1
|
Meijnikman AS, Nieuwdorp M, Schnabl B. Endogenous ethanol production in health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:556-571. [PMID: 38831008 DOI: 10.1038/s41575-024-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome exerts metabolic actions on distal tissues and organs outside the intestine, partly through microbial metabolites that diffuse into the circulation. The disruption of gut homeostasis results in changes to microbial metabolites, and more than half of the variance in the plasma metabolome can be explained by the gut microbiome. Ethanol is a major microbial metabolite that is produced in the intestine of nearly all individuals; however, elevated ethanol production is associated with pathological conditions such as metabolic dysfunction-associated steatotic liver disease and auto-brewery syndrome, in which the liver's capacity to metabolize ethanol is surpassed. In this Review, we describe the mechanisms underlying excessive ethanol production in the gut and the role of ethanol catabolism in mediating pathogenic effects of ethanol on the liver and host metabolism. We conclude by discussing approaches to target excessive ethanol production by gut bacteria.
Collapse
Affiliation(s)
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, Netherlands
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Pinelli M, Makdissi S, Scur M, Parsons BD, Baker K, Otley A, MacIntyre B, Nguyen HD, Kim PK, Stadnyk AW, Di Cara F. Peroxisomal cholesterol metabolism regulates yap-signaling, which maintains intestinal epithelial barrier function and is altered in Crohn's disease. Cell Death Dis 2024; 15:536. [PMID: 39069546 DOI: 10.1038/s41419-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Intestinal epithelial cells line the luminal surface to establish the intestinal barrier, where the cells play essential roles in the digestion of food, absorption of nutrients and water, protection from microbial infections, and maintaining symbiotic interactions with the commensal microbial populations. Maintaining and coordinating all these functions requires tight regulatory signaling, which is essential for intestinal homeostasis and organismal health. Dysfunction of intestinal epithelial cells, indeed, is linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, and gluten-related enteropathies. Emerging evidence suggests that peroxisome metabolic functions are crucial in maintaining intestinal epithelial cell functions and intestinal epithelium regeneration and, therefore, homeostasis. Here, we investigated the molecular mechanisms by which peroxisome metabolism impacts enteric health using the fruit fly Drosophila melanogaster and murine model organisms and clinical samples. We show that peroxisomes control cellular cholesterol, which in turn regulates the conserved yes-associated protein-signaling and contributes to intestinal epithelial structure and epithelial barrier function. Moreover, analysis of intestinal organoid cultures derived from biopsies of patients affected by Crohn's Disease revealed that the dysregulation of peroxisome number, excessive cellular cholesterol, and inhibition of Yap-signaling are markers of disease and could be novel diagnostic and/or therapeutic targets for treating Crohn's Disease. Our studies provided mechanistic insights on peroxisomal signaling in intestinal epithelial cell functions and identified cholesterol as a novel metabolic regulator of yes-associated protein-signaling in tissue homeostasis.
Collapse
Affiliation(s)
- Marinella Pinelli
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Anthony Otley
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brad MacIntyre
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Huong D Nguyen
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Peter K Kim
- The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada.
| |
Collapse
|
3
|
Horcas-Nieto JM, Versloot CJ, Langelaar-Makkinje M, Gerding A, Blokzijl T, Koster MH, Baanstra M, Martini IA, Coppes RP, Bourdon C, van Ijzendoorn SCD, Kim P, Bandsma RHJ, Bakker BM. Organoids as a model to study intestinal and liver dysfunction in severe malnutrition. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166635. [PMID: 36581145 DOI: 10.1016/j.bbadis.2022.166635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Affiliation(s)
- José M Horcas-Nieto
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Christian J Versloot
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Miriam Langelaar-Makkinje
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Albert Gerding
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tjasso Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mirjam H Koster
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cell & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ingrid A Martini
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cell & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Céline Bourdon
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sven C D van Ijzendoorn
- Department of Biomedical Sciences of Cell & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Kim
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Robert H J Bandsma
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Barbara M Bakker
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
4
|
Fission Impossible (?)-New Insights into Disorders of Peroxisome Dynamics. Cells 2022; 11:cells11121922. [PMID: 35741050 PMCID: PMC9221819 DOI: 10.3390/cells11121922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are highly dynamic and responsive organelles, which can adjust their morphology, number, intracellular position, and metabolic functions according to cellular needs. Peroxisome multiplication in mammalian cells involves the concerted action of the membrane-shaping protein PEX11β and division proteins, such as the membrane adaptors FIS1 and MFF, which recruit the fission GTPase DRP1 to the peroxisomal membrane. The latter proteins are also involved in mitochondrial division. Patients with loss of DRP1, MFF or PEX11β function have been identified, showing abnormalities in peroxisomal (and, for the shared proteins, mitochondrial) dynamics as well as developmental and neurological defects, whereas the metabolic functions of the organelles are often unaffected. Here, we provide a timely update on peroxisomal membrane dynamics with a particular focus on peroxisome formation by membrane growth and division. We address the function of PEX11β in these processes, as well as the role of peroxisome–ER contacts in lipid transfer for peroxisomal membrane expansion. Furthermore, we summarize the clinical phenotypes and pathophysiology of patients with defects in the key division proteins DRP1, MFF, and PEX11β as well as in the peroxisome–ER tether ACBD5. Potential therapeutic strategies for these rare disorders with limited treatment options are discussed.
Collapse
|
5
|
Abstract
Growing evidence suggests that ethanolamine plasmalogens (PlsEtns), a subtype of phospholipids, have a close association with Alzheimer’s disease (AD). Decreased levels of PlsEtns have been commonly found in AD patients, and were correlated with cognition deficit and severity of disease. Limited studies showed positive therapeutic outcomes with plasmalogens interventions in AD subjects and in rodents. The potential mechanisms underlying the beneficial effects of PlsEtns on AD may be related to the reduction of γ–secretase activity, an enzyme that catalyzes the synthesis of β-amyloid (Aβ), a hallmark of AD. Emerging in vitro evidence also showed that PlsEtns prevented neuronal cell death by enhancing phosphorylation of AKT and ERK signaling through the activation of orphan G-protein coupled receptor (GPCR) proteins. In addition, PlsEtns have been found to suppress the death of primary mouse hippocampal neuronal cells through the inhibition of caspase-9 and caspase-3 cleavages. Further in-depth investigations are required to determine the signature molecular species of PlsEtns associated with AD, hence their potential role as biomarkers. Clinical intervention with plasmalogens is still in its infancy but may have the potential to be explored for a novel therapeutic approach to correct AD pathology and neural function.
Collapse
|
6
|
Morvay PL, Baes M, Van Veldhoven PP. Differential activities of peroxisomes along the mouse intestinal epithelium. Cell Biochem Funct 2017; 35:144-155. [PMID: 28370438 DOI: 10.1002/cbf.3255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 02/01/2023]
Abstract
The presence of peroxisomes in mammalian intestine has been revealed formerly by catalase staining combined with electron microscopy. Despite the central role of intestine in lipid uptake and the established importance of peroxisomes in different lipid-related pathways, few data are available on the physiological role of peroxisomes in intestinal metabolism, more specifically, α-, β-oxidation, and etherlipid synthesis. Hence, the peroxisomal compartment was analyzed in more detail in mouse intestine. On the basis of immunohistochemistry, the organelles are mainly confined to the epithelial cells. The expression of the classical peroxisome marker catalase was highest in the proximal part of jejunum and decreased along the tract. PEX14 showed a similar profile, but was still substantial expressed in large intestinal epithelium. Immunoblotting of epithelial cells, isolated from the different segments, showed also such gradient for some enzymes, ie, catalase, ACOX1, and D-specific multifunctional protein 2, and for the ABCD1 transporter, being high in small and low or absent in large intestine. Other peroxisomal enzymes (PHYH, HACL1, and ACAA1), the ABCD2 and ABCD3 transporters, and peroxins PEX13 and PEX14, however, did not follow this pattern, displaying rather constant signals throughout the intestinal epithelium. The small intestine displayed the highest peroxisomal β-oxidation activity and is particularly active on dicarboxylic acids. Etherlipid synthesis was high in the large intestine, and colonic cells had the highest content of plasmalogens. Overall, these data suggest that peroxisomes exert different functions according to the intestinal segment.
Collapse
Affiliation(s)
- Petruta L Morvay
- Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
7
|
Nardacci R, Falciatori I, Moreno S, Stefanini S. Immunohistochemical Localization of Peroxisomal Enzymes During Rat Embryonic Development. J Histochem Cytochem 2016; 52:423-36. [PMID: 15033994 DOI: 10.1177/002215540405200401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peroxisomes are cytoplasmic organelles involved in a variety of metabolic pathways. Thus far, the morphological and biochemical features of peroxisomes have been extensively characterized in adult tissues. However, the existence of congenital peroxisomal disorders, primarily affecting tissue differentiation, emphasizes the importance of these organelles in the early stages of organogenesis. We investigated the occurrence and tissue distribution of three peroxisomal enzymes in rat embryos at various developmental stages. By means of a highly sensitive biotinyl-tyramide protocol, catalase, acyl-CoA oxidase, and ketoacyl-CoA thiolase were detected in embryonic tissues where peroxisomes had not thus far been recognized, i.e., adrenal and pancreatic parenchyma, choroid plexus, neuroblasts of cranial and spinal ganglia and myenteric plexus, and chondroblasts of certain skeletal structures. In other tissues, i.e., gut epithelium and neuroblasts of some CNS areas, they were identified earlier than previously. In select CNS areas, ultrastructural catalase cytochemistry allowed identification of actively proliferating organelles at early developmental stages in several cell types. Our data show that in most organs maturation of peroxisomes parallels the acquirement of specific functions, mainly related to lipid metabolism, thus supporting an involvement of the organelles in tissue differentiation.
Collapse
Affiliation(s)
- Roberta Nardacci
- Department of Cellular and Developmental Biology, University La Sapienza, Italy.
| | | | | | | |
Collapse
|
8
|
|
9
|
Witkiewicz H, Oh P, Schnitzer JE. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect. F1000Res 2013; 2:10. [PMID: 24358890 PMCID: PMC3829121 DOI: 10.12688/f1000research.2-10.v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 12/14/2022] Open
Abstract
Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth
in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis.
In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of cell cycle through mitosis, indicated that Warburg effect had a fundamental biological significance extending to non-malignant tissues. The approach used here could facilitate integration of accumulated cyber knowledge on cancer metabolism into predictive science.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, California, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, California, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, California, 92121, USA
| |
Collapse
|
10
|
Abstract
Alzheimer's disease (AD) is a cognitive disorder with a number of complex neuropathologies, including, but not limited to, neurofibrillary tangles, neuritic plaques, neuronal shrinkage, hypomyelination, neuroinflammation and cholinergic dysfunction. The role of underlying pathological processes in the evolution of the cholinergic deficit responsible for cognitive decline has not been elucidated. Furthermore, generation of testable hypotheses for defining points of pharmacological intervention in AD are complicated by the large scale occurrence of older individuals dying with no cognitive impairment despite having a high burden of AD pathology (plaques and tangles). To further complicate these research challenges, there is no animal model that reproduces the combined hallmark neuropathologies of AD. These research limitations have stimulated the application of 'omics' technologies in AD research with the goals of defining biologic markers of disease and disease progression and uncovering potential points of pharmacological intervention for the design of AD therapeutics. In the case of sporadic AD, the dominant form of dementia, genomics has revealed that the ε4 allele of apolipoprotein E, a lipid transport/chaperone protein, is a susceptibility factor. This seminal observation points to the importance of lipid dynamics as an area of investigation in AD. In this regard, lipidomics studies have demonstrated that there are major deficits in brain structural glycerophospholipids and sphingolipids, as well as alterations in metabolites of these complex structural lipids, which act as signaling molecules. Peroxisomal dysfunction appears to be a key component of the changes in glycerophospholipid deficits. In this review, lipid alterations and their potential roles in the pathophysiology of AD are discussed.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Department of Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA.
| |
Collapse
|
11
|
Hashimoto F, Shimooka S, Iwasaki K, Ono A, Kumaoka M, Yokota S, Takeda S, Okawara M, Hayashi H. Presence and Some Characteristics of Peroxisomes in Immortalized Human Trophoblast Cells. Biol Pharm Bull 2008; 31:546-52. [DOI: 10.1248/bpb.31.546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Kaori Iwasaki
- Faculty of Pharmaceutical Sciences, Josai University
| | - Asuka Ono
- Faculty of Pharmaceutical Sciences, Josai University
| | - Maiko Kumaoka
- Faculty of Pharmaceutical Sciences, Josai University
| | - Sadaki Yokota
- Section of Functional Morphology, Faculty of Pharmaecutical Science, Nagasaki International University
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical School
| | | | | |
Collapse
|
12
|
Schrader M. Shared components of mitochondrial and peroxisomal division. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:531-41. [PMID: 16487606 DOI: 10.1016/j.bbamcr.2006.01.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/11/2006] [Accepted: 01/13/2006] [Indexed: 12/15/2022]
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity. Recent studies have led to the surprising finding that both organelles share components of their division machinery, namely the dynamin-related protein DLP1/Drp1 and hFis1, which recruits DLP1/Drp1 to the organelle membranes. This review addresses the current state of knowledge concerning the dynamics and fission of peroxisomes, especially in relation to mitochondrial morphology and division in mammalian cells.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert-Koch Str. 6, 35037 Marburg, Germany.
| |
Collapse
|
13
|
Abstract
Peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity in response to cellular and environmental conditions. Novel proteins and pathways that mediate and control peroxisome formation, growth, and division continue to be discovered, and the cellular machineries that act together to regulate peroxisome number and size are under active investigation. Here, advances in the field of peroxisomal dynamics and proliferation in mammals and yeast are reviewed. The authors address the signals, conditions, and proteins that affect, regulate, and control the number and size of this essential organelle, especially the components involved in the division of peroxisomes. Special emphasis is on the function of dynamin-related proteins (DRPs), on Fis1, a putative adaptor for DRPs, on the role of the Pex11 family of peroxisomal membrane proteins, and the cytoskeleton.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
14
|
Koch A, Schneider G, Lüers GH, Schrader M. Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J Cell Sci 2005; 117:3995-4006. [PMID: 15286177 DOI: 10.1242/jcs.01268] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian dynamin-like protein DLP1 belongs to the dynamin family of large GTPases, which have been implicated in tubulation and fission events of cellular membranes. We have previously shown that the expression of a dominant-negative DLP1 mutant deficient in GTP hydrolysis (K38A) inhibited peroxisomal division in mammalian cells. In this study, we conducted RNA interference experiments to 'knock down' the expression of DLP1 in COS-7 cells stably expressing a GFP construct bearing the C-terminal peroxisomal targeting signal 1. The peroxisomes in DLP1-silenced cells were highly elongated with a segmented morphology. Ultrastructural and quantitative studies confirmed that the tubular peroxisomes induced by DLP1-silencing retained the ability to constrict their membranes but were not able to divide into spherical organelles. Co-transfection of DLP1 siRNA with Pex11pbeta, a peroxisomal membrane protein involved in peroxisome proliferation, induced further elongation and network formation of the peroxisomal compartment. Time-lapse microscopy of living cells silenced for DLP1 revealed that the elongated peroxisomes moved in a microtubule-dependent manner and emanated tubular projections. DLP1-silencing in COS-7 cells also resulted in a pronounced elongation of mitochondria, and in more dispersed, elongated Golgi structures, whereas morphological changes of the rER, lysosomes and the cytoskeleton were not detected. These observations clearly demonstrate that DLP1 acts on multiple membranous organelles. They further indicate that peroxisomal elongation, constriction and fission require distinct sets of proteins, and that the dynamin-like protein DLP1 functions primarily in the latter process.
Collapse
Affiliation(s)
- Annett Koch
- Department of Cell Biology and Cell Pathology, Robert Koch Strasse 6, University of Marburg, Marburg, 35037, Germany
| | | | | | | |
Collapse
|
15
|
Schrader M, Fahimi HD. Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 2004; 122:383-93. [PMID: 15241609 DOI: 10.1007/s00418-004-0673-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2004] [Indexed: 12/22/2022]
Abstract
The central role of peroxisomes in the generation and scavenging of hydrogen peroxide has been well known ever since their discovery almost four decades ago. Recent studies have revealed their involvement in metabolism of oxygen free radicals and nitric oxide that have important functions in intra- and intercellular signaling. The analysis of the role of mammalian peroxisomes in a variety of physiological and pathological processes involving reactive oxygen species (ROS) is the subject of this review. The general characteristics of peroxisomes and their enzymes involved in the metabolism of ROS are briefly reviewed. An expansion of the peroxisomal compartment with proliferation of tubular peroxisomes is observed in cells exposed to UV irradiation and various oxidants and is apparently accompanied by upregulation of PEX genes. Significant reduction of peroxisomes and their enzymes is observed in inflammatory processes including infections, ischemia-reperfusion injury, and allograft rejection and seems to be related to the suppressive effect of tumor necrosis factor-alpha on peroxisome function and peroxisome proliferator activated receptor-alpha. Xenobiotic-induced proliferation of peroxisomes in rodents is accompanied by the formation of hepatic tumors, and evidently the imbalance in generation and decomposition of ROS plays an important role in this process. In PEX5-/- knockout mice lacking functional peroxisomes severe alterations of mitochondria in various organs are observed which seem to be due to a generalized increase in oxidative stress confirming the important role of peroxisomes in homeostasis of ROS and the implications of its disturbances for cell pathology.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Strasse 6, 35037, Marburg, Germany
| | | |
Collapse
|
16
|
Roels F, Depreter M, Espeel M, D'Herde K, Kerckaert I, Vamecq J, Van den Branden C. Peroxisomes during development and in distinct cell types. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 544:39-54. [PMID: 14713210 DOI: 10.1007/978-1-4419-9072-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Frank Roels
- Dept. of Pathology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Peroxisomes are single membrane-bound cell organelles performing numerous metabolic functions. The present article aims to give an overview of our current knowledge about inherited peroxisomal disorders in which these organelles are lacking or one or more of their functions are impaired. They are multiorgan disorders and the nervous system is implicated in most. After a summary of the historical names and categories, each having distinct symptoms and prognosis, microscopic pathology is reviewed in detail. Data from the literature are added to experience in the authors' laboratory with 167 liver biopsy and autopsy samples from peroxisomal patients, and with a smaller number of chorion samples for prenatal diagnosis, adrenal-, kidney-, and brain samples. Various light and electron microscopic methods are used including enzyme- and immunocytochemistry, polarizing microscopy, and morphometry. Together with other laboratory investigations and clinical data, this approach continues to contribute to the diagnosis and further characterization of peroxisomal disorders, and the discovery of novel variants. When liver specimens are examined, three main groups including 9 novel variants (33 patients) are distinguished: (1) absence or (2) presence of peroxisomes, and (3) mosaic distribution of cells with and without peroxisomes (10 patients). Renal microcysts, polarizing trilamellar inclusions, and insoluble lipid in macrophages in liver, adrenal cortex, brain, and in interstitial cells of kidney are also valuable for classification. On a genetic basis, complementation of fibroblasts has classified peroxisome biogenesis disorders into 12 complementation groups. Peroxisome biogenesis genes (PEX), knock-out-mice, and induction of redundant genes are briefly reviewed, including some recent results with 4-phenylbutyrate. Finally, regulation of peroxisome expression during development and in cell cultures, and by physiological factors is discussed.
Collapse
Affiliation(s)
- Marianne Depreter
- Ghent University, Department of Human Anatomy, Embryology, Histology and Medical Physics, Belgium
| | | | | |
Collapse
|
18
|
Schrader M, Thiemann M, Fahimi HD. Peroxisomal motility and interaction with microtubules. Microsc Res Tech 2003; 61:171-8. [PMID: 12740823 DOI: 10.1002/jemt.10326] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent in vivo observations have revealed that peroxisomes are more dynamic and interactive than previously assumed. The growing recognition of the tubular and reticular morphology of peroxisomes in living cells, their association with microtubules, and the dynamic movements of peroxisomes in vivo and in vitro have inspired the query into the investigation of the cellular machinery that mediates such a complex behaviour. The characterisation of the underlying molecular components of this machinery is providing insight into the mechanisms regulating peroxisomal morphology and intracellular distribution.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, Philipps University, 35037 Marburg, Germany.
| | | | | |
Collapse
|
19
|
Baumgart E, Fahimi HD, Steininger H, Grabenbauer M. A review of morphological techniques for detection of peroxisomal (and mitochondrial) proteins and their corresponding mRNAs during ontogenesis in mice: application to the PEX5-knockout mouse with Zellweger syndrome. Microsc Res Tech 2003; 61:121-38. [PMID: 12740819 DOI: 10.1002/jemt.10322] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the era of application of molecular biological gene-targeting technology for the generation of knockout mouse models to study human genetic diseases, the availability of highly sensitive and reliable methods for the morphological characterization of the specific phenotypes of these mice is of great importance. In the first part of this report, the role of morphological techniques for studying the biology and pathology of peroxisomes is reviewed, and the techniques established in our laboratories for the localization of peroxisomal proteins and corresponding mRNAs in fetal and newborn mice are presented and discussed in the context of the international literature. In the second part, the literature on the ontogenetic development of the peroxisomal compartment in mice, with special emphasis on liver and intestine is reviewed and compared with our own data reported recently. In addition, some recent data on the pathological alterations in the liver of the PEX5(-/-) mouse with a peroxisomal biogenesis defect are briefly discussed. Finally, the methods developed during these studies for the localization of mitochondrial proteins (respiratory chain complexes and MnSOD) are presented and their advantages and pitfalls discussed. With the help of these techniques, it is now possible to identify and distinguish unequivocally peroxisomes from mitochondria, two classes of cell organelles giving by light microscopy a punctate staining pattern in microscopical immunohistochemical preparations of paraffin-embedded mouse tissues.
Collapse
Affiliation(s)
- Eveline Baumgart
- Department of Anatomy and Cell Biology, Division of Medical Cell Biology, University of Giessen, Germany.
| | | | | | | |
Collapse
|
20
|
Depreter M, Walker T, De Smet K, Beken S, Kerckaert I, Rogiers V, Roels F. Hepatocyte polarity and the peroxisomal compartment: a comparative study. THE HISTOCHEMICAL JOURNAL 2002; 34:139-51. [PMID: 12495220 DOI: 10.1023/a:1020990414190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In search of factors that regulate the phenotype of the peroxisomal compartment in wild-type liver parenchymal cells, we compared hepatocyte polarity to peroxisome differentiation, using adult liver as the standard. Differentiation parameters were evaluated in a three-dimensional culture model (spheroid), in 'sandwich' and monolayer primary hepatocyte cultures, and in 15.5 and 18.5-day-old foetal rat liver. Peroxisomes, studied by immunohistochemistry, enzyme histochemistry, and catalase specific activity, were better differentiated depending on foetal age (day 18.5 > day 15.5) and culture type (spheroid > sandwich > monolayer). The hepatocyte polarity markers ATP-, ADP-, and AMP-hydrolysing activities were, in all models, mislocalized at the lateral plasma membrane, whereas in contrast the multidrug resistance-associated protein 2 (mrp2) antigen was always correctly immunolocalized at the apical membrane domain. In cultures, the correct secretion of fluorescein (mrp2-mediated) into bile canaliculi was observed. Bile canaliculi (branching, ultrastructure and immunolocalization of the tight-junction associated protein ZO-1), were better differentiated in 18.5 than in 15.5-day-old foetal liver and in spheroid > sandwich > monolayer cultures. Our results show a parallelism between changes of the peroxisomal compartment and bile canalicular structure together with mrp2-mediated secretory function. Distinct polarization characteristics do not necessarily change simultaneously, suggesting different regulatory mechanisms.
Collapse
Affiliation(s)
- Marianne Depreter
- Department of Human Anatomy, Embryology, Histology, and Medical Physics, Ghent University, Godshuizenlaan 4, B-9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Schrader M. Tubulo-reticular clusters of peroxisomes in living COS-7 cells: dynamic behavior and association with lipid droplets. J Histochem Cytochem 2001; 49:1421-29. [PMID: 11668195 DOI: 10.1177/002215540104901110] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We characterized more complex peroxisomal structures, i.e., tubulo-reticular peroxisomal clusters, in greater detail under in vivo conditions in COS-7 cells that were transfected with a GFP-PTS1 fusion protein. Live cell imaging revealed the dynamic nature of peroxisomal clusters and allowed a detailed analysis of the motile properties of a heterogeneous peroxisome population. Furthermore, peroxisomal clusters were found to be associated with lipid droplets. The frequency of peroxisomal clusters correlated with an increase in cell density and in the size of lipid droplets. These data provide further evidence for the dynamic nature of the peroxisomal compartment and indicate that peroxisomal clusters have a function in lipid metabolism.
Collapse
Affiliation(s)
- M Schrader
- Department of Cell Biology and Cell Pathology, Philipps University, Marburg, Germany.
| |
Collapse
|
22
|
Grabenbauer M, Fahimi HD, Baumgart E. Detection of peroxisomal proteins and their mRNAs in serial sections of fetal and newborn mouse organs. J Histochem Cytochem 2001; 49:155-64. [PMID: 11156684 DOI: 10.1177/002215540104900203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We present a protocol for detection of peroxisomal proteins and their corresponding mRNAs on consecutive serial sections of fetal and newborn mouse tissues by immunohistochemistry (IHC) and nonradioactive in situ hybridization (ISH). The use of perfusion-fixation with depolymerized paraformaldehyde combined with paraffin embedding and digoxigenin-labeled cRNA probes provided a highly sensitive ISH protocol, which also permitted immunodetection with high optical resolution by light and/or fluorescence microscopy. Signal enhancement was achieved by the addition of polyvinyl alcohol (PVA) for ISH color development. For IHC, signal amplification was obtained by antigen retrieval combined with biotin-avidin-HRP and Nova Red as substrate or by the catalyzed reporter deposition of fluorescent tyramide. Using this protocol, we studied the developmental changes in localization of the peroxisomal marker enzymes catalase (CAT) and acyl-CoA oxidase 1 (AOX), the key regulatory enzyme of peroxisomal beta-oxidation, at the protein and mRNA levels in mice from embryonic Day 14.5 to birth (P0.5). The mRNA signals for CAT and AOX were detected in sections of complete fetuses, revealing organ- and cell-specific variations. Here we focus on the localization patterns in liver, intestine, and skin, which showed increasing mRNA amounts during development, with the strongest signals in newborns (P0.5). Immunolocalization of the corresponding proteins revealed, in close correlation with the mRNAs, a distinct punctate staining pattern corresponding to the distribution of peroxisomes. (J Histochem Cytochem 49:155-164, 2001)
Collapse
Affiliation(s)
- M Grabenbauer
- Department of Anatomy and Cell Biology, Division of Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Cancio I, Cajaraville MP. Cell biology of peroxisomes and their characteristics in aquatic organisms. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 199:201-93. [PMID: 10874580 DOI: 10.1016/s0074-7696(00)99005-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The general characteristics of peroxisomes in different organisms, including aquatic organisms such as fish, crustaceans, and mollusks, are reviewed, with special emphasis on different aspects of the organelle biogenesis and mechanistic aspects of peroxisome proliferation. Peroxisome proliferation and peroxisomal enzyme inductions elicited by xenobiotics or physiological conditions have become useful tools to study the mechanisms of peroxisome biogenesis. During peroxisome proliferation, the induction of peroxisomal proteins is heterogeneous, enzymes that show increased activity being involved in different aspects of lipid homeostasis. The process of peroxisome biogenesis is coordinately triggered by a whole array of structurally dissimilar compounds known as peroxisome proliferators, and investigating the effect of some of these compounds that commonly appear as pollutants in the environment on the peroxisomes of aquatic animals inhabiting marine and estuarine habitats seems interesting. It is also important to determine whether peroxisome proliferation in these animals is a phenomenon that might occur under normal physiological or season-related conditions and plays a metabolic or functional role. This would help set the basis for understanding the process of peroxisome biogenesis in aquatic animals.
Collapse
Affiliation(s)
- I Cancio
- Zoologia eta Animali Zelulen Dinamika Saila, Euskal Herriko Unibertsitatea, Bilbo/Basque Country, Spain
| | | |
Collapse
|
24
|
Schrader M, King SJ, Stroh TA, Schroer TA. Real time imaging reveals a peroxisomal reticulum in living cells. J Cell Sci 2000; 113 ( Pt 20):3663-71. [PMID: 11017881 DOI: 10.1242/jcs.113.20.3663] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have directly imaged the dynamic behavior of a variety of morphologically different peroxisomal structures in HepG2 and COS-7 cells transfected with a construct encoding GFP bearing the C-terminal peroxisomal targeting signal 1. Real time imaging revealed that moving peroxisomes interacted with each other and were engaged in transient contacts, and at higher magnification, tubular peroxisomes appeared to form a peroxisomal reticulum. Local remodeling of these structures could be observed involving the formation and detachment of tubular processes that interconnected adjacent organelles. Inhibition of cytoplasmic dynein based motility by overexpression of the dynactin subunit, dynamitin (p50), inhibited the movement of peroxisomes in vivo and interfered with the reestablishment of a uniform distribution of peroxisomes after recovery from nocodazole treatment. Isolated peroxisomes moved in vitro along microtubules in the presence of a microtubule motor fraction. Our data reveal that peroxisomal behavior in vivo is significantly more dynamic and interactive than previously thought and suggest a role for the dynein/dynactin motor in peroxisome motility.
Collapse
Affiliation(s)
- M Schrader
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
25
|
Cimini A, Cristiano L, Bernardo A, Farioli-Vecchioli S, Stefanini S, Cerù MP. Presence and inducibility of peroxisomes in a human glioblastoma cell line. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1474:397-409. [PMID: 10779693 DOI: 10.1016/s0304-4165(00)00036-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the effect of the peroxisomal proliferator (PP) perfluorodecanoic acid (PFDA), alone or in combination with 9-cis-retinoic acid (RX) on the human glioblastoma cell line Lipari (LI). Cell proliferation, apoptotic rate, peroxisome morphology and morphometry, peroxisomal enzyme activities and the presence of peroxisome proliferator-activated receptors (PPARs) were examined. We show that PFDA alone produces pleiotropic effects on LI cells and that RX enhances some of these effects. Peroxisomal number and relative volume, as well as palmitoyl-CoA oxidase activity and protein, are increased by PFDA treatment, with a synergistic effect by RX. The latter, alone or in association with PFDA, induces catalase activity and protein, increases apoptosis and decreases cell proliferation. PPAR isotypes alpha and gamma were detected in LI cells. While the former is apparently unaffected by either treatment, the latter increases in response to PFDA, independent of the presence of RX. The results of this study are discussed in terms of PPARalpha activation and PPARgamma induction by PFDA, by either a direct or an indirect mechanism.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Biology, University of L'Aquila, via Vetoio n. 10, 67010 Coppito (AQ), Italy
| | | | | | | | | | | |
Collapse
|
26
|
Depreter M, Tytgat T, Beken S, Espeel M, De Smet K, Rogiers V, Roels F. Effects of extracellular matrix on the expression of peroxisomes in primary rat hepatocyte cultures. J Hepatol 2000; 32:381-91. [PMID: 10735606 DOI: 10.1016/s0168-8278(00)80387-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Peroxisomes in wild-type cells vary between tissues and developmental stages. In the liver of some peroxisomal deficiency disorder patients, rare parenchymal cells express normal peroxisomes (mosaics); the mechanism is unknown. Our aim was to find factors regulating peroxisome expression. METHODS Liver-specific as well as peroxisome characteristics were studied in three types of primary rat hepatocyte cultures. RESULTS Total glutathione S-transferase activity and albumin secretion both increased in the collagen I sandwich and immobilization gel cultures. In contrast, in monolayers cultured on plastic, total glutathione S-transferase activity decreased and albumin secretion was only 30-40% compared to the collagen cultures. Glycogen rosettes typical of liver parenchymal cells were always abundant. Laminin and collagen IV-producing stellate cells were numerous in the monolayer but almost absent in the sandwich cultures. In 6-day-monolayer cultures, the number of liver-specific peroxisomes had decreased while atypical small or elongated peroxisomes appeared. Immunolabeling density for catalase and three beta-oxidation enzymes was decreased compared to adult rat liver; catalase specific activity in homogenates had dropped to 15% and 4% in the sandwich and monolayer cultures, respectively. In 17-day-sandwich cultures, some peroxisomes showed a very weak catalase reaction; total activity was 5%. Supplementation of the collagen type I cultures with several extracellular matrix factors could not prevent peroxisome dedifferentiation. CONCLUSION The presence of these extracellular matrix components is not sufficient for normal peroxisome expression. It is suggested that hepatocyte-specific and peroxisomal features are regulated differently. The sandwich preserves hepatocyte differentiation better than the monolayer.
Collapse
Affiliation(s)
- M Depreter
- University of Ghent, Department of Anatomy, Embryology and Histology, Belgium.
| | | | | | | | | | | | | |
Collapse
|
27
|
Phipps AN, Connock MJ, Johnson P, Burdett K. Peroxisome distribution along the crypt-villus axis of the guinea pig small intestine. Mol Cell Biochem 2000; 203:119-26. [PMID: 10724340 DOI: 10.1023/a:1007052003143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peroxisomes and peroxisomal enzyme expression were investigated biochemically and morphometrically in guinea pig intestinal epithelial cells at different stages of their migration along the crypt-villus axis. Epithelial cells were sequentially isolated along the axis and the specific activities of the peroxisomal enzymes catalase and acyl-CoA oxidase were found to be significantly higher in differentiated and mature cells situated at the villus tip and stem than in the crypt. Conversely, 1-alk-1'enyl, 2-acyl phospholipid (plasmalogen) concentration in the crypt and middle villus was significantly higher than in villus tip cells. Assay of alkyl DHAP synthase and fatty acyl CoA reductase (enzymes responsible for the production of plasmalogen precursors) showed no correlating activity gradient with plasmalogen concentration. Morphometric analysis revealed that peroxisomes were present even in the most immature stem cells, however, their number and volume and surface densities increased as the epithelial cell developed as did the proportion of elongated and vermiform peroxisomes to spherical structures. Senescent cells at the tip of the villus, however, showed a dramatic decrease in number of peroxisomes per cell possibly due to cellular degradation. We conclude that the peroxisomal compartment of the guinea pig small intestinal epithelial cell develops as a function of cell development possibly reflecting adaptation to maximise its metabolic capacity.
Collapse
Affiliation(s)
- A N Phipps
- School of Biological Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
28
|
Fahimi HD, Baumgart E. Current cytochemical techniques for the investigation of peroxisomes. A review. J Histochem Cytochem 1999; 47:1219-32. [PMID: 10490450 DOI: 10.1177/002215549904701001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The past decade has witnessed unprecedented progress in elucidation of the complex problems of the biogenesis of peroxisomes and related human disorders, with further deepening of our understanding of the metabolic role of this ubiquitous cell organelle. There have been many recent reviews on biochemical and molecular biological aspects of peroxisomes, with the morphology and cytochemistry receiving little attention. This review focuses on the state-of-the-art cytochemical techniques available for investigation of peroxisomes. After a brief introduction into the use of the 3,3'-diaminobenzidine method for localization of catalase, which is still most commonly used for identification of peroxisomes, the cerium technique for detection of peroxisomal oxidases is discussed. The influence of the buffer used in the incubation medium on the ultrastructural pattern obtained in rat liver peroxisomes in conjunction with the localization of urate oxidase in their crystalline cores is discussed, particularly since Tris-maleate buffer inhibits the enzyme activity. In immunocytochemistry, quantitation of immunogold labeling by automatic image analysis enables quantitative assessment of alterations of proteins in the matrix of peroxisomes. This provides a highly sensitive approach for analysis of peroxisomal responses to metabolic alterations or to xenobiotics. The recent evidence suggesting the involvement of ER in the biogenesis of "preperoxisomes" is mentioned and the potential role of preembedding immunocytochemistry for identification of ER-derived early peroxisomes is emphasized. The use of GFP expressed with a peroxisomal targeting signal for the investigation of peroxisomes in living cells is briefly discussed. Finally, the application of in situ hybridization for detection of peroxisomal mRNAs is reviewed, with emphasis on a recent protocol using perfusion-fixation, paraffin embedding, and digoxigenin-labeled cRNA probes, which provides a highly sensitive method for detection of both high- and low-abundance mRNAs encoding peroxisomal proteins. (J Histochem Cytochem 47:1219-1232, 1999)
Collapse
Affiliation(s)
- H D Fahimi
- Department of Anatomy and Cell Biology, Division of Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
29
|
Cimini AM, Singh I, Farioli-Vecchioli S, Cristiano L, Cerú MP. Presence of heterogeneous peroxisomal populations in the rat nervous tissue. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:13-26. [PMID: 9813222 DOI: 10.1016/s0304-4165(98)00049-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Peroxisomes were purified from the nervous tissue of 14-day-old rats by means of a Nycodenz gradient. Peroxisomal enzymes exhibited different sedimentation patterns: dihydroxyacetone phosphate acyl-transferase equilibrates at 1.142 g/ml together with the first peak of catalase; palmitoyl-CoA oxidase and D-amino acid oxidase activities are mainly recovered at 1.154 g/ml; the second peak of catalase is found at 1.175 g/ml. Morphological and semi-quantitative analyses of immunogold-labelled peroxisomes reveal profound heterogeneity of the particles. Very small (=0.2 microm diameter), electron dense vesicles containing catalase or thiolase, but devoid of other tested enzymes, are preferentially found in the light region, together with larger ( > 0.2 < 0.3 microm) and less electron dense palmitoyl-CoA oxidase-positive peroxisomes. At intermediate density (1.154 g/ml) peroxisomes of more uniform size (0.25-0.27 microm), containing palmitoyl-CoA oxidase or thiolase with or without catalase are preferentially found. This population extends toward the densest region of the gradient, where very large D-amino acid oxidase-containing peroxisomes are also found. In this region, smaller peroxisomes, often polymorphic, which are catalase- and thiolase-positive and D-amino acid oxidase/palmitoyl-CoA oxidase-negative, are also observed. The possibility that the heterogeneity of neural peroxisomes may reflect both cellular heterogeneity and ongoing peroxisomal biogenesis is discussed.
Collapse
Affiliation(s)
- A M Cimini
- Department of Basic and Applied Biology, University of L'Aquila, Coppito L'Aquila, Italy
| | | | | | | | | |
Collapse
|
30
|
Schrader M, Krieglstein K, Fahimi HD. Tubular peroxisomes in HepG2 cells: selective induction by growth factors and arachidonic acid. Eur J Cell Biol 1998; 75:87-96. [PMID: 9548366 DOI: 10.1016/s0171-9335(98)80051-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We showed recently the plasticity of the peroxisomal compartment in the human hepatoblastoma cell line HepG2 as evidenced by the presence of elongated tubular peroxisomes measuring up to 5 microm next to much smaller spherical or rod-shaped ones (0.1-0.3 microm). Since the occurrence of tubular peroxisomes in a given cell in culture is synchronized, with neighboring cells containing either small spherical or elongated tubular peroxisomes, cell counting of immunofluorescence preparations stained for catalase was used for the quantitative assessment of the dynamics of the peroxisomal compartment and the factors regulating this process. Initial studies revealed that the formation of tubular peroxisomes is primarily influenced by the cell density as well as by lipid- and protein-factors in fetal calf serum, being independent of an intact microtubular network. Biochemical studies showed that the occurrence of tubular peroxisomes correlated with the expression of the mRNA for 70 kDa peroxisomal membrane protein (PMP70), but not with that of matrix proteins. By cultivation of cells in serum- and protein-free media specific factors were identified which influenced the formation of tubular peroxisomes. Among several growth factors tested, nerve growth factor (NGF) was the most potent one inducing tubular peroxisomes and its effect was blocked by K252b, a specific inhibitor of neurotrophin receptor pathway, suggesting the involvement of signal transduction in this process. Furthermore, from several polyunsaturated fatty acids (PUFA) which all induced tubular peroxisomes, the arachidonic acid (AA) was the most potent one. Our observations suggest that tubular peroxisomes are transient structures in the process of rapid expansion of the peroxisomal compartment which are induced either by specific growth factors or by polyunsaturated fatty acids both of which are involved in intracellular signaling.
Collapse
MESH Headings
- 3T3 Cells
- 5,8,11,14-Eicosatetraynoic Acid/pharmacology
- ATP-Binding Cassette Transporters
- Animals
- Arachidonic Acid/pharmacology
- Bezafibrate/pharmacology
- Brefeldin A
- Culture Media
- Cyclopentanes/pharmacology
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression
- Growth Substances/pharmacology
- Humans
- Lipid Metabolism
- Membrane Proteins/genetics
- Mice
- Microbodies/metabolism
- Microtubules/metabolism
- Nerve Growth Factors/pharmacology
- PC12 Cells
- Protein Kinase C/metabolism
- Proteins/metabolism
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger
- Rats
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Ciliary Neurotrophic Factor
- Receptor, trkA
- Receptor, trkC
- Receptors, Nerve Growth Factor/metabolism
- Serum Albumin, Bovine/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Schrader
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | |
Collapse
|
31
|
Abstract
Peroxisomes are single membrane-limited cell organelles that are involved in numerous metabolic functions. Peroxisomes do not contain DNA; the matrix and membrane proteins are encoded by the nuclear genome. It is assumed that new peroxisomes are formed by division of existing organelles. The present article gives an overview of microscopic studies and recent unpublished results dealing with peroxisome biogenesis in mammalian fetal liver and presents data on peroxisomes in oocytes. Cytochemical (catalase and D-aminoacid oxidase activity) and immunocytochemical data in rat and human liver (antigens of catalase, the three peroxisomal beta-oxidation enzymes, alanine: glyoxylate aminotransferase, peroxisomal membrane proteins with molecular weights of 42 and 70 kDa) indicate that during embryonic and fetal development the peroxisomal population undergoes a differentiation with respect to the composition of the matrix and to the size and number of the organelles. In the youngest stages, rare and small peroxisomes are present, into which the matrix components are imported in a sequential way. The import seems asynchronous in peroxisomes of the same hepatocyte. The size and number of the peroxisomes increase during liver development. In rat and human liver, no morphological or immunocytochemical evidence for an elaborate network of interconnected peroxisomes ("reticulum") was found. Instead, peroxisomes presented as individual organelles, which occasionally show membrane extensions. The importance of the metabolic functions of peroxisomes in human liver is emphasized by the peroxisomal disorders. In the liver of affected fetuses, the microscopic features associated with the defect can already be recognized; i.e., either catalase containing peroxisomes are absent and catalase is localized in the cytoplasm (in fetuses affected with Zellweger syndrome or with infantile Refsum disease) or peroxisomes are present but they are abnormally enlarged (e.g., a fetus affected with acyl-CoA oxidase deficiency). In the quail ovary, numerous peroxisomes are observed in the oocyte and in the granulosa cells during follicle maturation, but not in the full-grown egg. Thus, the mechanism of peroxisome inheritance remains unresolved.
Collapse
Affiliation(s)
- M Espeel
- Department of Anatomy, Embryology and Histology, University of Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
32
|
Roels F, Tytgat T, Beken S, Giros M, Espeel M, De Prest B, Kerckaert I, Pàmpols T, Rogiers V. Peroxisome mosaics in the liver of patients and the regulation of peroxisome expression in rat hepatocyte cultures. Ann N Y Acad Sci 1996; 804:502-15. [PMID: 8993568 DOI: 10.1111/j.1749-6632.1996.tb18640.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- F Roels
- Department of Human Anatomy, Embryology and Histology, University of Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Van den Munckhof RJ. In situ heterogeneity of peroxisomal oxidase activities: an update. THE HISTOCHEMICAL JOURNAL 1996; 28:401-29. [PMID: 8863047 DOI: 10.1007/bf02331433] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidases are a widespread group of enzymes. They are present in numerous organisms and organs and in various tissues, cells, and subcellular compartments, such as mitochondria. An important source of oxidases, which is investigated and discussed in this study, are the (micro)peroxisomes. Oxidases share the ability to reduce molecular oxygen during oxidation of their substrate, yielding an oxidized product and hydrogen peroxide. Besides the hydrogen peroxide-catabolizing enzyme catalase, peroxisomes contain one or more hydrogen peroxide-generating oxidases, which participate in different metabolic pathways. During the last four decades, various methods have been developed and elaborated for the histochemical localization of the activities of these oxidases. These methods are based either on the reduction of soluble electron acceptors by oxidase activity or on the capture of hydrogen peroxide. Both methods yield a coloured and/or electron dense precipitate. The most reliable technique in peroxisomal oxidase histochemistry is the cerium salt capture method. This method is based on the direct capture of hydrogen peroxide by cerium ions to form a fine crystalline, insoluble, electron dense reaction product, cerium perhydroxide, which can be visualized for light microscopy with diaminobenzidine. With the use of this technique, it became clear that oxidase activities not only vary between different organisms, organs, and tissues, but that heterogeneity also exists between different cells and within cells, i.e. between individual peroxisomes. A literature review, and recent studies performed in our laboratory, show that peroxisomes are highly differentiated organelles with respect to the presence of active enzymes. This study gives an overview of the in situ distribution and heterogeneity of peroxisomal enzyme activities as detected by histochemical assays of the activities of catalase, and the peroxisomal oxidases D-amino acid oxidase, L-alpha-hydroxy acid oxidase, polyamine oxidase and uric acid oxidase.
Collapse
Affiliation(s)
- R J Van den Munckhof
- University of Amsterdam, Department of Cell Biology and Histology, The Netherlands
| |
Collapse
|
34
|
Wouters FS, Markman M, de Graaf P, Hauser H, Tabak HF, Wirtz KW, Moorman AF. The immunohistochemical localization of the non-specific lipid transfer protein (sterol carrier protein-2) in rat small intestine enterocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1259:192-6. [PMID: 7488641 DOI: 10.1016/0005-2760(95)00163-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A 13 kDa protein was isolated from rabbit small intestine brush-border membrane vesicles that was postulated to be involved in intestinal phosphatidylcholine (PC) and cholesterol uptake. This protein has cholesterol and PC-transfer activity in vitro (Turnhofer, H. et al. (1991) Biochim. Biophys. Acta 1064, 275-286) and has a molecular mass and isoelectric point similar to that of the non-specific lipid transfer protein (nsL-TP, identical to sterol carrier protein-2). In addition, the first 28 N-terminal amino acid residues of the 13 kDa protein are nearly identical to nsL-TP from different species (Lipka, G. et al. (1995) J. Biol. Chem. 270, 5917-5925). In view of its possible role in intestinal lipid absorption, the localization of nsL-TP in rat small intestine was investigated using immunohistochemistry and immunoblotting. It is shown that nsLTP is predominantly localized in a subapical zone of the enterocyte but not in the brush-border membrane, thereby excluding a role in lipid uptake of this protein at the level of the plasma membrane. nsL-TP co-localized with the peroxisomal marker PMP70, underscoring earlier observations that nsL-TP is a peroxisomal protein. nsL-TP was found to be present along the entire length of the small intestine. The 58 kDa cross-reactive protein that was recently identified as a peroxisomal thiolase was shown to be present only in a small segment approximately halfway down the jejunum. The close apposition of the peroxisomes with the apical membrane and the discrete distribution of the 58 kDa protein may indicate that these organelles play a role in the intracellular processing of absorbed lipids.
Collapse
Affiliation(s)
- F S Wouters
- Department of Anatomy and Embryology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Schrader M, Baumgart E, Fahimi HD. Effects of fixation on the preservation of peroxisomal structures for immunofluorescence studies using HepG2 cells as a model system. THE HISTOCHEMICAL JOURNAL 1995; 27:615-619. [PMID: 8550382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The immunofluorescence technique has become an important tool for the investigation of peroxisomes in cell culture. We have used this method for the study of peroxisomes in the human hepatoblastoma cell line HepG2. A marked heterogeneity of peroxisomal forms was detected. Besides spherical (about 100 nm) and rod-shaped structures (about 300 nm) many elongated, undulating tubular forms (up to 5 microns) were found. Further observations indicate that the appearance of the peroxisomal forms in immunofluorescence is dependent on the fixation procedure used. Whereas the fixation with methanol-acetone (-20 degrees C) or ethanol results in a punctate pattern with spherical particles, the use of formaldehyde/Triton X-100 fixation shows well-preserved tubules and rods. These observations may be of special importance for studies on the biogenesis of peroxisomes.
Collapse
Affiliation(s)
- M Schrader
- Institute for Anatomy and Cell Biology II, University of Heidelberg, Germany
| | | | | |
Collapse
|
36
|
Effects of fixation on the preservation of peroxisomal structures for immunofluorescence studies using HepG2 cells as a model system. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf02388461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Abstract
Microscopic visualization of peroxisomes in chorionic villus cytotrophoblast and in biopsy and autopsy samples of liver and kidney, the presence of enlarged liver macrophages containing lipid droplets insoluble in acetone and n-hexane as well as polarizing inclusions formed by stacks of trilamellar sheets are of diagnostic value in peroxisomal disorders. Methods are presented for evaluating these structures by light microscopy; trilamellar inclusions are only detected by electron microscopy. Macrophage features are preserved in archival paraffin blocks. In adrenal cortex, insoluble lipid, polarizing inclusions and trilamellar structures should be looked for. The stains are easily reproducible, and all reagents are commercially available.
Collapse
Affiliation(s)
- F Roels
- Department of Human Anatomy, Embryology and Histology, University of Gent, Belgium
| | | | | |
Collapse
|
38
|
Aimone-Gastin I, Cable S, Keller JM, Bigard MA, Champigneulle B, Gaucher P, Gueant JL, Dauça M. Studies on peroxisomes of colonic mucosa in Crohn's disease. Dig Dis Sci 1994; 39:2177-85. [PMID: 7924739 DOI: 10.1007/bf02090368] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The etiology and pathogenesis of Crohn's disease, a chronic inflammatory bowel pathology, have not been elucidated yet. In particular, the behavior of peroxisomes in inflamed colonic mucosa has not been investigated despite their important role in cellular oxidative metabolism. Using cytochemistry at the ultrastructural level, we have observed these catalase-positive organelles. In addition, biochemical analyses have revealed the specific activities of catalase and cyanide-insensitive acyl-CoA oxidase. Mucosal biopsy specimens from inflamed and noninflamed areas of Crohn's patients were compared to control biopsies. We found that Crohn's disease was marked by an important diminution in the peroxisomal frequency per cell unit area. If catalase activity was not affected by this pathology, cyanide-insensitive acyl-CoA oxidase, an enzyme of the peroxisomal beta-oxidation system, was found diminished in inflamed and in noninflamed areas. In conclusion, our results showed that Crohn's disease is accompanied by peroxisomal modifications but the number and the enzyme activities of colonic peroxisomes are less deeply altered in Crohn's disease than during neoplasia. This fact suggests that a relation may exist between the degree of peroxisomal deficiency and the clinical severity of colonic disease.
Collapse
Affiliation(s)
- I Aimone-Gastin
- Laboratoire de Biologie Cellulaire du Développement, Université de Nancy I, Faculté des Sciences, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cablé S, Kedinger M, Dauça M. Peroxisomes and peroxisomal enzymes along the crypt-villus axis of the rat intestine. Differentiation 1993. [DOI: 10.1111/j.1432-0436.1993.tb01592.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Cablé S, Kedinger M, Dauça M. Peroxisomes and peroxisomal enzymes along the crypt-villus axis of the rat intestine. Differentiation 1993; 54:99-108. [PMID: 8243894 DOI: 10.1111/j.1432-0436.1993.tb00712.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of peroxisomes and expression of their enzymes were investigated in differentiating intestinal epithelial cells during their migration along the crypt-villus axis. Sequential cell populations harvested by a low-temperature method were identified by microscopy, determination of alkaline phosphatase and sucrase activities and incorporation of [3H]-thymidine into DNA. Ultrastructural cytochemistry after staining for catalase activity, revealed the presence of peroxisomes in undifferentiated stem cells located in the crypt region. Morphometry indicated that the number of these organelles increased as intestinal epithelial cells differentiate. Catalase activity was higher in the crypt cells than in the mature enterocytes harvested from villus tips. On the other hand, an increasing gradient of activity was observed from crypts to villus tips for peroxisomal oxidases, i.e. fatty acyl coA oxidase, D-amino acid oxidase and polyamine oxidase. These findings indicate that biogenesis of peroxisomes occurs during migration of intestinal epithelial cells along the crypt-villus axis and that peroxisomal oxidases contribute substantially to the biochemical maturation of enterocytes.
Collapse
Affiliation(s)
- S Cablé
- Laboratoire de Biologie Cellulaire du Développement, Université de Nancy I, Faculté des Sciences, Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
41
|
Cimini AM, Moreno S, Giorgi M, Serafini B, Cerú MP. Purification of peroxisomal fraction from rat brain. Neurochem Int 1993; 23:249-60. [PMID: 8220170 DOI: 10.1016/0197-0186(93)90116-m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A purification procedure to obtain peroxisomes (microperoxisomes) from the brain of suckling rats is reported. A P2 fraction, (crude light mitochondria) frozen and thawed seven times, was subfractionated yielding a P4 fraction, 4-fold enriched in catalase activity with respect to the cytoplasmic extract S1. The P4 fraction was used for further purification of peroxisomes by isopicnic centrifugation on Nycodenz gradient (1.10-1.20 g/ml). When the cerebellum was not included in the starting material, the equilibrium density of peroxisomes was 1.152-1.162 g/ml. In this case the overall yield of catalase in the most enriched fraction was 7% and its relative specific activity more than 50. When the cerebellum was included in the total homogenate, the equilibrium density shifted towards higher values (1.177 g/ml) and in this case the catalase relative specific activity in the peroxisomal enriched fraction was extremely high (> 100). The biochemical results, together with the electron microscope examination of the purified fractions, demonstrate that our procedure allows the best purification of brain peroxisomes so far obtained. The different equilibrium densities of peroxisomes observed in the two sets of experiments are interpreted in terms of size heterogeneity of these organelles in different brain portions and cell types.
Collapse
Affiliation(s)
- A M Cimini
- Department of Science and Biomedical Technology, University of L'Aquila, Italy
| | | | | | | | | |
Collapse
|
42
|
De Craemer D, Pauwels M, Hautekeete M, Roels F. Alterations of hepatocellular peroxisomes in patients with cancer. Catalase cytochemistry and morphometry. Cancer 1993; 71:3851-8. [PMID: 7685235 DOI: 10.1002/1097-0142(19930615)71:12<3851::aid-cncr2820711210>3.0.co;2-l] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hepatic catalase activity is decreased in patients with malignant diseases, but little is known about the organelles that contain the bulk of catalase: the peroxisomes. METHODS The authors studied the hepatocellular peroxisomes in patients with malignant diseases by means of catalase cytochemistry, light and electron microscopic study, and morphometry. RESULTS Under the light microscope, a decrease in catalase staining was observed in 21 of 39 patients with extrahepatic tumors. A peculiar perinuclear concentration of peroxisomes was seen by light microscopic study in 15 of 39 patients and reflected an increase in number in most patients. In one of two hepatoma livers, peroxisomes also showed this perinuclear configuration. Ultrastructural and morphometric analysis of 20 livers of patients with extrahepatic tumors revealed a decreased mean peroxisomal diameter and an increase in number. Electron microscopic study also showed peroxisomes with transparent matrical spots, cytoplasmic invaginations, protrusions, and gastruloid cisternae. In each liver, at least one of these changes was observed. In hepatoma livers, one-third of the peroxisomes revealed empty matrical spots. In one patient, peroxisomes were smaller but more numerous. CONCLUSIONS Alterations of the peroxisomal compartment are constant findings in the livers of patients with malignant diseases, but individual differences in peroxisomal alterations are frequent.
Collapse
Affiliation(s)
- D De Craemer
- Department of Human Anatomy and Embryology, Vrije Universiteit Brussel, Belgium
| | | | | | | |
Collapse
|
43
|
Roels F, Espeel M, Poggi F, Mandel H, van Maldergem L, Saudubray JM. Human liver pathology in peroxisomal diseases: a review including novel data. Biochimie 1993; 75:281-92. [PMID: 7685191 DOI: 10.1016/0300-9084(93)90088-a] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Results from electron microscopic morphometry, enzyme cytochemistry and immunolocalization in liver biopsies are reviewed. Emphasis is put on the following aspects: 1) relationship between peroxisomal size and enzyme concentration; 2) abnormal enlargement of peroxisomes in many congenital disorders with peroxisomal dysfunction; 3) normal localization of matrix enzymes in several patients with peroxisomal dysfunction, with the exception of catalase, which is mainly cytoplasmic; 4) ghost-like peroxisomes in the liver of several syndromes but not in nine cases labelled as Zellweger; 5) discrepancies between liver and cultured fibroblasts; 6) trilamellar, regularly spaced inclusions, large stacks of which are birefringent, indicate a peroxisomal dysfunction; their absence does not exclude it. The same rule holds for lipid in macrophages which is insoluble in acetone and n-hexane (after fixation). The chemical nature of these two storage materials remains unclear; and 7) proliferation of human peroxisomes is frequent in acquired liver diseases and drug toxicity, but is never accompanied by an increase in size, in contrast to the effect of the fibrates and phthalates in rat and mouse. Novel data from seven peroxisomal patients are included.
Collapse
Affiliation(s)
- F Roels
- Faculty of Medicine, University of Gent, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Cablé S, Keller JM, Colin S, Haffen K, Kédinger M, Parache RM, Dauça M. Peroxisomes in human colon carcinomas. A cytochemical and biochemical study. ACTA ACUST UNITED AC 1992; 62:221-6. [PMID: 1359694 DOI: 10.1007/bf02899685] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The presence of peroxisomes and their enzymic content were investigated and compared in healthy and neoplastic human colon epithelial cells using cytochemical studies at the ultrastructural level as well as biochemical analyses. Catalase-positive organelles were found to be more numerous in normal than in colonic neoplastic cells. Biochemical assays revealed that no D-aminoacid oxidase or L-alpha-hydroxyacid oxidase activity was detected in normal or tumor tissues. The specific activities of catalase, fatty-acyl CoA oxidase and enoyl-CoA hydratase/3 hydroxyacyl-CoA dehydrogenase (the so-called peroxisomal bifunctional enzyme of the beta-oxidation system) were found to be diminished in carcinoma cells compared with the control tissue. The fall in catalase activity correlated well with tumor stage according to Dukes, suggesting that this peroxisomal enzyme could be used as a potential prognostic marker.
Collapse
Affiliation(s)
- S Cablé
- Laboratoire de Biologie Cellulaire du Développement-Université de Nancy I, Faculté des Sciences, Vandoeuvre-les-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Roels F, Espeel M, De Craemer D. Liver pathology and immunocytochemistry in congenital peroxisomal diseases: a review. J Inherit Metab Dis 1991; 14:853-75. [PMID: 1779645 DOI: 10.1007/bf01800464] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Diagnostic and pathogenetic investigations of peroxisomal disorders should include the study of the macroscopic and microscopic pathology of the liver, in addition to careful clinical observations, skeletal X-ray and brain CT scan, assays of very long-chain fatty acids and bile acid intermediates, and selected enzyme activities. This review of the literature also contains novel observations about the following syndromes: cerebro-hepato-renal (Zellweger) syndrome, X-linked and neonatal adrenoleukodystrophies (ALD, NALD), NALD-like syndromes, infantile phytanic acid storage, classical Refsum disease, rhizomelic and other forms of chondrodysplasia punctata (XD, XR, AR), hyperpipecolic acidaemia, primary hyperoxaluria I, pseudo-Zellweger and Zellweger-like syndromes, and single enzyme deficiencies. Microscopic data include catalase staining and morphometry of peroxisomes, immunolocalization of beta-oxidation enzymes, detection of trilamellar, polarizing inclusions in PAS-positive macrophages, fibrosis and iron storage. Peroxisomal enlargement appears to be related to functional deficit in beta-oxidation disorders as well as in rhizomelic chondrodysplasia punctata. Because normal peroxisomal localization of active beta-oxidation enzymes can accompany a C26 beta-oxidation deficit, other mechanisms such as impaired transport of metabolites should be investigated. 'Ghost'-like organelles are shown in the liver of an infantile Refsum patient and in an NALD-like case; immuno-gold labelling of membrane proteins did not reveal ghosts in Zellweger livers.
Collapse
Affiliation(s)
- F Roels
- Faculty of Medicine and Pharmacy, Vrije Unversiteit Brussel, Belgium
| | | | | |
Collapse
|