.W.)
| |
Collapse
|
5
|
Álvarez N, Martín A, Dorado S, Colmenares R, Rufián L, Rodríguez M, Giménez A, Carneros L, Sanchez R, Carreño G, Rapado I, Heredia Y, Martínez-López J, Barrio S, Ayala R. Detection of minimal residual disease in acute myeloid leukemia: evaluating utility and challenges. Front Immunol 2024; 15:1252258. [PMID: 38938565 PMCID: PMC11210172 DOI: 10.3389/fimmu.2024.1252258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/29/2024] [Indexed: 06/29/2024] Open
Abstract
This study discusses the importance of minimal residual disease (MRD) detection in acute myeloid leukemia (AML) patients using liquid biopsy and next-generation sequencing (NGS). AML prognosis is based on various factors, including genetic alterations. NGS has revealed the molecular complexity of AML and helped refine risk stratification and personalized therapies. The long-term survival rates for AML patients are low, and MRD assessment is crucial in predicting prognosis. Currently, the most common methods for MRD detection are flow cytometry and quantitative PCR, but NGS is being incorporated into clinical practice due to its ability to detect genomic aberrations in the majority of AML patients. Typically, bone marrow samples are used for MRD assessment, but using peripheral blood samples or liquid biopsies would be less invasive. Leukemia originates in the bone marrow, along with the cfDNA obtained from peripheral blood. This study aimed to assess the utility of cell-free DNA (cfDNA) from peripheral blood samples for MRD detection in AML patients. A cohort of 20 AML patients was analyzed using NGS, and a correlation between MRD assessment by cfDNA and circulating tumor cells (CTCs) in paired samples was observed. Furthermore, a higher tumor signal was detected in cfDNA compared to CTCs, indicating greater sensitivity. Challenges for the application of liquid biopsy in MRD assessment were discussed, including the selection of appropriate markers and the sensitivity of certain markers. This study emphasizes the potential of liquid biopsy using cfDNA for MRD detection in AML patients and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Noemí Álvarez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Alejandro Martín
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Sara Dorado
- Altum Sequencing Co., Madrid, Spain
- Computational Science Department, Carlos III University, Madrid, Spain
| | - Rafael Colmenares
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Laura Rufián
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Margarita Rodríguez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Alicia Giménez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Laura Carneros
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Ricardo Sanchez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Gonzalo Carreño
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Inmaculada Rapado
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | | | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Santiago Barrio
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Riedl JM, Moik F, Esterl T, Kostmann SM, Gerger A, Jost PJ. Molecular diagnostics tailoring personalized cancer therapy-an oncologist's view. Virchows Arch 2024; 484:169-179. [PMID: 37982847 PMCID: PMC10948510 DOI: 10.1007/s00428-023-03702-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Medical oncology is rapidly evolving with the implementation of personalized, targeted therapies. Advances in molecular diagnostics and the biologic understanding of cancer pathophysiology led to the identification of specific genetic alterations as drivers of cancer progression. Further, improvements in drug development enable the direct interference with these pathways, which allow tailoring personalized treatments based on a distinct molecular characterization of tumors. Thereby, we are currently experiencing a paradigm-shift in the treatment of cancers towards cancer-type agnostic, molecularly targeted, personalized therapies. However, this concept has several important hurdles and limitations to overcome to ultimately increase the proportion of patients benefitting from the precision oncology approach. These include the assessment of clinical relevancy of identified alterations, capturing and interpreting levels of heterogeneity based on intra-tumoral or time-dependent molecular evolution, and challenges in the practical implementation of precision oncology in routine clinical care. In the present review, we summarize the current state of cancer-agnostic precision oncology, discuss the concept of molecular tumor boards, and consider current limitations of personalized cancer therapy. Further, we provide an outlook towards potential future developments including the implementation of functionality assessments of identified genetic alterations and the broader use of liquid biopsies in order to obtain more comprehensive and longitudinal genetic information that might guide personalized cancer therapy in the future.
Collapse
Affiliation(s)
- Jakob M Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Moik
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tamara Esterl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sarah M Kostmann
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp J Jost
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
- Medical Department III for Haematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
7
|
van der Leest P, Schuuring E. Critical Factors in the Analytical Work Flow of Circulating Tumor DNA-Based Molecular Profiling. Clin Chem 2024; 70:220-233. [PMID: 38175597 DOI: 10.1093/clinchem/hvad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Liquid biopsy testing, especially molecular tumor profiling of circulating tumor DNA (ctDNA) in cell-free plasma, has received increasing interest in recent years as it serves as a reliable alternative for the detection of tumor-specific aberrations to guide treatment decision-making in oncology. Many (commercially available) applications have been developed, however, broad divergences in (pre)analytical work flows and lack of universally applied guidelines impede routine clinical implementation. In this review, critical factors in the blood-based ctDNA liquid biopsy work flow are evaluated. CONTENT In the preanalytical phase, several aspects (e.g., blood collection tubes [BCTs], plasma processing, and extraction method) affect the quantity and quality of the circulating cell-free DNA (ccfDNA) applicable for subsequent molecular analyses and should meet certain standards to be applied in diagnostic work flows. Analytical considerations, such as analytical input and choice of assay, might vary based on the clinical application (i.e., screening, primary diagnosis, minimal residual disease [MRD], response monitoring, and resistance identification). In addition to practical procedures, variant interpretation and reporting ctDNA results should be harmonized. Collaborative efforts in (inter)national consortia and societies are essential for the establishment of standard operating procedures (SOPs) in attempts to standardize the plasma-based ctDNA analysis work flow. SUMMARY Development of universally applicable guidelines regarding the critical factors in liquid biopsy testing are necessary to pave the way to clinical implementation for routine diagnostics.
Collapse
Affiliation(s)
- Paul van der Leest
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Keup C, Kimmig R, Kasimir-Bauer S. The Diversity of Liquid Biopsies and Their Potential in Breast Cancer Management. Cancers (Basel) 2023; 15:5463. [PMID: 38001722 PMCID: PMC10670968 DOI: 10.3390/cancers15225463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Analyzing blood as a so-called liquid biopsy in breast cancer (BC) patients has the potential to adapt therapy management. Circulating tumor cells (CTCs), extracellular vesicles (EVs), cell-free DNA (cfDNA) and other blood components mirror the tumoral heterogeneity and could support a range of clinical decisions. Multi-cancer early detection tests utilizing blood are advancing but are not part of any clinical routine yet. Liquid biopsy analysis in the course of neoadjuvant therapy has potential for therapy (de)escalation.Minimal residual disease detection via serial cfDNA analysis is currently on its way. The prognostic value of blood analytes in early and metastatic BC is undisputable, but the value of these prognostic biomarkers for clinical management is controversial. An interventional trial confirmed a significant outcome benefit when therapy was changed in case of newly emerging cfDNA mutations under treatment and thus showed the clinical utility of cfDNA analysis for therapy monitoring. The analysis of PIK3CA or ESR1 variants in plasma of metastatic BC patients to prescribe targeted therapy with alpesilib or elacestrant has already arrived in clinical practice with FDA-approved tests available and is recommended by ASCO. The translation of more liquid biopsy applications into clinical practice is still pending due to a lack of knowledge of the analytes' biology, lack of standards and difficulties in proving clinical utility.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, 45147 Essen, Germany
| | | | | |
Collapse
|
9
|
Forgacova N, Holesova Z, Hekel R, Sedlackova T, Pos Z, Krivosikova L, Janega P, Kuracinova KM, Babal P, Radvak P, Radvanszky J, Gazdarica J, Budis J, Szemes T. Evaluation and limitations of different approaches among COVID-19 fatal cases using whole-exome sequencing data. BMC Genomics 2023; 24:12. [PMID: 36627554 PMCID: PMC9830622 DOI: 10.1186/s12864-022-09084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND COVID-19 caused by the SARS-CoV-2 infection may result in various disease symptoms and severity, ranging from asymptomatic, through mildly symptomatic, up to very severe and even fatal cases. Although environmental, clinical, and social factors play important roles in both susceptibility to the SARS-CoV-2 infection and progress of COVID-19 disease, it is becoming evident that both pathogen and host genetic factors are important too. In this study, we report findings from whole-exome sequencing (WES) of 27 individuals who died due to COVID-19, especially focusing on frequencies of DNA variants in genes previously associated with the SARS-CoV-2 infection and the severity of COVID-19. RESULTS We selected the risk DNA variants/alleles or target genes using four different approaches: 1) aggregated GWAS results from the GWAS Catalog; 2) selected publications from PubMed; 3) the aggregated results of the Host Genetics Initiative database; and 4) a commercial DNA variant annotation/interpretation tool providing its own knowledgebase. We divided these variants/genes into those reported to influence the susceptibility to the SARS-CoV-2 infection and those influencing the severity of COVID-19. Based on the above, we compared the frequencies of alleles found in the fatal COVID-19 cases to the frequencies identified in two population control datasets (non-Finnish European population from the gnomAD database and genomic frequencies specific for the Slovak population from our own database). When compared to both control population datasets, our analyses indicated a trend of higher frequencies of severe COVID-19 associated risk alleles among fatal COVID-19 cases. This trend reached statistical significance specifically when using the HGI-derived variant list. We also analysed other approaches to WES data evaluation, demonstrating its utility as well as limitations. CONCLUSIONS Although our results proved the likely involvement of host genetic factors pointed out by previous studies looking into severity of COVID-19 disease, careful considerations of the molecular-testing strategies and the evaluated genomic positions may have a strong impact on the utility of genomic testing.
Collapse
Affiliation(s)
- Natalia Forgacova
- Comenius University Science Park, Bratislava, 841 04, Slovakia.
- Faculty of Natural Sciences, Comenius University, Bratislava, 841 04, Slovakia.
- Institute of Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia.
| | | | - Rastislav Hekel
- Comenius University Science Park, Bratislava, 841 04, Slovakia
- Faculty of Natural Sciences, Comenius University, Bratislava, 841 04, Slovakia
- Geneton Ltd, Bratislava, 841 04, Slovakia
- Slovak Centre of Scientific and Technical Information, Bratislava, 811 04, Slovakia
| | - Tatiana Sedlackova
- Comenius University Science Park, Bratislava, 841 04, Slovakia
- Geneton Ltd, Bratislava, 841 04, Slovakia
| | - Zuzana Pos
- Comenius University Science Park, Bratislava, 841 04, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
- Geneton Ltd, Bratislava, 841 04, Slovakia
| | - Lucia Krivosikova
- Department of Pathology, Faculty of Medicine, Comenius University, Bratislava, 813 72, Slovakia
| | - Pavol Janega
- Department of Pathology, Faculty of Medicine, Comenius University, Bratislava, 813 72, Slovakia
| | | | - Pavel Babal
- Department of Pathology, Faculty of Medicine, Comenius University, Bratislava, 813 72, Slovakia
| | - Peter Radvak
- Comenius University Science Park, Bratislava, 841 04, Slovakia
| | - Jan Radvanszky
- Comenius University Science Park, Bratislava, 841 04, Slovakia
- Faculty of Natural Sciences, Comenius University, Bratislava, 841 04, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
- Geneton Ltd, Bratislava, 841 04, Slovakia
| | - Juraj Gazdarica
- Faculty of Natural Sciences, Comenius University, Bratislava, 841 04, Slovakia
- Geneton Ltd, Bratislava, 841 04, Slovakia
- Slovak Centre of Scientific and Technical Information, Bratislava, 811 04, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, Bratislava, 841 04, Slovakia
- Geneton Ltd, Bratislava, 841 04, Slovakia
- Slovak Centre of Scientific and Technical Information, Bratislava, 811 04, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, Bratislava, 841 04, Slovakia
- Faculty of Natural Sciences, Comenius University, Bratislava, 841 04, Slovakia
- Geneton Ltd, Bratislava, 841 04, Slovakia
| |
Collapse
|
10
|
Jahn SW, Jost PJ. Challenges in integrating molecular profiles into clinical cancer care. MEMO - MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2022. [DOI: 10.1007/s12254-022-00838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SummaryProfiling of malignancies with next-generation sequencing (NGS) is now routine in clinical practice. While many cases of approved targeted therapies are straightforward based on well-characterized alterations, applying large NGS multigene panels to therapeutic use is frequently challenging. In this article, variant interpretation, therapy matching, and final treatment selection challenges are discussed.
Collapse
|
11
|
Jiang Q, Sudalagunta P, Silva MC, Canevarolo RR, Zhao X, Ahmed KT, Alugubelli RR, DeAvila G, Tungesvik A, Perez L, Gatenby RA, Gillies RJ, Baz R, Meads MB, Shain KH, Silva AS, Zhang W. CancerCellTracker: a brightfield time-lapse microscopy framework for cancer drug sensitivity estimation. Bioinformatics 2022; 38:4002-4010. [PMID: 35751591 PMCID: PMC9991899 DOI: 10.1093/bioinformatics/btac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner. RESULTS The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker's efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells. AVAILABILITY AND IMPLEMENTATION https://github.com/compbiolabucf/CancerCellTracker. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qibing Jiang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Praneeth Sudalagunta
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Maria C Silva
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Rafael R Canevarolo
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaohong Zhao
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Raghunandan Reddy Alugubelli
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Gabriel DeAvila
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alexandre Tungesvik
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Lia Perez
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Robert A Gatenby
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Robert J Gillies
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Rachid Baz
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mark B Meads
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kenneth H Shain
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ariosto S Silva
- Departments of Malignant Hematology and Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
12
|
An Independent Assessment of a Commercial Clinical Interpretation Software Indicates That Software Can Mitigate Variation in Human Assessment. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Comprehensive next-generation sequencing (NGS) panels for cancer diagnostics create a bottleneck for interpretation. QIAGEN Clinical Insights Interpret One (QCI) is a clinical decision support software that supports molecular pathologists in the classification of oncology-related variants. This study compares variant assessments by QCI to assessments utilizing current laboratory methods. Eight laboratories were recruited by the external quality assessment organization GenQA. The laboratories submitted VCFs from sequencing studies performed on both hematological disorders and solid tumors for analysis by QCI and an independent laboratory. Results were compared and conflicts were resolved using a panel of experts. In total, 14/149 variants (9%) reported as Tier 1 or Tier 2 by either QCI or the submitting laboratory were found to be discordant after expert panel review. In contrast, 41/149 variants (28%) reflected discrepancy among human reviewers. The expert panel was unable to reach resolution on eight variants. QCI demonstrates high concordance in the classification of actionable mutations with independent laboratory methods and expert assessment. The rate of disagreement among laboratories and the expert panel was greater than the disagreement between QCI and expert assessment. Disagreement among experts highlights the subjectivity of classifying variants. The study demonstrates that QCI interpretation supports streamlining and standardization of NGS variant interpretation.
Collapse
|
13
|
Heitzer E, van den Broek D, Denis MG, Hofman P, Hubank M, Mouliere F, Paz-Ares L, Schuuring E, Sültmann H, Vainer G, Verstraaten E, de Visser L, Cortinovis D. Recommendations for a practical implementation of circulating tumor DNA mutation testing in metastatic non-small-cell lung cancer. ESMO Open 2022; 7:100399. [PMID: 35202954 PMCID: PMC8867049 DOI: 10.1016/j.esmoop.2022.100399] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Liquid biopsy (LB) is a rapidly evolving diagnostic tool for precision oncology that has recently found its way into routine practice as an adjunct to tissue biopsy (TB). The concept of LB refers to any tumor-derived material, such as circulating tumor DNA (ctDNA) or circulating tumor cells that are detectable in blood. An LB is not limited to the blood and may include other fluids such as cerebrospinal fluid, pleural effusion, and urine, among others. PATIENTS AND METHODS The objective of this paper, devised by international experts from various disciplines, is to review current challenges as well as state-of-the-art applications of ctDNA mutation testing in metastatic non-small-cell lung cancer (NSCLC). We consider pragmatic scenarios for the use of ctDNA from blood plasma to identify actionable targets for therapy selection in NSCLCs. RESULTS Clinical scenarios where ctDNA mutation testing may be implemented in clinical practice include complementary tissue and LB testing to provide the full picture of patients' actual predictive profiles to identify resistance mechanism (i.e. secondary mutations), and ctDNA mutation testing to assist when a patient has a discordant clinical history and is suspected of showing intertumor or intratumor heterogeneity. ctDNA mutation testing may provide interesting insights into possible targets that may have been missed on the TB. Complementary ctDNA LB testing also provides an option if the tumor location is hard to biopsy or if an insufficient sample was taken. These clinical use cases highlight practical scenarios where ctDNA LB may be considered as a complementary tool to TB analysis. CONCLUSIONS Proper implementation of ctDNA LB testing in routine clinical practice is envisioned in the near future. As the clinical evidence of utility expands, the use of LB alongside tissue sample analysis may occur in the patient cases detailed here.
Collapse
Affiliation(s)
- E Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria.
| | - D van den Broek
- Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M G Denis
- Department of Biochemistry and Molecular Biology, Nantes University Hospital, Nantes, France
| | - P Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Biobank BB-0033-00025, University Côte d'Azur, Nice, France
| | - M Hubank
- The Royal Marsden NHS Foundation Trust, London, UK
| | - F Mouliere
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - L Paz-Ares
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, H12o-CNIO Lung Cancer Unit, Universidad Complutense & CIBERONC, Madrid, Spain
| | - E Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Center for Lung Disease (DZL) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - G Vainer
- Department of Pathology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - L de Visser
- Roche Diagnostics International, Rotkreuz, Switzerland
| | - D Cortinovis
- SC Medical Oncology, Azienda Socio Sanitaria Territoriale (ASST) H S Gerardo Monza, Monza, Italy
| |
Collapse
|
14
|
Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial Power of cfDNA, CTCs and EVs in Oncology. Diagnostics (Basel) 2022; 12:870. [PMID: 35453918 PMCID: PMC9031112 DOI: 10.3390/diagnostics12040870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Liquid biopsy is a promising technique for clinical management of oncological patients. The diversity of analytes circulating in the blood useable for liquid biopsy testing is enormous. Circulating tumor cells (CTCs), cell-free DNA (cfDNA) and extracellular vesicles (EVs), as well as blood cells and other soluble components in the plasma, were shown as liquid biopsy analytes. A few studies directly comparing two liquid biopsy analytes showed a benefit of one analyte over the other, while most authors concluded the benefit of the additional analyte. Only three years ago, the first studies to examine the value of a characterization of more than two liquid biopsy analytes from the same sample were conducted. We attempt to reflect on the recent development of multimodal liquid biopsy testing in this review. Although the analytes and clinical purposes of the published multimodal studies differed significantly, the additive value of the analytes was concluded in almost all projects. Thus, the blood components, as liquid biopsy reservoirs, are complementary rather than competitive, and orthogonal data sets were even shown to harbor synergistic effects. The unmistakable potential of multimodal liquid biopsy testing, however, is dampened by its clinical utility, which is yet to be proven, the lack of methodical standardization and insufficiently mature reimbursement, logistics and data handling.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
15
|
Doig KD, Love CG, Conway T, Seleznev A, Ma D, Fellowes A, Blombery P, Fox SB. Findings from precision oncology in the clinic: rare, novel variants are a significant contributor to scaling molecular diagnostics. BMC Med Genomics 2022; 15:70. [PMID: 35346197 PMCID: PMC8962530 DOI: 10.1186/s12920-022-01214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Next generation sequencing for oncology patient management is now routine in clinical pathology laboratories. Although wet lab, sequencing and pipeline tasks are largely automated, the analysis of variants for clinical reporting remains largely a manual task. The increasing volume of sequencing data and the limited availability of genetic experts to analyse and report on variants in the data is a key scalability limit for molecular diagnostics. Method To determine the impact and size of the issue, we examined the longitudinally compiled genetic variants from 48,036 cancer patients over a six year period in a large cancer hospital from ten targeted cancer panel tests in germline, solid tumour and haematology contexts using hybridization capture and amplicon assays. This testing generated 24,168,398 sequenced variants of which 23,255 (8214 unique) were clinically reported. Results Of the reported variants, 17,240 (74.1%) were identified in more than one assay which allowed curated variant data to be reused in later reports. The remainder, 6015 (25.9%) were not subsequently seen in later assays and did not provide any reuse benefit. The number of new variants requiring curation has significantly increased over time from 1.72 to 3.73 variants per sample (292 curated variants per month). Analysis of the 23,255 variants reported, showed 28.6% (n = 2356) were not present in common public variant resources and therefore required de novo curation. These in-house only variants were enriched for indels, tumour suppressor genes and from solid tumour assays. Conclusion This analysis highlights the significant percentage of variants not present within common public variant resources and the level of non-recurrent variants that consequently require greater curation effort. Many of these variants are unique to a single patient and unlikely to appear in other patients reflecting the personalised nature of cancer genomics. This study depicts the real-world situation for pathology laboratories faced with curating increasing numbers of low-recurrence variants while needing to expedite the process of manual variant curation. In the absence of suitably accurate automated methods, new approaches are needed to scale oncology diagnostics for future genetic testing volumes. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01214-y.
Collapse
|
16
|
Hasenleithner SO, Speicher MR. A clinician’s handbook for using ctDNA throughout the patient journey. Mol Cancer 2022; 21:81. [PMID: 35307037 PMCID: PMC8935823 DOI: 10.1186/s12943-022-01551-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The promise of precision cancer medicine presently centers around the genomic sequence of a patient’s tumor being translated into timely, actionable information to inform clinical care. The analysis of cell-free DNA from liquid biopsy, which contains circulating tumor DNA (ctDNA) in patients with cancer, has proven to be amenable to various settings in oncology. However, open questions surrounding the clinical validity and utility of plasma-based analyses have hindered widespread clinical adoption.
Main body
Owing to the rapid evolution of the field, studies supporting the use of ctDNA as a biomarker throughout a patient’s journey with cancer have accumulated in the last few years, warranting a review of the latest status for clinicians who may employ ctDNA in their precision oncology programs. In this work, we take a step back from the intricate coverage of detection approaches described extensively elsewhere and cover basic concepts around the practical implementation of next generation sequencing (NGS)-guided liquid biopsy. We compare relevant targeted and untargeted approaches to plasma DNA analysis, describe the latest evidence for clinical validity and utility, and highlight the value of genome-wide ctDNA analysis, particularly as it relates to early detection strategies and discovery applications harnessing the non-coding genome.
Conclusions
The maturation of liquid biopsy for clinical application will require interdisciplinary efforts to address current challenges. However, patients and clinicians alike may greatly benefit in the future from its incorporation into routine oncology care.
Collapse
|
17
|
Chedid J, Allam S, Chamseddine N, Bou Zerdan M, El Nakib C, Assi HI. Role of circulating tumor DNA and circulating tumor cells in breast cancer: History and updates. SAGE Open Med 2022; 10:20503121221077838. [PMID: 35223029 PMCID: PMC8874178 DOI: 10.1177/20503121221077838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Circulating tumor DNA, cell-free DNA, and circulating tumor cells have been at the epitome of recent research in breast cancer. These forms of liquid biopsies have been used in monitoring disease progression, estimating the risk of relapse, and response to treatment. Much has been done in relation to serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. Some studies have also explored their use in monitoring treatment response. As the field of liquid biopsies expands, more prospective studies are needed to tailor management in an individualistic approach. In this literature review, the authors explore the multiple uses of circulating tumor DNA and circulating tumor cells in breast cancer.
Collapse
Affiliation(s)
- Julien Chedid
- Department of Obstetrics and Gynecology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Sabine Allam
- Faculty of Medicine, University of Balamand, Beirut, Lebanon
| | - Nathalie Chamseddine
- Department of Obstetrics and Gynecology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I Assi
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
18
|
Reisle C, Williamson LM, Pleasance E, Davies A, Pellegrini B, Bleile DW, Mungall KL, Chuah E, Jones MR, Ma Y, Lewis E, Beckie I, Pham D, Matiello Pletz R, Muhammadzadeh A, Pierce BM, Li J, Stevenson R, Wong H, Bailey L, Reisle A, Douglas M, Bonakdar M, Nelson JMT, Grisdale CJ, Krzywinski M, Fisic A, Mitchell T, Renouf DJ, Yip S, Laskin J, Marra MA, Jones SJM. A platform for oncogenomic reporting and interpretation. Nat Commun 2022; 13:756. [PMID: 35140225 PMCID: PMC8828759 DOI: 10.1038/s41467-022-28348-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
Manual interpretation of variants remains rate limiting in precision oncology. The increasing scale and complexity of molecular data generated from comprehensive sequencing of cancer samples requires advanced interpretative platforms as precision oncology expands beyond individual patients to entire populations. To address this unmet need, we introduce a Platform for Oncogenomic Reporting and Interpretation (PORI), comprising an analytic framework that facilitates the interpretation and reporting of somatic variants in cancer. PORI integrates reporting and graph knowledge base tools combined with support for manual curation at the reporting stage. PORI represents an open-source platform alternative to commercial reporting solutions suitable for comprehensive genomic data sets in precision oncology. We demonstrate the utility of PORI by matching 9,961 pan-cancer genome atlas tumours to the graph knowledge base, calculating therapeutically informative alterations, and making available reports describing select individual samples. The interpretation of somatic variants in cancer is challenging due to the scale and complexity of sequencing data. Here, the authors present PORI, an open-source framework for interpreting somatic variants in cancer using graph knowledge base tools, automated reporting, and manual curation.
Collapse
Affiliation(s)
- Caralyn Reisle
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada.,Bioinformatics Graduate Program, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | | | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Anna Davies
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | | | - Dustin W Bleile
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Martin R Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Eleanor Lewis
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Isaac Beckie
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - David Pham
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | | | | | - Brandon M Pierce
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Jacky Li
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Ross Stevenson
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Hansen Wong
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Lance Bailey
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Abbey Reisle
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Matthew Douglas
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Melika Bonakdar
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | | | | | - Martin Krzywinski
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Ana Fisic
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Teresa Mitchell
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
19
|
From Information Overload to Actionable Insights: Digital Solutions for Interpreting Cancer Variants from Genomic Testing. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2040027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Given the increase in genomic testing in routine clinical use, there is a growing need for digital technology solutions to assist pathologists, oncologists, and researchers in translating variant calls into actionable knowledge to personalize patient management plans. In this article, we discuss the challenges facing molecular geneticists and medical oncologists in working with test results from next-generation sequencing for somatic oncology, and propose key considerations for implementing a decision support software to aid the interpretation of clinically important variants. In addition, we review results from an example decision support software, NAVIFY Mutation Profiler. NAVIFY Mutation Profiler is a cloud-based software that provides curation, annotation, interpretation, and reporting of somatic variants identified by next-generation sequencing. The software reports a tiered classification based on consensus recommendations from AMP, ASCO, CAP, and ACMG. Studies with NAVIFY Mutation Profiler demonstrated that the software provided timely updates and accurate curation, as well as interpretation of variant combinations, demonstrating that decision support tools can help advance implementation of precision oncology.
Collapse
|
20
|
Batis N, Brooks JM, Payne K, Sharma N, Nankivell P, Mehanna H. Lack of predictive tools for conventional and targeted cancer therapy: Barriers to biomarker development and clinical translation. Adv Drug Deliv Rev 2021; 176:113854. [PMID: 34192550 PMCID: PMC8448142 DOI: 10.1016/j.addr.2021.113854] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022]
Abstract
Predictive tools, utilising biomarkers, aim to objectively assessthe potentialresponse toa particular clinical intervention in order to direct treatment.Conventional cancer therapy remains poorly served by predictive biomarkers, despite being the mainstay of treatment for most patients. In contrast, targeted therapy benefits from a clearly defined protein target for potential biomarker assessment. We discuss potential data sources of predictive biomarkers for conventional and targeted therapy, including patient clinical data andmulti-omicbiomarkers (genomic, transcriptomic and protein expression).Key examples, either clinically adopted or demonstrating promise for clinical translation, are highlighted. Following this, we provide an outline of potential barriers to predictive biomarker development; broadly discussing themes of approaches to translational research and study/trial design, and the impact of cellular and molecular tumor heterogeneity. Future avenues of research are also highlighted.
Collapse
Affiliation(s)
- Nikolaos Batis
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Jill M Brooks
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karl Payne
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil Sharma
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Head and Neck Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Head and Neck Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Head and Neck Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
21
|
Kim N, Eum HH, Lee HO. Clinical Perspectives of Single-Cell RNA Sequencing. Biomolecules 2021; 11:biom11081161. [PMID: 34439827 PMCID: PMC8394304 DOI: 10.3390/biom11081161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
The ability of single-cell genomics to resolve cellular heterogeneity is highly appreciated in cancer and is being exploited for precision medicine. In the recent decade, we have witnessed the incorporation of cancer genomics into the clinical decision-making process for molecular-targeted therapies. Compared with conventional genomics, which primarily focuses on the specific and sensitive detection of the molecular targets, single-cell genomics addresses intratumoral heterogeneity and the microenvironmental components impacting the treatment response and resistance. As an exploratory tool, single-cell genomics provides an unprecedented opportunity to improve the diagnosis, monitoring, and treatment of cancer. The results obtained upon employing bulk cancer genomics indicate that single-cell genomics is at an early stage with respect to exploration of clinical relevance and requires further innovations to become a widely utilized technology in the clinic.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (N.K.); (H.H.E.)
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Hye Hyeon Eum
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (N.K.); (H.H.E.)
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Hae-Ock Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (N.K.); (H.H.E.)
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-8155
| |
Collapse
|
22
|
Hofman P. Next-Generation Sequencing with Liquid Biopsies from Treatment-Naïve Non-Small Cell Lung Carcinoma Patients. Cancers (Basel) 2021; 13:2049. [PMID: 33922637 PMCID: PMC8122958 DOI: 10.3390/cancers13092049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Recently, the liquid biopsy (LB), a non-invasive and easy to repeat approach, has started to compete with the tissue biopsy (TB) for detection of targets for administration of therapeutic strategies for patients with advanced stages of lung cancer at tumor progression. A LB at diagnosis of late stage non-small cell lung carcinoma (NSCLC) is also being performed. It may be asked if a LB can be complementary (according to the clinical presentation or systematics) or even an alternative to a TB for treatment-naïve advanced NSCLC patients. Nucleic acid analysis with a TB by next-generation sequencing (NGS) is gradually replacing targeted sequencing methods for assessment of genomic alterations in lung cancer patients with tumor progression, but also at baseline. However, LB is still not often used in daily practice for NGS. This review addresses different aspects relating to the use of LB for NGS at diagnosis in advanced NSCLC, including its advantages and limitations.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte d’Azur, CHU Nice, FHU OncoAge, Pasteur Hospital, 30 avenue de la voie romaine, BP69, CEDEX 01, 06001 Nice, France; ; Tel.: +33-4-92-03-88-55 or +33-4-92-03-87-49; Fax: +33-4-92-88-50
- Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, CHU Nice, FHU OncoAge, 06001 Nice, France
| |
Collapse
|
23
|
Riedl JM, Hasenleithner SO, Pregartner G, Scheipner L, Posch F, Groller K, Kashofer K, Jahn SW, Bauernhofer T, Pichler M, Stöger H, Berghold A, Hoefler G, Speicher MR, Heitzer E, Gerger A. Profiling of circulating tumor DNA and tumor tissue for treatment selection in patients with advanced and refractory carcinoma: a prospective, two-stage phase II Individualized Cancer Treatment trial. Ther Adv Med Oncol 2021; 13:1758835920987658. [PMID: 33717225 PMCID: PMC7923987 DOI: 10.1177/1758835920987658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Molecular profiling (MP) represents an opportunity to match patients to a targeted therapy and when tumor tissue is unavailable, circulating tumor deoxyribonucleic acid (ctDNA) can be harnessed as a non-invasive analyte for this purpose. We evaluated the success of a targeted therapy selected by profiling of ctDNA and tissue in patients with advanced and refractory carcinoma. PATIENTS AND METHODS A blood draw as well as an optional tissue biopsy were obtained for MP. Whole-genome sequencing and a cancer hotspot panel were performed, and publicly available databases were used to match the molecular profile to targeted treatments. The primary endpoint was the progression-free survival (PFS) ratio (PFS on MP-guided therapy/PFS on the last evidence-based therapy), whereas the success of the targeted therapy was defined as a PFS ratio ⩾1.2. To test the impact of molecular profile-treatment matching strategies, we retrospectively analyzed selected cases via the CureMatch PreciGENE™ decision support algorithm. RESULTS Interim analysis of 24 patients yielded informative results from 20 patients (83%). A potential tumor-specific drug could be matched in 11 patients (46%) and eight (33%) received a matched treatment. Median PFS in the matched treatment group was 61.5 days [interquartile range (IQR) 49.8-71.0] compared with 81.5 days (IQR 68.5-117.8) for the last evidence-based treatment, resulting in a median PFS ratio of 0.7 (IQR 0.6-0.9). Hence, as no patient experienced a PFS ratio ⩾1.2, the study was terminated. Except for one case, the CureMatch analysis identified either a two-drug or three-drug combination option. CONCLUSIONS Our study employed a histotype-agnostic approach to harness molecular profiling data from both ctDNA and metastatic tumor tissue. The outcome results indicate that more innovative approaches to study design and matching algorithms are necessary to achieve improved patient outcomes.EU Clinical Trials Registry (https://www.clinicaltrialsregister.eu): EudraCT: 2014-005341-44.
Collapse
Affiliation(s)
- Jakob M. Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Samantha O. Hasenleithner
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Lukas Scheipner
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Posch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed Ges.m.b.H.), Graz, Austria
| | - Karin Groller
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Stephan W. Jahn
- Institute of Pathology, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Herbert Stöger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Auenbruggerplatz 2, Graz 8036, Austria
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Graz, Austria
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed Ges.m.b.H.), Graz, Austria
| |
Collapse
|
24
|
Fumagalli C, Guerini-Rocco E, Barberis M. Making the Most of Complexity to Create Opportunities: Comprehensive Genomic Profiling and Molecular Tumor Board for Patients with Non-Small Cell Lung Cancer (NSCLC). Cancers (Basel) 2021; 13:609. [PMID: 33557047 PMCID: PMC7913872 DOI: 10.3390/cancers13040609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
Personalized cancer therapy matches the plan of treatment with specific molecular alterations [...].
Collapse
Affiliation(s)
- Caterina Fumagalli
- Division of Pathology, IEO, European Institute of Oncology, IRCCS, 20141 Milano, Italy; (E.G.-R.); (M.B.)
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology, IRCCS, 20141 Milano, Italy; (E.G.-R.); (M.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology, IRCCS, 20141 Milano, Italy; (E.G.-R.); (M.B.)
| |
Collapse
|