1
|
Zhou SL, Zhong LL, Wu YL, Ji SW, Li Y, Niu N. The role of ion channels in the regulation of dendritic cell function. Cell Calcium 2025; 128:103031. [PMID: 40253771 DOI: 10.1016/j.ceca.2025.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Ion channels, membrane proteins that facilitate the transport of various inorganic ions across hydrophobic cellular lipid membranes, are ubiquitous in a wide variety of cell and tissue types. They are involved in establishing the cell membrane potential and play a role in various physiological activities by regulating ion concentrations within the cell. Dendritic cells (DCs) are specialised antigen-presenting cells found mainly on the surface of the body (skin and mucous membranes), in the mesenchyme of most organs, in the T-cell compartment of the spleen and in lymph nodes. DCs exert an important influence on the regulation of inflammation by activating T cells and producing cytokines. Studies have shown that ion channels expressed in DCs contribute to the regulation of the immune response, making them a key component of the immune system. This review summarises the major scientific advances in understanding the functional impact of ion channels (calcium channels, sodium channels and aquaporin) in DCs, including the regulation of inflammatory responses, antigen presentation, maturation, migration and cytokine production, to inform ongoing studies of ion channel function in DCs.
Collapse
Affiliation(s)
- Shi-Li Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Lan-Lan Zhong
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Yi-Lan Wu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Yong Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China..
| |
Collapse
|
2
|
Groen SR, Keszthelyi D, Wilms E, Huig J, Xu P, Elizalde M, Vork L, Jonkers DMAE, Helyes Z, Masclee AAM, Weerts ZZRM. Colonic mucosal TRPA1 expression profiles in irritable bowel syndrome and its correlation to symptom severity: An exploratory study. Auton Neurosci 2025; 259:103273. [PMID: 40157122 DOI: 10.1016/j.autneu.2025.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/13/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Visceral hypersensitivity is a hallmark of irritable bowel syndrome (IBS). A putative involvement of the Transient Receptor Potential Ankyrin-1 (TRPA1) cation channel has been suggested by several animal studies. Main objective of this study is to assess location-specific TRPA1 expression in the colonic mucosa and its correlation with symptom severity in IBS patients. METHODS Biopsies were obtained from the sigmoid of 30 IBS patients (Rome III; median age 39.0 years, 80 % female) and 23 healthy controls (median age 22.7 years, 43.5 % female). Additional biopsies of the proximal colon were obtained in 24 IBS patients. TRPA1 expression levels were measured in duplicate by quantitative reverse-transcriptase-polymerase-chain-reaction, normalized to GAPDH, and assessed as relative mRNA values using the -2ΔCt method. In IBS patients, symptoms were assessed and correlated with TRPA1 expression. RESULTS Relative TRPA1 expression in the sigmoid was significantly higher in IBS patients compared to healthy controls (P < 0.001). Within IBS patients TRPA1 expression of sigmoid biopsies was significantly higher compared to proximal colon samples (p < 0.001). No significant correlation was found between TRPA1 expression in sigmoid or proximal colon samples and the symptom severity (abdominal discomfort, abdominal pain and bloating). CONCLUSION These findings suggest a potential role for the TRPA1 related pathway as a target for IBS treatment in the future. Since there was no correlation found in the current exploratory study between TRPA1 expression and symptom severity, further research towards the clinical relevance of the increased TRPA1 expression in IBS-patients along with its location-specific expression is warranted.
Collapse
Affiliation(s)
- Sylvester R Groen
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| | - Daniel Keszthelyi
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Ellen Wilms
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Justin Huig
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Pan Xu
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Montserrat Elizalde
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Lisa Vork
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Daisy M A E Jonkers
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; HUN-REN Chronic Pain Research Group, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Ad A M Masclee
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Zsa Zsa R M Weerts
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Luo J, Xu Q, Xu S, Zhai L, Yuan CS, Bian Z. Decoding Abdominal Pain in Constipation-predominant Irritable Bowel Syndrome and Functional Constipation: Mechanisms and Managements. Curr Gastroenterol Rep 2025; 27:22. [PMID: 40095229 PMCID: PMC11914341 DOI: 10.1007/s11894-025-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW Abdominal pain in constipation-predominant irritable bowel syndrome (IBS-C) and functional constipation (FC) remains a difficult clinical challenge due to unclear pathophysiological mechanisms and limited pain-targeted treatments. This review critically evaluates the evidence on the underlying pain mechanisms in IBS-C and/or FC and explores management strategies, their limitations, and future directions. RECENT FINDINGS Most research on constipation-related pain is based on IBS-C patients or animal models, with limited studies focusing on FC. Visceral hypersensitivity, serotonin dysregulation, gut-brain axis dysfunction, and central/peripheral nervous system alterations are implicated in IBS-C pain, while FC pain is less studied and may be primarily linked to colonic distension and motility dysfunction. Management strategies include 5-HT4 agonists, GC-C agonists, chloride channel activators, psychological therapies, probiotics and complementary medicine. Despite available treatment options, managing abdominal pain in IBS-C and FC remains challenging due to heterogeneous pathophysiology and limited targeted therapies. While some interventions provide symptomatic relief, there is no universally effective treatment for abdominal pain across all patients. Future research should focus on identifying pain-specific biomarkers, refining diagnostic criteria, and integrating multi-omics data and neuroimaging techniques to better distinguish pain mechanisms in IBS-C versus FC and develop more precise, patient-centered interventions.
Collapse
Affiliation(s)
- Jingyuan Luo
- Vincent V.C. Woo Chinese Medicine Clinical Research Institute, School of Chinese Medicine, Hong Kong Baptist University, 3/F, Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Hong Kong, SAR, China
- Center for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Qianqian Xu
- Vincent V.C. Woo Chinese Medicine Clinical Research Institute, School of Chinese Medicine, Hong Kong Baptist University, 3/F, Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Hong Kong, SAR, China
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA
| | - Shujun Xu
- Center for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Lixiang Zhai
- Center for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL, 60637, USA.
- Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| | - Zhaoxiang Bian
- Vincent V.C. Woo Chinese Medicine Clinical Research Institute, School of Chinese Medicine, Hong Kong Baptist University, 3/F, Jockey Club School of Chinese Medicine Building, 7 Baptist University Road, Kowloon Tong, Hong Kong, SAR, China.
- Center for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
4
|
Meerschaert KA, Chiu IM. The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2025; 22:206-221. [PMID: 39578592 DOI: 10.1038/s41575-024-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut-brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell-cell communication is integrated into this gut-brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.
Collapse
Affiliation(s)
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Gupta RA, Higham JP, Pearce A, Urriola-Muñoz P, Barker KH, Paine L, Ghooraroo J, Raine T, Hockley JRF, Rahman T, St John Smith E, Brown AJH, Ladds G, Suzuki R, Bulmer DC. GPR35 agonists inhibit TRPA1-mediated colonic nociception through suppression of substance P release. Pain 2025; 166:596-613. [PMID: 39382322 PMCID: PMC11808708 DOI: 10.1097/j.pain.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The development of nonopioid analgesics for the treatment of abdominal pain is a pressing clinical problem. To address this, we examined the expression of G i/o -coupled receptors, which typically inhibit nociceptor activation, in colonic sensory neurons. This led to the identification of the orphan receptor GPR35 as a visceral analgesic drug target because of its marked coexpression with transient receptor potential ankyrin 1 (TRPA1), a mediator of noxious mechanotransduction in the bowel. Building on in silico docking simulations, we confirmed that the mast cell stabiliser, cromolyn (CS), and phosphodiesterase inhibitor, zaprinast, are agonists at mouse GPR35, promoting the activation of different G i/o subunits. Pretreatment with either CS or zaprinast significantly attenuated TRPA1-mediated colonic nociceptor activation and prevented TRPA1-mediated mechanosensitisation. These effects were lost in tissue from GPR35 -/- mice and were shown to be mediated by inhibition of TRPA1-evoked substance P (SP) release. This observation highlights the pronociceptive effect of SP and its contribution to TRPA1-mediated colonic nociceptor activation and sensitisation. Consistent with this mechanism of action, we confirmed that TRPA1-mediated colonic contractions evoked by SP release were abolished by CS pretreatment in a GPR35-dependent manner. Our data demonstrate that GPR35 agonists prevent the activation and sensitisation of colonic nociceptors through the inhibition of TRPA1-mediated SP release. These findings highlight the potential of GPR35 agonists to deliver nonopioid analgesia for the treatment of abdominal pain.
Collapse
Affiliation(s)
- Rohit A. Gupta
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - James P. Higham
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Abigail Pearce
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Paulina Urriola-Muñoz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Katie H. Barker
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Luke Paine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Joshua Ghooraroo
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Tim Raine
- Department of Gastroenterology, Addenbrookes Hospital, Cambridge University Teaching Hospitals, Cambridge, United Kingdom
| | - James R. F. Hockley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Alastair J. H. Brown
- Nxera, Steinmetz Building, Granta Park Great Abington, Cambridge, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Rie Suzuki
- Nxera, Steinmetz Building, Granta Park Great Abington, Cambridge, United Kingdom
| | - David C. Bulmer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
6
|
Mavrangelos C, Wijenayaka A, Sales KJ, Hughes PA. Combining magnetically isolated CD45 cells with serum maintains intact drug responsiveness for ELISpot analysis in clinical trials. Immunohorizons 2025; 9:vlae012. [PMID: 39882960 PMCID: PMC11841966 DOI: 10.1093/immhor/vlae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025] Open
Abstract
Enzyme-linked immunosorbent spot analysis is frequently used to investigate immune responsiveness during clinical trials. However, ELISpot classically utilizes peripheral blood mononuclear cell isolates from whole blood, requiring relatively high blood draw volumes and removing both granulocytes and bound drug. Here, we describe a novel protocol whereby CD45 cells are magnetically isolated from human whole blood and co-incubated with serum isolated from the same subject. Infliximab is a well characterized anti-tumor necrosis factor α (TNF-α) antibody in clinical use since the late 1990s. We demonstrated that TNF-α inhibition by infliximab in spiked whole blood is lost on peripheral blood mononuclear cell isolation but remains in serum, and that combining serum from infliximab spiked whole blood with magnetically isolated CD45 immune cells inhibited PMA/ionomycin-stimulated TNF-α secretion. This novel protocol has important implications for enzyme-linked immunosorbent spot analysis in clinical trials in which blood volume is limited, and keeping drug responses intact provides critical information.
Collapse
Affiliation(s)
| | - Asiri Wijenayaka
- Agilex Biolabs, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Kurt J Sales
- Agilex Biolabs, Adelaide, South Australia, Australia
| | - Patrick A Hughes
- Agilex Biolabs, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Kasti A, Katsas K, Nikolaki MD, Triantafyllou K. The Role and the Regulation of NLRP3 Inflammasome in Irritable Bowel Syndrome: A Narrative Review. Microorganisms 2025; 13:171. [PMID: 39858939 PMCID: PMC11767632 DOI: 10.3390/microorganisms13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic disorder of the gastrointestinal tract. Its pathogenesis involves multiple factors, including visceral hypersensitivity and immune activation. NLRP3 inflammasome is part of the nucleotide-binding oligomerization domain-like receptor (NLR) family, a crucial component of the innate immune system. Preclinical studies have demonstrated that inhibiting NLRP3 reduces visceral sensitivity and IBS symptoms, like abdominal pain, and diarrhea, suggesting that targeting the NLRP3 might represent a novel therapeutic approach for IBS. This review aims to assess the NLRP3 inhibitors (tranilast, β-hydroxybutyrate, Chang-Kang-fang, paeoniflorin, coptisine, BAY 11-7082, and Bifidobacterium longum), highlighting the signaling pathways, and their potential role in IBS symptoms management was assessed. Although premature, knowledge of the action of synthetic small molecules, phytochemicals, organic compounds, and probiotics might make NLRP3 a new therapeutic target in the quiver of physicians' therapeutic choices for IBS symptoms management.
Collapse
Affiliation(s)
- Arezina Kasti
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Konstantinos Katsas
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Maroulla D. Nikolaki
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.K.); (K.K.); (M.D.N.)
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Internal Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| |
Collapse
|
8
|
Hussein H, Van Remoortel S, Boeckxstaens GE. Irritable bowel syndrome: When food is a pain in the gut. Immunol Rev 2024; 326:102-116. [PMID: 39037230 DOI: 10.1111/imr.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal condition associated with altered bowel habits and recurrent abdominal pain, often triggered by food intake. Current treatments focus on improving stool pattern, but effective treatments for pain in IBS are still lacking due to our limited understanding of pathophysiological mechanisms. Visceral hypersensitivity (VHS), or abnormal visceral pain perception, underlies abdominal pain development in IBS, and mast cell activation has been shown to play an important role in the development of VHS. Our work recently revealed that abdominal pain in response to food intake is induced by the sensitization of colonic pain-sensing neurons by histamine produced by activated mast cells following a local IgE response to food. In this review, we summarize the current knowledge on abdominal pain and VHS pathophysiology in IBS, we outline the work leading to the discovery of the role of histamine in abdominal pain, and we introduce antihistamines as a novel treatment option to manage chronic abdominal pain in patients with IBS.
Collapse
Affiliation(s)
- Hind Hussein
- Center for Intestinal Neuro-Immune Interactions, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Samuel Van Remoortel
- Center for Intestinal Neuro-Immune Interactions, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Center for Intestinal Neuro-Immune Interactions, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Zhuang R, Yan Z, Gao Y, Nurmamat A, Zhang S, Xiu M, Zhou Y, Pang Y, Li D, Zhao L, Liu X, Han Y. Evolutionary and functional analysis of metabotropic glutamate receptors in lampreys. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1861-1877. [PMID: 38951427 DOI: 10.1007/s10695-024-01374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
The metabotropic glutamate receptor (mGluR, GRM) family is involved in multiple signaling pathways and regulates neurotransmitter release. However, the evolutionary history, distribution, and function of the mGluRs family in lampreys have not been determined. Therefore, we identified the mGluRs gene family in the genome of Lethenteron reissneri, which has been conserved throughout vertebrate evolution. We confirmed that Lr-GRM3, Lr-GRM5, and Lr-GRM7 encode three types of mGluRs in lamprey. Additionally, we investigated the distribution of Lr-GRM3 within this species by qPCR and Western blotting. Furthermore, we conducted RNA sequencing to investigate the molecular function of Lr-GRM3 in lamprey. Our gene expression profile revealed that, similar to that in jawed vertebrates, Lr-GRM3 participates in multiple signal transduction pathways and influences synaptic excitability in lampreys. Moreover, it also affects intestinal motility and the inflammatory response in lampreys. This study not only enhances the understanding of mGluRs' gene evolution but also highlights the conservation of GRM3's role in signal transduction while expanding our knowledge of its functions specifically within lampreys. In summary, our experimental findings provide valuable insights for studying both the evolution and functionality of the mGluRs family.
Collapse
Affiliation(s)
- Ruyu Zhuang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Zihao Yan
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Yicheng Gao
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Ayqeqan Nurmamat
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Shuyuan Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Min Xiu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Yuesi Zhou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Ya Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Ding Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Liang Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xin Liu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
10
|
Ford AC, Staudacher HM, Talley NJ. Postprandial symptoms in disorders of gut-brain interaction and their potential as a treatment target. Gut 2024; 73:1199-1211. [PMID: 38697774 DOI: 10.1136/gutjnl-2023-331833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Postprandial, or meal-related, symptoms, such as abdominal pain, early satiation, fullness or bloating, are often reported by patients with disorders of gut-brain interaction, including functional dyspepsia (FD) or irritable bowel syndrome (IBS). We propose that postprandial symptoms arise via a distinct pathophysiological process. A physiological or psychological insult, for example, acute enteric infection, leads to loss of tolerance to a previously tolerated oral food antigen. This enables interaction of both the microbiota and the food antigen itself with the immune system, causing a localised immunological response, with activation of eosinophils and mast cells, and release of inflammatory mediators, including histamine and cytokines. These have more widespread systemic effects, including triggering nociceptive nerves and altering mood. Dietary interventions, including a diet low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols, elimination of potential food antigens or gluten, IgG food sensitivity diets or salicylate restriction may benefit some patients with IBS or FD. This could be because the restriction of these foods or dietary components modulates this pathophysiological process. Similarly, drugs including proton pump inhibitors, histamine-receptor antagonists, mast cell stabilisers or even tricyclic or tetracyclic antidepressants, which have anti-histaminergic actions, all of which are potential treatments for FD and IBS, act on one or more of these mechanisms. It seems unlikely that food antigens driving intestinal immune activation are the entire explanation for postprandial symptoms in FD and IBS. In others, fermentation of intestinal carbohydrates, with gas release altering reflex responses, adverse reactions to food chemicals, central mechanisms or nocebo effects may dominate. However, if the concept that postprandial symptoms arise from food antigens driving an immune response in the gastrointestinal tract in a subset of patients is correct, it is paradigm-shifting, because if the choice of treatment were based on one or more of these therapeutic targets, patient outcomes may be improved.
Collapse
Affiliation(s)
- Alexander C Ford
- Leeds Gastroenterology Institute, St James's University Hospital, Leeds, UK
| | - Heidi M Staudacher
- Deakin University-Geelong Waterfront Campus, Geelong, Victoria, Australia
| | - Nicholas J Talley
- Health, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
11
|
Wal A, Srivastava A, Verma N, Pandey SS, Tyagi S. The Role of Nutraceutical Supplements in the Treatment of Irritable Bowel Syndrome: A Mini Review. Curr Pediatr Rev 2024; 20:66-75. [PMID: 36593535 DOI: 10.2174/1573396319666230102121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a prolonged bowel illness that is generally stress-related and is characterized by a variety of gastrointestinal problems, the most prominent of which is chronic visceral abdominal discomfort. As a result, IBS typically impacts sufferers' standard of living, and it is typically associated with depression and anxiety symptoms. IBS medication is based mostly on symptom alleviation. However, no effective medicines have been discovered too far. As a result, it is essential to discover novel anti-IBS medications. OBJECTIVE The purpose of this brief review is to describe the existing research on nutraceutical supplements in irritable bowel syndrome management, including probiotics, prebiotics, symbiotics, herbal products, and dietary fibers. METHODS This review covered the relevant papers from the previous twenty years that were available in different journals such as Science Direct, Elsevier, NCBI, and Web of Science that were related to the role and function of nutraceuticals in Irritable Bowel Syndrome. RESULTS Nutraceutical substances have a variety of modes of action, including restoring the healthy microbiome, improving the function of the gastrointestinal barrier, immunomodulatory, antiinflammatory, and antinociceptive properties. According to the literature, these substances not only can improve irritable bowel syndrome symptomatology but also have an excellent long-term safety profile. CONCLUSION Irritable bowel syndrome is a prolonged bowel illness with a lot of gastrointestinal problems. The nutraceuticals treatment works as an anti-IBS intervention and enhances patient compliance with minimum side effects since patients take it better than pharmaceutical treatments.
Collapse
Affiliation(s)
- Ankita Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, UP, India
| | - Ashish Srivastava
- Department of Pharmacy, Pranveer Singh Institute of Technology, UP, India
| | - Neha Verma
- Department of Pharmacy, Pranveer Singh Institute of Technology, UP, India
| | - Shiv Shanker Pandey
- Department of Pharmacology, Tahira Institute of Medical Sciences, GIDA, Gorakhpur, UP, India
| | - Sachin Tyagi
- Department of Pharmacology, Bharat Institute of Technology, School of Pharmacy Meerut, UP, India
| |
Collapse
|
12
|
Mas-Orea X, Rey L, Battut L, Bories C, Petitfils C, Abot A, Gheziel N, Wemelle E, Blanpied C, Motta JP, Knauf C, Barreau F, Espinosa E, Aloulou M, Cenac N, Serino M, Mouledous L, Fazilleau N, Dietrich G. Proenkephalin deletion in hematopoietic cells induces intestinal barrier failure resulting in clinical feature similarities with irritable bowel syndrome in mice. Commun Biol 2023; 6:1168. [PMID: 37968381 PMCID: PMC10652007 DOI: 10.1038/s42003-023-05542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Opioid-dependent immune-mediated analgesic effects have been broadly reported upon inflammation. In preclinical mouse models of intestinal inflammatory diseases, the local release of enkephalins (endogenous opioids) by colitogenic T lymphocytes alleviate inflammation-induced pain by down-modulating gut-innervating nociceptor activation in periphery. In this study, we wondered whether this immune cell-derived enkephalin-mediated regulation of the nociceptor activity also operates under steady state conditions. Here, we show that chimeric mice engrafted with enkephalin-deficient bone marrow cells exhibit not only visceral hypersensitivity but also an increase in both epithelial paracellular and transcellular permeability, an alteration of the microbial topography resulting in increased bacteria-epithelium interactions and a higher frequency of IgA-producing plasma cells in Peyer's patches. All these alterations of the intestinal homeostasis are associated with an anxiety-like behavior despite the absence of an overt inflammation as observed in patients with irritable bowel syndrome. Thus, our results show that immune cell-derived enkephalins play a pivotal role in maintaining gut homeostasis and normal behavior in mice. Because a defect in the mucosal opioid system remarkably mimics some major clinical symptoms of the irritable bowel syndrome, its identification might help to stratify subgroups of patients.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Lea Rey
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Louise Battut
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Cyrielle Bories
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Camille Petitfils
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Anne Abot
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Enterosys SAS, Labège, France
| | - Nadine Gheziel
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Eve Wemelle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Catherine Blanpied
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jean-Paul Motta
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Claude Knauf
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Frederick Barreau
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Eric Espinosa
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Meryem Aloulou
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Lionel Mouledous
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), Université de Toulouse, CNRS UMR-5169, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Fazilleau
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
13
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Tay C, Grundy L. Animal models of interstitial cystitis/bladder pain syndrome. Front Physiol 2023; 14:1232017. [PMID: 37731545 PMCID: PMC10507411 DOI: 10.3389/fphys.2023.1232017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic disorder characterized by pelvic and/or bladder pain, along with lower urinary tract symptoms that have a significant impact on an individual's quality of life. The diverse range of symptoms and underlying causes in IC/BPS patients pose a significant challenge for effective disease management and the development of new and effective treatments. To facilitate the development of innovative therapies for IC/BPS, numerous preclinical animal models have been developed, each focusing on distinct pathophysiological components such as localized urothelial permeability or inflammation, psychological stress, autoimmunity, and central sensitization. However, since the precise etiopathophysiology of IC/BPS remains undefined, these animal models have primarily aimed to replicate the key clinical symptoms of bladder hypersensitivity and pain to enhance the translatability of potential therapeutics. Several animal models have now been characterized to mimic the major symptoms of IC/BPS, and significant progress has been made in refining these models to induce chronic symptomatology that more closely resembles the IC/BPS phenotype. Nevertheless, it's important to note that no single model can fully replicate all aspects of the human disease. When selecting an appropriate model for preclinical therapeutic evaluation, consideration must be given to the specific pathology believed to underlie the development of IC/BPS symptoms in a particular patient group, as well as the type and severity of the model, its duration, and the proposed intervention's mechanism of action. Therefore, it is likely that different models will continue to be necessary for preclinical drug development, depending on the unique etiology of IC/BPS being investigated.
Collapse
Affiliation(s)
- Cindy Tay
- Neurourology Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Luke Grundy
- Neurourology Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
15
|
Abstract
Functional gastrointestinal disorders (FGIDs) are an extremely common set of more than 50 disorders characterized by persistent and recurring gastrointestinal symptoms. Most of these patients can be diagnosed and managed by primary care physicians. Treatment includes patient education and reassurance, eliminating triggers, dietary modification, and pharmacologic management. Primary care physicians should consider referral to gastroenterologists when patients exhibit red flag symptoms such as blood in stool, abnormal laboratory findings, involuntary weight loss, age of presentation greater than 50 years, or certain concerning family history.
Collapse
Affiliation(s)
- Molly Duffy
- Department of Family Medicine, University of North Carolina at Chapel Hill, 590 Manning Drive, Chapel Hill, NC 27514, USA.
| | - Victoria L Boggiano
- Department of Family Medicine, University of North Carolina at Chapel Hill, 590 Manning Drive, Chapel Hill, NC 27514, USA
| | - Ravindra Ganesh
- Division of General Internal Medicine, Mayo Clinic, 200 1(st) Street Southwest Rochester, MN 55906, USA
| | - Michael Mueller
- Division of General Internal Medicine, Mayo Clinic, 200 1(st) Street Southwest Rochester, MN 55906, USA
| |
Collapse
|
16
|
Vanuytsel T, Bercik P, Boeckxstaens G. Understanding neuroimmune interactions in disorders of gut-brain interaction: from functional to immune-mediated disorders. Gut 2023; 72:787-798. [PMID: 36657961 PMCID: PMC10086308 DOI: 10.1136/gutjnl-2020-320633] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Functional gastrointestinal disorders-recently renamed into disorders of gut-brain interaction-such as irritable bowel syndrome and functional dyspepsia are highly prevalent conditions with bothersome abdominal symptoms in the absence of structural abnormalities. While traditionally considered as motility disorders or even psychosomatic conditions, our understanding of the pathophysiology has evolved significantly over the last two decades. Initial observations of subtle mucosal infiltration with immune cells, especially mast cells and eosinophils, are since recently being backed up by mechanistic evidence demonstrating increased release of nociceptive mediators by immune cells and the intestinal epithelium. These mediators can activate sensitised neurons leading to visceral hypersensitivity with bothersome symptoms. The interaction between immune activation and an impaired barrier function of the gut is most likely a bidirectional one with alterations in the microbiota, psychological stress and food components as upstream players in the pathophysiology. Only few immune-targeting treatments are currently available, but an improved understanding through a multidisciplinary scientific approach will hopefully identify novel, more precise treatment targets with ultimately better outcomes.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KU Leuven, Leuven, Belgium.,Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Premysl Bercik
- Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Guy Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KU Leuven, Leuven, Belgium .,Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Tomita T, Fukui H, Morishita D, Maeda A, Makizaki Y, Tanaka Y, Ohno H, Oshima T, Miwa H. Diarrhea-predominant Irritable Bowel Syndrome-like Symptoms in Patients With Quiescent Crohn's Disease: Comprehensive Analysis of Clinical Features and Intestinal Environment Including the Gut Microbiome, Organic Acids, and Intestinal Permeability. J Neurogastroenterol Motil 2023; 29:102-112. [PMID: 36606441 PMCID: PMC9837540 DOI: 10.5056/jnm22027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/06/2022] [Accepted: 08/06/2022] [Indexed: 01/07/2023] Open
Abstract
Background/Aims Diarrhea-predominant irritable bowel syndrome (IBS-D)-like symptoms frequently occur in patients with quiescent Crohn's disease (CD). To investigate the factors underlying IBS-D-like symptoms in patients with quiescent CD, we performed a comprehensive analysis of the clinical features and intestinal environment in those patients. Methods We performed a prospective observational study of 27 patients with quiescent CD (CD activity index [CDAI] ≤ 150; C-reactive protein ≤ 0.3 mg/dL). The presence and severity of IBS-D-like symptoms, health-related quality of life, disease-specific quality of life, and status of depression and anxiety were evaluated. The level of intestinal permeability, fecal calprotectin and organic acids and the profiles of gut microbiome were analyzed. Results Twelve of the 27 patients with quiescent CD (44.4%) had IBS-like symptoms, and these patients showed a significantly higher CDAI, IBS severity index and anxiety score than those without. The inflammatory bowel disease questionnaire score was significantly lower in the patients with IBS-D-like symptoms. There were no significant differences in small intestinal/colonic permeability or the levels of organic acids between the patients with and without IBS-D-like symptoms. Fusicatenibacter was significantly less abundant in the patients with IBS-D-like symptoms whereas their fecal calprotectin level was significantly higher (384.8 ± 310.6 mg/kg) than in patients without (161.0 ± 251.0 mg/kg). The receiver operating characteristic curve constructed to predict IBS-D-like symptoms in patients with quiescent CD using the fecal calprotectin level (cutoff, 125 mg/kg) showed a sensitivity and specificity of 73.3% and 91.7%, respectively. Conclusion Minimal inflammation is closely associated with the development of IBS-D-like symptoms in patients with quiescent CD.
Collapse
Affiliation(s)
- Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan,Correspondence: Hirokazu Fukui, MD, PhD, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, l-1, Mukogawa, Nishinomiya, 663-8501, Japan, Tel: +81-798-45-6662, Fax: +81-798-45-6661, E-mail:
| | - Daisuke Morishita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ayako Maeda
- R&D Center, Biofermin Pharmaceutical Co, Ltd, Kobe, Japan
| | | | - Yoshiki Tanaka
- R&D Center, Biofermin Pharmaceutical Co, Ltd, Kobe, Japan
| | - Hiroshi Ohno
- R&D Center, Biofermin Pharmaceutical Co, Ltd, Kobe, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
18
|
Awad K, Barmeyer C, Bojarski C, Nagel O, Lee IFM, Schweiger MR, Schulzke JD, Bücker R. Impaired Intestinal Permeability of Tricellular Tight Junctions in Patients with Irritable Bowel Syndrome with Mixed Bowel Habits (IBS-M). Cells 2023; 12:236. [PMID: 36672170 PMCID: PMC9856377 DOI: 10.3390/cells12020236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The underlying pathophysiology of irritable bowel syndrome (IBS) is still unclear. Our aim was to investigate the pathophysiological mechanisms of diarrhea, constipation, and antigen uptake in mixed-type IBS (IBS-M). METHODS Colonoscopic biopsies were obtained from IBS-M patients. Epithelial transport and barrier function of colonic mucosae were characterized in Ussing chambers using impedance spectroscopy. Mucosal permeability to macromolecules was measured. Western blotting for tight junction (TJ) proteins was performed and their subcellular localization was visualized by confocal microscopy. RNA-sequencing was performed for gene expression and signaling pathway analysis. RESULTS In IBS-M, epithelial resistance and ENaC-dependent sodium absorption were unchanged, while short-circuit current reflecting chloride secretion was reduced. Concomitantly, epithelial permeability for fluorescein and FITC-dextran-4000 increased. TJ protein expression of occludin decreased, whereas claudins were unaltered. Confocal microscopy revealed the de-localization of tricellulin from tricellular TJs. Involved pathways were detected as proinflammatory cytokine pathways, LPS, PGE2, NGF, and vitamin D. CONCLUSIONS Decreased anion secretion explains constipation in IBS-M, while ion permeability and sodium absorption were unaltered. Reduced occludin expression resulted in the delocalization of tricellulin from the tricellular TJ, leading to increased macromolecular permeability that contributes to antigen influx into the mucosa and perpetuates a low-grade inflammatory process.
Collapse
Affiliation(s)
- Karem Awad
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Christian Barmeyer
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Christian Bojarski
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Oliver Nagel
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - In-Fah M. Lee
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michal R. Schweiger
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jörg-Dieter Schulzke
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Roland Bücker
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
19
|
Tian S, Zhang H, Chen S, Wu P, Chen M. Global research progress of visceral hypersensitivity and irritable bowel syndrome: bibliometrics and visualized analysis. Front Pharmacol 2023; 14:1175057. [PMID: 37201020 PMCID: PMC10185792 DOI: 10.3389/fphar.2023.1175057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Irritable bowel syndrome (IBS) is a group of functional intestinal disorders characterized by abdominal pain, bloating, and changes in bowel habits, and/or stool characteristics. Recent studies have shown that there has been a significant advancement in the study of visceral hypersensitivity in IBS. Through the use of bibliometrics, this study aims to provide a comprehensive overview of the knowledge structure and research hotpots of visceral hypersensitivity in IBS. Methods: Publications related to visceral hypersensitivity in IBS from 2012 to 2022 were searched on the web of science core collection (WoSCC) database. CiteSpace.6.1. R2 and Vosviewer 1.6.17 were used to perform bibliometric analysis. Results: A total of 974 articles led by China and the United States from 52 countries were included. Over the past decade, the number of articles on visceral hypersensitivity and IBS has steadily increased year by year. China, the United States, and Belgium are the main countries in this field. Univ Oklahoma, Univ Gothenburg, and Zhejiang University are the main research institutions. Simren, Magnus, Greenwood-van meerveld, Beverley, and Tack, Jan are the most published authors in this research field. The research on the causes, genes, and pathways involved in visceral hypersensitivity in IBS and the mechanism of IBS are the main topics and hotspots in this field. This study also found that gut microbiota may be related to the occurrence of visceral hypersensitivity, and probiotics may be a new method for the treatment of visceral hypersensitivity and pain, which may become a new direction for research in this field. Conclusion: This is the first bibliometric study to comprehensively summarize the research trends and developments of visceral hypersensitivity in IBS. This information provides the research frontier and hot topics in this field in recent years, which will provide a reference for scholars studying this field.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Hang Zhang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Siqi Chen
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Pengning Wu
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Min Chen
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Min Chen,
| |
Collapse
|
20
|
Lembo A, Kuo B, Boinpally R, Li E, Mallick M, Bochenek W, Bartolini W. Randomised clinical trial: effects of MD-7246 on irritable bowel syndrome with diarrhoea. Aliment Pharmacol Ther 2023; 57:192-204. [PMID: 36324245 DOI: 10.1111/apt.17274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND MD-7246, a delayed-release formulation of linaclotide, is designed to target the ileocaecal junction and caecum with the aim of relieving abdominal pain independently of bowel function. AIMS To evaluate the efficacy, safety and dose-response of MD-7246 in patients with irritable bowel syndrome with diarrhoea (IBS-D). METHODS A randomised, double-blind, phase 2 clinical trial enrolled adult patients with IBS-D (Rome IV criteria). Patients were randomised to placebo or once-daily oral MD-7246 300, 600 or 1200 μg for 12 weeks. Abdominal and bowel symptoms were assessed daily. Key efficacy endpoints were change from baseline in abdominal pain and responder rates for a 30% reduction in abdominal pain in 6/12 weeks. Additional abdominal pain responder and exploratory bowel function endpoints were also assessed. RESULTS Among the 388 randomised patients, there was no significant difference in mean change from baseline in abdominal pain between the MD-7246 300 μg, 600 μg and 1200 μg groups and placebo (-1.93, -1.58, -1.95 and - 2.01, respectively; p > 0.05 for each group vs placebo). The abdominal pain responder rates in the MD-7246 groups were similar to or lower than those in the placebo group. All doses of MD-7246 had a minimal effect on bowel function and were generally well tolerated. CONCLUSIONS MD-7246 at the doses studied did not improve abdominal pain relative to placebo in an IBS-D patient population. Similarly, most additional efficacy endpoints showed no improvement with MD-7246 relative to placebo.
Collapse
Affiliation(s)
- Anthony Lembo
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Braden Kuo
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Ella Li
- Ironwood Pharmaceuticals, Inc., Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
21
|
Shin A, Kashyap PC. Multi-omics for biomarker approaches in the diagnostic evaluation and management of abdominal pain and irritable bowel syndrome: what lies ahead. Gut Microbes 2023; 15:2195792. [PMID: 37009874 PMCID: PMC10072066 DOI: 10.1080/19490976.2023.2195792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
Reliable biomarkers for common disorders of gut-brain interaction characterized by abdominal pain, including irritable bowel syndrome (IBS), are critically needed to enhance care and develop individualized therapies. The dynamic and heterogeneous nature of the pathophysiological mechanisms that underlie visceral hypersensitivity have challenged successful biomarker development. Consequently, effective therapies for pain in IBS are lacking. However, recent advances in modern omics technologies offer new opportunities to acquire deep biological insights into mechanisms of pain and nociception. Newer methods for large-scale data integration of complementary omics approaches have further expanded our ability to build a holistic understanding of complex biological networks and their co-contributions to abdominal pain. Here, we review the mechanisms of visceral hypersensitivity, focusing on IBS. We discuss candidate biomarkers for pain in IBS identified through single omics studies and summarize emerging multi-omics approaches for developing novel biomarkers that may transform clinical care for patients with IBS and abdominal pain.
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna C. Kashyap
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Shah A, Kang S, Talley NJ, Do A, Walker MM, Shanahan ER, Koloski NA, Jones MP, Keely S, Morrison M, Holtmann GJ. The duodenal mucosa associated microbiome, visceral sensory function, immune activation and psychological comorbidities in functional gastrointestinal disorders with and without self-reported non-celiac wheat sensitivity. Gut Microbes 2022; 14:2132078. [PMID: 36303431 PMCID: PMC9621048 DOI: 10.1080/19490976.2022.2132078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Frequently, patients with functional gastrointestinal disorders (FGIDs) report intolerance of wheat products. We compared gastrointestinal symptoms, sensory function, psychiatric comorbidities, gut-homing immune cells, and duodenal mucosa-associated microbiome (d-MAM) in FGID patients and controls with and without self-reported wheat sensitivity (SR-NCWS). We recruited 40 FGID patients and 20 controls referred by GPs for treatment. Gastrointestinal/extraintestinal symptoms, visceral sensory function, psychological comorbidities, and SR-NCWS were assessed in a standardized approach. Peripheral gut homing T-cells (CD4+α4+β7+CCR9+/CD8+α4+β7+CCR9+) were quantified, and the d-MAM was assessed by DNA sequencing for 46 subjects. Factors of bacterial genera were extracted utilizing factor analysis with varimax rotation and factors univariately associated with FGID or SR-NCWS included in a subsequent multivariate analysis of variance to identify statistically independent discriminators. Anxiety scores (p < .05) and increased symptom responses to a nutrient challenge (p < .05) were univariately associated with FGID. Gut homing T-cells were increased in FGID patients with SR-NCWS compared to other groups (p all <0.05). MANOVA revealed that anxiety (p = .03), visceral sensory function (p = 0.007), and a d-MAM factor comprise members of the Alloprevotella, Prevotella, Peptostreptococcus, Leptotrichia, and Veillonella lineages were significantly (p = .001) associated with FGID, while gut homing CD4+α4+ β7+CCR9+ T-cells were associated (p = .002) with SR-NCWS. Compared to controls, patients with and without SR-NCWS show that there are shifts in the amplicon sequence variants within specific bacterial genera between the FGID subgroups (particularly Prevotella and Streptococcus) as well as distinct bacterial taxa discriminatory for the two different FGID subtypes. Compared to controls, both FGID patients with and without SR-NCWS have an increased symptom response to a standardized nutrient challenge and increased anxiety scores. The FGID patients with SR-NCWS - as compared to FGID without SR-NCWS (and controls without SR-NCWS) - have increased gut homing T-cells. The d-MAM profiles suggest species and strain-based variations between the two FGID subtypes and in comparison to controls.
Collapse
Affiliation(s)
- Ayesha Shah
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Translational Research Institute Queensland, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Seungha Kang
- Faculty of Medicine, University of Queensland, Brisbane, Australia,University of Queensland Diamantina Institute, Woolloongabba, Australia
| | - Nicholas J Talley
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Anh Do
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Marjorie M Walker
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Erin R Shanahan
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Translational Research Institute Queensland, Australia
| | - Natasha A Koloski
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Translational Research Institute Queensland, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia,College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Michael P Jones
- College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Mark Morrison
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia,University of Queensland Diamantina Institute, Woolloongabba, Australia,CONTACT Mark Morrison
| | - Gerald J Holtmann
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia,Translational Research Institute Queensland, Australia,Faculty of Medicine, University of Queensland, Brisbane, Australia,Gerald J Holtmann Princess Alexandra Hospital, Brisbane Department of Gastroenterology and Hepatology & University of Queensland 199 Ipswich Road, Woolloongabba, Queensland, Australia
| |
Collapse
|
23
|
Liu A, Gao W, Zhu Y, Hou X, Chu H. Gut Non-Bacterial Microbiota: Emerging Link to Irritable Bowel Syndrome. Toxins (Basel) 2022; 14:596. [PMID: 36136534 PMCID: PMC9503233 DOI: 10.3390/toxins14090596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
As a common functional gastrointestinal disorder, irritable bowel syndrome (IBS) significantly affects personal health and imposes a substantial economic burden on society, but the current understanding of its occurrence and treatment is still inadequate. Emerging evidence suggests that IBS is associated with gut microbial dysbiosis, but most studies focus on the bacteria and neglect other communities of the microbiota, including fungi, viruses, archaea, and other parasitic microorganisms. This review summarizes the latest findings that link the nonbacterial microbiota with IBS. IBS patients show less fungal and viral diversity but some alterations in mycobiome, virome, and archaeome, such as an increased abundance of Candida albicans. Moreover, fungi and methanogens can aid in diagnosis. Fungi are related to distinct IBS symptoms and induce immune responses, intestinal barrier disruption, and visceral hypersensitivity via specific receptors, cells, and metabolites. Novel therapeutic methods for IBS include fungicides, inhibitors targeting fungal pathogenic pathways, probiotic fungi, prebiotics, and fecal microbiota transplantation. Additionally, viruses, methanogens, and parasitic microorganisms are also involved in the pathophysiology and treatment. Therefore, the gut nonbacterial microbiota is involved in the pathogenesis of IBS, which provides a novel perspective on the noninvasive diagnosis and precise treatment of this disease.
Collapse
Affiliation(s)
- Ao Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yixin Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
24
|
Barker KH, Higham JP, Pattison LA, Taylor TS, Chessell IP, Welsh F, Smith ESJ, Bulmer DC. Sensitisation of colonic nociceptors by TNFα is dependent on TNFR1 expression and p38 MAPK activity. J Physiol 2022; 600:3819-3836. [PMID: 35775903 PMCID: PMC9543404 DOI: 10.1113/jp283170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut‐related side‐effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro‐inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons. Somatic, TNFα‐triggered thermal and mechanical hypersensitivity is mediated by TRPV1 signalling and p38 MAPK activity respectively, downstream of TNFR1 receptor activation. We therefore hypothesized that TNFR1‐evoked p38 MAPK activity may also be responsible for TNFα sensitization of colonic afferent responses to the TRPV1 agonist capsaicin, and noxious distension of the bowel. Using Ca2+ imaging of dorsal root ganglion sensory neurons, we observed TNFα‐mediated increases in intracellular [Ca2+] and sensitization of capsaicin responses. The sensitizing effects of TNFα were dependent on TNFR1 expression and attenuated by p38 MAPK inhibition. Consistent with these findings, ex vivo colonic afferent fibre recordings demonstrated an enhanced response to noxious ramp distention of the bowel and bath application of capsaicin following TNFα pre‐treatment. Responses were reversed by p38 MAPK inhibition and absent in tissue from TNFR1 knockout mice. Our findings demonstrate a contribution of TNFR1, p38 MAPK and TRPV1 to TNFα‐induced sensitization of colonic afferents, highlighting the potential utility of these drug targets for the treatment of visceral pain in gastrointestinal disease.
![]() Key points The pro‐inflammatory cytokine TNFα is elevated in gastrointestinal disease and sensitizes colonic afferents via modulation of TRPA1 and NaV1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα‐mediated colonic afferent sensitization. Specifically, we show that: TNFα sensitizes sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα‐mediated sensitization of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitization of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively these data support the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in gastrointestinal disease.
Collapse
Affiliation(s)
- Katie H Barker
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Toni S Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Iain P Chessell
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Fraser Welsh
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
25
|
Kim HY, Park ES, Choi YS, Park SJ, Kim JH, Chang HK, Park KY. Kimchi improves irritable bowel syndrome: results of a randomized, double-blind placebo-controlled study. Food Nutr Res 2022; 66:8268. [PMID: 35721806 PMCID: PMC9180131 DOI: 10.29219/fnr.v66.8268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) can be caused by abnormal bowel movements, altered brain-gut axis, gut microbiota change, and low levels of inflammation or immune activation. The intake of food containing much fiber and lactic acid bacteria (LABs) can alleviate IBS. OBJECTIVE This study was undertaken to confirm the alleviative effect of kimchi on symptoms of IBS. DESIGN Three types of kimchi (standard kimchi, SK; dead nano-sized Lactobacillus plantarum nF1 (nLp) added to standard kimchi, nLpSK; or functional kimchi, FK) were given to 30 individuals in each of three groups, that is, the SK group (n = 30), the nLpSK group (n = 30), or the FK group (n = 30) at 210 g a day for 12 weeks. Food intake records, serum levels of inflammatory factors, fecal levels of harmful enzymes, and microbiome changes were investigated over the 12-week study period. RESULTS After intervention, dietary fiber intake was increased in all groups. Typical IBS symptoms (abdominal pain or inconvenience, desperation, incomplete evacuation, and bloating), defecation time, and stool type were also improved. In serum, all groups showed reductions in tumor necrosis factor (TNF)-α (P < 0.001) levels. In addition, serum IL-4 (P < 0.001), IL-10 (P < 0.001), and IL-12 (P < 0.01) were significantly reduced in the nLpSK and FK groups, and serum monocyte chemotactic protein (MCP)-1 (P < 0.05) was significantly reduced in the nLpSK group. Furthermore, activities of fecal β-glucosidase and β-glucuronidase were significantly decreased in all three groups, and these reductions were greatest in the nLpSK group. Gut microbiome analysis showed that kimchi consumption increased Firmicutes populations at the expense of Bacteroidetes and Tenericutes populations. In addition, the Bifidobacterium adolescentis population increased significantly in the FK group (P = 0.026). CONCLUSION Kimchi intake helps alleviate IBS by increasing dietary fiber intake and reducing serum inflammatory cytokine levels and harmful fecal enzyme activities. Notably, nLp improved the immune system, and several functional ingredients in FK promoted the growth of Bifidobacterium adolescentis in gut.
Collapse
Affiliation(s)
- Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Eui-Seong Park
- Yuhan Care R&D Center, Yongin, Gyeonggi-do, Republic of Korea
| | - Young Sik Choi
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Seun Ja Park
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jae Hyun Kim
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, Gyeonggi-do, Republic of Korea
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
26
|
Zhu Y, Duan S, Wang M, Deng Z, Li J. Neuroimmune Interaction: A Widespread Mutual Regulation and the Weapons for Barrier Organs. Front Cell Dev Biol 2022; 10:906755. [PMID: 35646918 PMCID: PMC9130600 DOI: 10.3389/fcell.2022.906755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Since the embryo, the nervous system and immune system have been interacting to regulate each other’s development and working together to resist harmful stimuli. However, oversensitive neural response and uncontrolled immune attack are major causes of various diseases, especially in barrier organs, while neural-immune interaction makes it worse. As the first defense line, the barrier organs give a guarantee to maintain homeostasis in external environment. And the dense nerve innervation and abundant immune cell population in barrier organs facilitate the neuroimmune interaction, which is the physiological basis of multiple neuroimmune-related diseases. Neuroimmune-related diseases often have complex mechanisms and require a combination of drugs, posing challenges in finding etiology and treatment. Therefore, it is of great significance to illustrate the specific mechanism and exact way of neuro-immune interaction. In this review, we first described the mutual regulation of the two principal systems and then focused on neuro-immune interaction in the barrier organs, including intestinal tract, lungs and skin, to clarify the mechanisms and provide ideas for clinical etiology exploration and treatment.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Shixin Duan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| |
Collapse
|
27
|
Wu H, Zhan K, Rao K, Zheng H, Qin S, Tang X, Huang S. Comparison of five diarrhea-predominant irritable bowel syndrome (IBS-D) rat models in the brain-gut-microbiota axis. Biomed Pharmacother 2022; 149:112811. [PMID: 35303570 DOI: 10.1016/j.biopha.2022.112811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
The brain-gut-microbiota (BGM) axis is known to be essential for diarrhea-predominant irritable bowel syndrome (IBS-D). In order to evaluate the effects of IBS-D rat models (the central sensitization model, the peripheral sensitization model and the compound model) on the BGM axis, five models were induced in Wistar rats with 4% acetic acid (AD, dissolved 0.4 ml of AD in 9.6 ml of ultrapure water) + wrap restrain stress (WRS), 4% AD, colorectal distention (CRD), WRS, and neonatal maternal separation (NMS). Abdominal withdrawal reflex (AWR) scale scores and the moisture content of feces (MCF) were evaluated on the day of completing modeling. Body weight was measured every 7 days during modeling. Brain gut peptides, cytokine levels, the activity of spinal cord neurons, intestinal mucosal barrier function, and gut microbiota were determined after induction of IBS-D. We found intervention with 4% AD + WRS, 4% AD, CRD, WRS, and NMS induced a similar course of effects on the BGM axis. Among the five models, AWR scores (60 mmHg, 80 mmHg) were all increased. The levels of 5-hydroxytryptamine, corticotropin-releasing factor, substance P, and calcitonin gene-related protein in serum rapidly increased, whereas that of neuropeptide Y decreased. C-fos in the spinal cord showed increased neuronal activity. The intestinal permeability was increased and the composition and structure of gut microbiota were changed. In conclusion, the five models could cause changes in BGM axis, but the 4% AD + WRS model was closer to the changes BGM axis of post-inflammatory models of IBS-D.
Collapse
Affiliation(s)
- Haomeng Wu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou 510120, China
| | - Kai Zhan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Kehan Rao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Huan Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou 510120, China
| | - Shumin Qin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou 510120, China
| | - Xudong Tang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Shaogang Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou 510120, China; Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China.
| |
Collapse
|
28
|
Kindt S, Louis H, De Schepper H, Arts J, Caenepeel P, De Looze D, Gerkens A, Holvoet T, Latour P, Mahler T, Mokaddem F, Nullens S, Piessevaux H, Poortmans P, Rasschaert G, Surmont M, Vafa H, Van Malderen K, Vanuytsel T, Wuestenberghs F, Tack J. Belgian consensus on irritable bowel syndrome. Acta Gastroenterol Belg 2022; 85:360-382. [PMID: 35709780 DOI: 10.51821/85.2.10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is characterised by recurrent abdominal pain related to defaecation or associated with altered stool frequency or consistency. Despite its prevalence, major uncertainties in the diagnostic and therapeutic management persist in clinical practice. METHODS A Delphi consensus was conducted by 20 experts from Belgium, and consisted of literature review and voting process on 78 statements. Grading of recommendations, assessment, development and evaluation criteria were applied to evaluate the quality of evidence. Consensus was defined as > 80 % agreement. RESULTS Consensus was reached for 50 statements. The Belgian consensus agreed as to the multifactorial aetiology of IBS. According to the consensus abdominal discomfort also represents a cardinal symptom, while bloating and abdominal distension often coexist. IBS needs subtyping based on stool pattern. The importance of a positive diagnosis, relying on history and clinical examination is underlined, while additional testing should remain limited, except when alarm features are present. Explanation of IBS represents a crucial part of patient management. Lifestyle modification, spasmolytics and water-solube fibres are considered first-line agents. The low FODMAP diet, selected probiotics, cognitive behavioural therapy and specific treatments targeting diarrhoea and constipation are considered appropriate. There is a consensus to restrict faecal microbiota transplantation and gluten-free diet, while other treatments are strongly discouraged. CONCLUSIONS A panel of Belgian gastroenterologists summarised the current evidence on the aetiology, symptoms, diagnosis and treatment of IBS with attention for the specificities of the Belgian healthcare system.
Collapse
Affiliation(s)
- S Kindt
- Department of gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - H Louis
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - H De Schepper
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - J Arts
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Gastroenterology, AZ Sint-Lucas, Brugge, Belgium
| | - P Caenepeel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Gastroenterology, Ziekenhuis Oost-Limburg, Campus Sint-Jan, Genk, Belgium
- UHasselt, Hasselt, Belgium
| | - D De Looze
- Department of Gastroenterology and Hepatology, University Hospital Ghent, Gent, Belgium
| | - A Gerkens
- Boitsfort Medical Center, Brussels, Belgium
| | - T Holvoet
- Department of Gastroenterology and Hepatology, University Hospital Ghent, Gent, Belgium
- Department of Gastroenterology, AZ Nikolaas, Sint Niklaas, Belgium
| | - P Latour
- Department of Gastroenterology, Hepatology and Digestive Oncology, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - T Mahler
- Department of Pediatrics, Universitair Ziekenuis Brussel, Brussel, Belgium
| | - F Mokaddem
- Department of Gastroenterology and Hepatology, Vivalia-Centre Sud Luxembourg, Arlon, Belgium
| | - S Nullens
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - H Piessevaux
- Department of Hepato-gastroenterology, Cliniques universitaires St-Luc, Université catholique de Louvain, Brussels, Belgium
| | - P Poortmans
- Department of gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - G Rasschaert
- Department of gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - M Surmont
- Department of gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussel, Belgium
| | - H Vafa
- Department of Gastroenterology and Hepatology, Chirec-Site Delta, Brussels, Belgium
| | - K Van Malderen
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - T Vanuytsel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - F Wuestenberghs
- Department of Gastroenterology and Hepatology, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
| | - J Tack
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Aguilera-Lizarraga J, Hussein H, Boeckxstaens GE. Immune activation in irritable bowel syndrome: what is the evidence? Nat Rev Immunol 2022; 22:674-686. [PMID: 35296814 DOI: 10.1038/s41577-022-00700-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder that is characterized by abdominal pain and an altered defecation pattern. It affects between 5 and 20% of the general population and can seriously impact quality of life. The pathophysiology of IBS is rather complex and multifactorial including, for example, altered signalling by the gut-brain axis, dysbiosis, abnormal visceral pain signalling and intestinal immune activation. The latter has gained particular interest in recent years, with growing insight into the bidirectional communication between the nervous system and the immune system. In this Review, we detail the current evidence suggesting that immune activation contributes to the pathology seen in patients with IBS and discuss the potential mechanisms involved. Moreover, we describe how immune mediators, particularly those released by mast cells, can directly activate or sensitize pain-transmitting nerves, leading to increased pain signalling and abdominal pain. Finally, we discuss the potential of interventions targeting immune activation as a new therapeutic strategy for patients suffering from IBS.
Collapse
Affiliation(s)
- Javier Aguilera-Lizarraga
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Hind Hussein
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.
| |
Collapse
|
30
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Piccione M, Facchinello N, Schrenk S, Gasparella M, Pathak S, Ammar RM, Rabini S, Dalla Valle L, Di Liddo R. STW 5 Herbal Preparation Modulates Wnt3a and Claudin 1 Gene Expression in Zebrafish IBS-like Model. Pharmaceuticals (Basel) 2021; 14:1234. [PMID: 34959635 PMCID: PMC8704787 DOI: 10.3390/ph14121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
AIM Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal pain and stool irregularities. STW 5 has proven clinical efficacy in functional gastrointestinal disorders, including IBS, targeting pathways that suppress inflammation and protect the mucosa. Wnt signaling is known to modulate NF-kβ-dependent inflammatory cytokine production. This sparked the idea of evaluating the impact of STW 5 on the expression of inflammatory-response and Wnt/β catenin-target genes in an IBS-like model. MAIN METHODS We used zebrafish and dextran sodium sulfate (DSS) treatment to model IBS-like conditions in vivo and in vitro and examined the effects of subsequent STW 5 treatment on the intestines of DSS-treated fish and primary cultured intestinal and neuronal cells. Gross gut anatomy, histology, and the expression of Wnt-signaling and cytokine genes were analyzed in treated animals and/or cells, and in controls. KEY FINDINGS DSS treatment up-regulated the expression of interleukin-8, tumor necrosis factor-α, wnt3a, and claudin-1 in explanted zebrafish gut. Subsequent STW 5 treatment abolished both the macroscopic signs of gut inflammation, DSS-induced mucosecretory phenotype, and normalized the DSS-induced upregulated expression of il10 and Wnt signaling genes, such as wnt3a and cldn1 in explanted zebrafish gut. Under inflammatory conditions, STW 5 downregulated the expression of the pro-inflammatory cytokine genes il1β, il6, il8, and tnfα while it upregulated the expression of the anti-inflammatory genes il10 and wnt3a in enteric neuronal cells in vitro. SIGNIFICANCE Wnt signaling could be a novel target for the anti-inflammatory and intestinal permeability-restoring effects of STW 5, possibly explaining its clinical efficacy in IBS.
Collapse
Affiliation(s)
- Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (L.D.V.)
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| | - Marco Gasparella
- Department of Pediatric Surgery, Ca’ Foncello Hospital, 31100 Treviso, Italy;
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India;
| | - Ramy M. Ammar
- BAYER Consumer Health, Global Medical Affairs, 64295 Darmstadt, Germany; (R.M.A.); (S.R.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafr-El Sheikh 33516, Egypt
| | - Sabine Rabini
- BAYER Consumer Health, Global Medical Affairs, 64295 Darmstadt, Germany; (R.M.A.); (S.R.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (L.D.V.)
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| |
Collapse
|
32
|
Takahashi K, Khwaja IG, Schreyer JR, Bulmer D, Peiris M, Terai S, Aziz Q. Post-inflammatory Abdominal Pain in Patients with Inflammatory Bowel Disease During Remission: A Comprehensive Review. CROHN'S & COLITIS 360 2021; 3:otab073. [PMID: 36777266 PMCID: PMC9802269 DOI: 10.1093/crocol/otab073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with inflammatory bowel disease often experience ongoing pain even after achieving mucosal healing (i.e., post-inflammatory pain). Factors related to the brain-gut axis, such as peripheral and central sensitization, altered sympatho-vagal balance, hypothalamic-pituitary-adrenal axis activation, and psychosocial factors, play a significant role in the development of post-inflammatory pain. A comprehensive study investigating the interaction between multiple predisposing factors, including clinical psycho-physiological phenotypes, molecular mechanisms, and multi-omics data, is still needed to fully understand the complex mechanism of post-inflammatory pain. Furthermore, current treatment options are limited and new treatments consistent with the underlying pathophysiology are needed to improve clinical outcomes.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Iman Geelani Khwaja
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jocelyn Rachel Schreyer
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Qasim Aziz
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Peiris M, Weerts ZZRM, Aktar R, Masclee AAM, Blackshaw A, Keszthelyi D. A putative anti-inflammatory role for TRPM8 in irritable bowel syndrome-An exploratory study. Neurogastroenterol Motil 2021; 33:e14170. [PMID: 34145938 DOI: 10.1111/nmo.14170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic and recurring pain is a characteristic symptom in irritable bowel syndrome (IBS). Altered signaling between immune cells and sensory neurons within the gut may promote generation of pain symptoms. As transient receptor potential melastatin 8 (TRPM8) agonists, such as L-menthol in peppermint oil, have shown to attenuate IBS pain symptoms, we began investigating potential molecular mechanisms. METHODS Colonic biopsy tissues were collected from patients with IBS and controls, in two separate cohorts. Immunohistochemistry was performed to identify TRPM8 localization. Quantitative PCR was performed to measure mucosal mRNA levels of TRPM8. In addition, functional experiments with the TRPM8 agonist icilin were performed ex vivo to examine cytokine release from biopsies. Daily diaries were collected to ascertain pain symptoms. RESULTS In biopsy tissue from IBS patients, we showed that TRPM8 immunoreactivity is colocalized with immune cells predominantly of the dendritic cell lineage, in close approximation to nerve endings, and TRPM8 protein and mRNA expression was increased in IBS patients compared to controls (p < 0.001). TRPM8 mRNA expression showed a significant positive association with abdominal pain scores (p = 0.015). Treatment of IBS patient biopsies with icilin reduced release of inflammatory cytokines IL-1β, IL-6, and TNF-α (p < 0.05). CONCLUSIONS AND INFERENCES These data indicate TRPM8 may have important anti-inflammatory properties and by this virtue can impact neuro-immune disease mechanisms in IBS.
Collapse
Affiliation(s)
- Madusha Peiris
- Wingate Institute for Neurogastroenterology, Centre for Neuroscience, Trauma & Surgery, Blizard Institute, Queen Mary University of London, London, UK
| | - Zsa Zsa R M Weerts
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rubina Aktar
- Wingate Institute for Neurogastroenterology, Centre for Neuroscience, Trauma & Surgery, Blizard Institute, Queen Mary University of London, London, UK
| | - Ad A M Masclee
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ashley Blackshaw
- Wingate Institute for Neurogastroenterology, Centre for Neuroscience, Trauma & Surgery, Blizard Institute, Queen Mary University of London, London, UK
| | - Daniel Keszthelyi
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
34
|
Mas-Orea X, Sebert M, Benamar M, Petitfils C, Blanpied C, Saoudi A, Deraison C, Barreau F, Cenac N, Dietrich G. Peripheral Opioid Receptor Blockade Enhances Epithelial Damage in Piroxicam-Accelerated Colitis in IL-10-Deficient Mice. Int J Mol Sci 2021; 22:7387. [PMID: 34299013 PMCID: PMC8304158 DOI: 10.3390/ijms22147387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/02/2023] Open
Abstract
Mucosal CD4+ T lymphocytes display a potent opioid-mediated analgesic activity in interleukin (IL)-10 knockout mouse model of inflammatory bowel diseases (IBD). Considering that endogenous opioids may also exhibit anti-inflammatory activities in the periphery, we examined the consequences of a peripheral opioid receptor blockade by naloxone-methiodide, a general opioid receptor antagonist unable to cross the blood-brain barrier, on the development of piroxicam-accelerated colitis in IL-10-deficient (IL-10-/-) mice. Here, we show that IL-10-deficient mice treated with piroxicam exhibited significant alterations of the intestinal barrier function, including permeability, inflammation-related bioactive lipid mediators, and mucosal CD4+ T lymphocyte subsets. Opioid receptor antagonization in the periphery had virtually no effect on colitis severity but significantly worsened epithelial cell apoptosis and intestinal permeability. Thus, although the endogenous opioid tone is not sufficient to reduce the severity of colitis significantly, it substantially contributes to the protection of the physical integrity of the epithelial barrier.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Morgane Sebert
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Mehdi Benamar
- INFINITY, Université de Toulouse—Paul Sabatier, INSERM, CNRS, UPS, 31000 Toulouse, France; (M.B.); (A.S.)
| | - Camille Petitfils
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Catherine Blanpied
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Abdelhadi Saoudi
- INFINITY, Université de Toulouse—Paul Sabatier, INSERM, CNRS, UPS, 31000 Toulouse, France; (M.B.); (A.S.)
| | - Céline Deraison
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Frederick Barreau
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Nicolas Cenac
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Gilles Dietrich
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| |
Collapse
|
35
|
Perna E, Aguilera-Lizarraga J, Florens MV, Jain P, Theofanous SA, Hanning N, De Man JG, Berg M, De Winter B, Alpizar YA, Talavera K, Vanden Berghe P, Wouters M, Boeckxstaens G. Effect of resolvins on sensitisation of TRPV1 and visceral hypersensitivity in IBS. Gut 2021; 70:1275-1286. [PMID: 33023902 DOI: 10.1136/gutjnl-2020-321530] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Resolvins (RvD1, RvD2 and RvE1) are endogenous anti-inflammatory lipid mediators that display potent analgesic properties in somatic pain by modulating transient receptor potential vanilloid 1 (TRPV1) activation. To what extent these molecules could also have a beneficial effect on TRPV1 sensitisation and visceral hypersensitivity (VHS), mechanisms involved in IBS, remains unknown. DESIGN The effect of RvD1, RvD2 and RvE1 on TRPV1 activation and sensitisation by histamine or IBS supernatants was assessed on murine dorsal root ganglion (DRG) neurons using live Ca2+ imaging. Based on the results obtained in vitro, we further studied the effect of RvD2 in vivo using a murine model of post-infectious IBS and a rat model of post-inflammatory VHS. Finally, we also tested the effect of RvD2 on submucosal neurons in rectal biopsies of patients with IBS. RESULTS RvD1, RvD2 and RvE1 prevented histamine-induced TRPV1 sensitisation in DRG neurons at doses devoid of an analgesic effect. Of note, RvD2 also reversed TRPV1 sensitisation by histamine and IBS supernatant. This effect was blocked by the G protein receptor 18 (GPR18) antagonist O-1918 (3-30 µM) and by pertussis toxin. In addition, RvD2 reduced the capsaicin-induced Ca2+ response of rectal submucosal neurons of patients with IBS. Finally, treatment with RvD2 normalised pain responses to colorectal distention in both preclinical models of VHS. CONCLUSIONS Our data suggest that RvD2 and GPR18 agonists may represent interesting novel compounds to be further evaluated as treatment for IBS.
Collapse
Affiliation(s)
- Eluisa Perna
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Javier Aguilera-Lizarraga
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Morgane V Florens
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Piyush Jain
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Stavroula A Theofanous
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | - Maya Berg
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Infla-Med, research consortium of excellence, University of Antwerp, Antwerp, Belgium
| | | | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Mira Wouters
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Center of Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Brizuela M, Castro J, Harrington AM, Brierley SM. Pruritogenic mechanisms and gut sensation: putting the "irritant" into irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1131-G1141. [PMID: 33949199 DOI: 10.1152/ajpgi.00331.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic abdominal pain is a common clinical condition experienced by patients with irritable bowel syndrome (IBS). A general lack of suitable treatment options for the management of visceral pain is the major contributing factor to the debilitating nature of the disease. Understanding the underlying causes of chronic visceral pain is pivotal to identifying new effective therapies for IBS. This review provides the current evidence, demonstrating that mediators and receptors that induce itch in the skin also act as "gut irritants" in the gastrointestinal tract. Activation of these receptors triggers specific changes in the neuronal excitability of sensory pathways responsible for the transmission of nociceptive information from the periphery to the central nervous system leading to visceral hypersensitivity and visceral pain. Accumulating evidence points to significant roles of irritant mediators and their receptors in visceral hypersensitivity and thus constitutes potential targets for the development of more effective therapeutic options for IBS.
Collapse
Affiliation(s)
- Mariana Brizuela
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
38
|
Wang QS, Wang YL, Zhang WY, Li KD, Luo XF, Cui YL. Puerarin from Pueraria lobata alleviates the symptoms of irritable bowel syndrome-diarrhea. Food Funct 2021; 12:2211-2224. [PMID: 33595580 DOI: 10.1039/d0fo02848g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a functional bowel disorder, irritable bowel syndrome (IBS), especially IBS-diarrhea (IBS-D), affects approximately 9-20% of the population worldwide. Classical treatments for IBS usually result in some side effects and intestinal microbial disorders, which inhibit the clinical effects. Natural edible medicines with beneficial effects and few side effects have received more attention in recent years. Puerarin is the main active ingredient in pueraria and has been used in China to treat splenasthenic diarrhea and as a natural food in folk medicine for hundreds of years. However, there have been no reports of using puerarin in the treatment of IBS-D, and the underlying mechanism is also still unclear. In this study, a comprehensive model that could reflect the symptoms of IBS-D was established by combining neonatal maternal separation (NMS) and adult colonic acetic acid stimulation (ACAAS) in rats. The results showed that puerarin could reverse the abdominal pain and diarrhea in IBS-D rats. The therapeutic effect was realized by regulating the richness of the gut microbiota to maintain the stabilization of the intestinal micro-ecology. Furthermore, the possible mechanism might be related to the activity of the hypothalamic-pituitary-adrenal (HPA) axis by the suppressed expression of corticotropin-releasing hormone receptor (CRF) 1. At the same time, intestinal function was improved by enhancing the proliferation of colonic epithelial cells by upregulating the expression of p-ERK/ERK and by repairing the colonic mucus barrier by upregulating occludin expression. All these results suggest that puerarin could exert excellent therapeutic effects on IBS-D.
Collapse
Affiliation(s)
- Qiang-Song Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yi-Lun Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Wen-Yan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Kuang-Dai Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Xiong-Fei Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| |
Collapse
|
39
|
Xu Z, Zhu Y, Shen J, Su L, Hou Y, Liu M, Jiao X, Chen X, Zhu S, Lu Y, Yao C, Wang L, Gong C, Ma Z, Zou C, Xu J. Pain Relief Dependent on IL-17-CD4 + T Cell-β-Endorphin Axis in Rat Model of Brachial Plexus Root Avulsion After Electroacupuncture Therapy. Front Neurosci 2021; 14:596780. [PMID: 33633527 PMCID: PMC7901907 DOI: 10.3389/fnins.2020.596780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/31/2020] [Indexed: 12/23/2022] Open
Abstract
Background and purpose Neuropathic pain is the typical symptom of brachial plexus root avulsion (BPRA), and no effective therapy is currently available. Electroacupuncture (EA), as a complementary and alternative therapy, plays a critical role in the management of pain-associated diseases. In the present study, we aimed to reveal the peripheral immunological mechanism of EA in relieving the pain of BPRA through the IL-17–CD4+ T lymphocyte–β-endorphin axis. Methods After receiving repeated EA treatment, the pain of BPRA in rats along with the expressions of a range of neurotransmitters, the contents of inflammatory cytokines, and the population of lymphocytes associated were investigated. CD4+ T lymphocytes were either isolated or depleted with anti-CD4 monoclonal antibody. The titers of IL-17A, interferon-γ (IFN-γ), and β-endorphin were examined. The markers of T lymphocytes, myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), macrophages, and natural killer (NK) cells were assessed. The activation of the nuclear transcription factor κB (NF-κB) signaling pathway was tested. Results The pain of BPRA was significantly relieved, and the amount of CD4+ T lymphocytes was increased after EA treatment. The release of β-endorphin was up-regulated with the up-regulation of IL-17A in CD4+ T lymphocytes. The titer of IL-17A was enhanced, leading to an activated NF-κB signaling pathway. The release of β-endorphin and the analgesic effect were almost completely abolished when CD4+ T lymphocytes were depleted. Conclusion We, for the first time, showed that the neuropathic pain caused by BPRA was effectively relieved by EA treatment via IL-17–CD4+ T lymphocyte–β-endorphin mediated peripheral analgesic effect, providing scientific support for EA clinical application.
Collapse
Affiliation(s)
- Zihang Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yangzhuangzhuang Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shen
- Department of Orthopedics, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Su
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Hou
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingxi Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoning Jiao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Chen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiguo Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yechen Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Yao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyuan Gong
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenzhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunpu Zou
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Lin Z, Wang Y, Lin S, Liu D, Mo G, Zhang H, Dou Y. Identification of potential biomarkers for abdominal pain in IBS patients by bioinformatics approach. BMC Gastroenterol 2021; 21:48. [PMID: 33530940 PMCID: PMC7852366 DOI: 10.1186/s12876-021-01626-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS. Methods Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus database. Fifty-three rectal mucosa samples from 27 irritable bowel syndrome with diarrhea (IBS-D) patients and 40 samples from 21 healthy volunteers as controls were included. Differentially expressed genes (DEGs) between two groups were identified using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein–protein interaction network was constructed and visualized using STRING database and Cytoscape. Results The microarray analysis demonstrated a subset of genes (CCKBR, CCL13, ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identified GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients. Conclusions Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modification and biological process of psychological distress may be risk factors of IBS.
Collapse
Affiliation(s)
- Zhongyuan Lin
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Yimin Wang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Shiqing Lin
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Decheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Guohui Mo
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China.
| | - Yunling Dou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
41
|
Uhlig F, Grundy L, Garcia-Caraballo S, Brierley SM, Foster SJ, Grundy D. Identification of a Quorum Sensing-Dependent Communication Pathway Mediating Bacteria-Gut-Brain Cross Talk. iScience 2020; 23:101695. [PMID: 33163947 PMCID: PMC7607502 DOI: 10.1016/j.isci.2020.101695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Despite recently established contributions of the intestinal microbiome to human health and disease, our understanding of bacteria-host communication pathways with regard to the gut-brain axis remains limited. Here we provide evidence that intestinal neurons are able to "sense" bacteria independently of the host immune system. Using supernatants from cultures of the opportunistic pathogen Staphylococcus aureus (S. aureus) we demonstrate the release of mediators with neuromodulatory properties at high population density. These mediators induced a biphasic response in extrinsic sensory afferent nerves, increased membrane permeability in cultured sensory neurons, and altered intestinal motility and secretion. Genetic manipulation of S. aureus revealed two key quorum sensing-regulated classes of pore forming toxins that mediate excitation and inhibition of extrinsic sensory nerves, respectively. As such, bacterial mediators have the potential to directly modulate gut-brain communication to influence intestinal symptoms and reflex function in vivo, contributing to homeostatic, behavioral, and sensory consequences of infection.
Collapse
Affiliation(s)
- Friederike Uhlig
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Florey Institute, University of Sheffield, Sheffield, UK
| | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
42
|
Maddern J, Grundy L, Castro J, Brierley SM. Pain in Endometriosis. Front Cell Neurosci 2020; 14:590823. [PMID: 33132854 PMCID: PMC7573391 DOI: 10.3389/fncel.2020.590823] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Endometriosis is a chronic and debilitating condition affecting ∼10% of women. Endometriosis is characterized by infertility and chronic pelvic pain, yet treatment options remain limited. In many respects this is related to an underlying lack of knowledge of the etiology and mechanisms contributing to endometriosis-induced pain. Whilst many studies focus on retrograde menstruation, and the formation and development of lesions in the pathogenesis of endometriosis, the mechanisms underlying the associated pain remain poorly described. Here we review the recent clinical and experimental evidence of the mechanisms contributing to chronic pain in endometriosis. This includes the roles of inflammation, neurogenic inflammation, neuroangiogenesis, peripheral sensitization and central sensitization. As endometriosis patients are also known to have co-morbidities such as irritable bowel syndrome and overactive bladder syndrome, we highlight how common nerve pathways innervating the colon, bladder and female reproductive tract can contribute to co-morbidity via cross-organ sensitization.
Collapse
Affiliation(s)
- Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Discipline of Medicine, University of Adelaide, North Terrace Campus, Adelaide, SA, Australia
| |
Collapse
|
43
|
Ji Y, Hu B, Klontz C, Li J, Dessem D, Dorsey SG, Traub RJ. Peripheral mechanisms contribute to comorbid visceral hypersensitivity induced by preexisting orofacial pain and stress in female rats. Neurogastroenterol Motil 2020; 32:e13833. [PMID: 32155308 PMCID: PMC7319894 DOI: 10.1111/nmo.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stress exacerbates many chronic pain syndromes including irritable bowel syndrome (IBS). Among these patient populations, many suffer from comorbid or chronic overlapping pain conditions and are predominantly female. Nevertheless, basic studies investigating chronic psychological stress-induced changes in pain sensitivity have been mostly carried out in male rodents. Our laboratory developed a model of comorbid pain hypersensitivity (CPH) (stress in the presence of preexisting orofacial pain inducing chronic visceral pain hypersensitivity that significantly outlasts transient stress-induced pain hypersensitivity (SIH)) facilitating the study of pain associated with IBS. Since CPH and SIH are phenotypically similar until SIH resolves and CPH persists, it is unclear if underlying mechanisms are similar. METHODS In the present study, the visceromotor response (VMR) to colorectal distention was recorded in the SIH and CPH models in intact females and ovariectomized rats plus estradiol replacement (OVx + E2). Over several months, rats were determined to be susceptible or resilient to stress and the role of peripheral corticotrophin-releasing factor (CRF) underlying in the pain hypersensitivity was examined. KEY RESULTS Stress alone induced transient (3-4 weeks) visceral hypersensitivity, though some rats were resilient. Comorbid conditions increased susceptibility to stress prolonging hypersensitivity beyond 13 weeks. Both models had robust peripheral components; hypersensitivity was attenuated by the CRF receptor antagonist astressin and the mast cell stabilizer disodium cromoglycate (DSCG). However, DSCG was less effective in the CPH model compared to the SIH model. CONCLUSIONS AND INFERENCES The data indicate many similarities but some differences in mechanisms contributing to comorbid pain conditions compared to transient stress-induced pain.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Bo Hu
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,Present address:
Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchXi’an Jiao Tong University College of StomatologyXi’anShaanxiChina
| | - Charles Klontz
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Jiyun Li
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Dean Dessem
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Susan G. Dorsey
- UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA,Department of Pain and Translational Symptom ScienceSchool of NursingUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Richard J. Traub
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| |
Collapse
|
44
|
Theofanous SA, Florens MV, Appeltans I, Denadai Souza A, Wood JN, Wouters MM, Boeckxstaens GE. Ephrin-B2 signaling in the spinal cord as a player in post-inflammatory and stress-induced visceral hypersensitivity. Neurogastroenterol Motil 2020; 32:e13782. [PMID: 32004400 DOI: 10.1111/nmo.13782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ephrin-B2/EphB receptor signaling contributes to persistent pain states such as postinflammatory and neuropathic pain. Visceral hypersensitivity (VHS) is a major mechanism underlying abdominal pain in patients with irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD) in remission, but the underlying pathophysiology remains unclear. Here, we evaluated the spinal ephrin-B2/EphB pathway in VHS in 2 murine models of VHS, that is, postinflammatory TNBS colitis and maternal separation (MS). METHODS Wild-type (WT) mice and mice lacking ephrin-B2 in Nav 1.8 nociceptive neurons (cKO) were studied. VHS was induced by: 1. intracolonic instillation of TNBS or 2. water avoidance stress (WAS) in mice that underwent maternal separation (MS). VHS was assessed by quantifying the visceromotor response (VMRs) during colorectal distention. Colonic tissue and spinal cord were collected for histology, gene, and protein expression evaluation. KEY RESULTS In WT mice, but not cKO mice, TNBS induced VHS at day 14 after instillation, which returned to baseline perception from day 28 onwards. In MS WT mice, WAS induced VHS for up to 4 weeks. In cKO however, visceral pain perception returned to basal level by week 4. The development of VHS in WT mice was associated with significant upregulation of spinal ephrin-B2 and EphB1 mRNA expression or protein levels in the TNBS model and upregulation of spinal ephrin-B2 protein in the MS model. No changes were observed in cKO mice. VHS was not associated with persistent intestinal inflammation. CONCLUSIONS AND INFERENCES Overall, our data indicate that the ephrin-B2/EphB1 spinal signaling pathway is involved in VHS and may represent a novel therapeutic target.
Collapse
Affiliation(s)
| | - Morgane V Florens
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Iris Appeltans
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | | | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London, UK
| | - Mira M Wouters
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Feng B, Guo T. Visceral pain from colon and rectum: the mechanotransduction and biomechanics. J Neural Transm (Vienna) 2020; 127:415-429. [PMID: 31598778 PMCID: PMC7141966 DOI: 10.1007/s00702-019-02088-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
Visceral pain is the cardinal symptom of functional gastrointestinal (GI) disorders such as the irritable bowel syndrome (IBS) and the leading cause of patients' visit to gastroenterologists. IBS-related visceral pain usually arises from the distal colon and rectum (colorectum), an intraluminal environment that differs greatly from environment outside the body in chemical, biological, thermal, and mechanical conditions. Accordingly, visceral pain is different from cutaneous pain in several key psychophysical characteristics, which likely underlies the unsatisfactory management of visceral pain by drugs developed for other types of pain. Colorectal visceral pain is usually elicited from mechanical distension/stretch, rather than from heating, cutting, pinching, or piercing that usually evoke pain from the skin. Thus, mechanotransduction, i.e., the encoding of colorectal mechanical stimuli by sensory afferents, is crucial to the underlying mechanisms of GI-related visceral pain. This review will focus on colorectal mechanotransduction, the process of converting colorectal mechanical stimuli into trains of action potentials by the sensory afferents to inform the central nervous system (CNS). We will summarize neurophysiological studies on afferent encoding of colorectal mechanical stimuli, highlight recent advances in our understanding of colorectal biomechanics that plays critical roles in mechanotransduction, and review studies on mechano-sensitive ion channels in colorectal afferents. This review calls for focused attention on targeting colorectal mechanotransduction as a new strategy for managing visceral pain, which can also have an added benefit of limited CNS side effects, because mechanotransduction arises from peripheral organs.
Collapse
Affiliation(s)
- Bin Feng
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269-3247, USA.
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269-3247, USA
| |
Collapse
|
46
|
Basso L, Benamar M, Mas-Orea X, Deraison C, Blanpied C, Cenac N, Saoudi A, Dietrich G. Endogenous control of inflammatory visceral pain by T cell-derived opioids in IL-10-deficient mice. Neurogastroenterol Motil 2020; 32:e13743. [PMID: 31588671 DOI: 10.1111/nmo.13743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The opioid-mediated analgesic activity of mucosal CD4+ T lymphocytes in colitis has been reported in immunocompetent mice so far. Here, we investigated whether CD4+ T lymphocytes alleviate from inflammation-induced abdominal pain in mice with defective immune regulation. METHODS Endogenous control of visceral pain by opioids locally produced in inflamed mucosa was assessed in IL-10-deficient mice. KEY RESULTS CD4+ T lymphocytes but not F4/80+ macrophages isolated from the lamina propria of IL-10-deficient mice with colitis express enkephalin-containing opioid peptides as assessed by cytofluorometry. Colitis in IL-10-/- mice was not associated with abdominal pain. Intraperitoneal injection of naloxone-methiodide, a peripheral opioid receptor antagonist, induced abdominal hypersensitivity in IL-10-/- mice with colitis. CONCLUSION AND INFERENCES Opioid-mediated analgesic activity of mucosal T lymphocytes remains operating in IL-10-/- mice with impaired immune regulation. The data suggest that endogenous T cell-derived opioids might reduce inflammation-induced abdominal pain in inflammatory bowel diseases associated with homozygous "loss of function mutations" in interleukin-10.
Collapse
Affiliation(s)
- Lilian Basso
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Mehdi Benamar
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UPS, INSERM, CNRS, Université de Toulouse, Toulouse, France
| | - Xavier Mas-Orea
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Céline Deraison
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | | | - Nicolas Cenac
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UPS, INSERM, CNRS, Université de Toulouse, Toulouse, France
| | - Gilles Dietrich
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
47
|
Shah ED, Almario CV, Spiegel BM, Chey WD. Presentation and Characteristics of Abdominal Pain Vary by Irritable Bowel Syndrome Subtype: Results of a Nationwide Population-Based Study. Am J Gastroenterol 2020; 115:294-301. [PMID: 31913193 PMCID: PMC7469977 DOI: 10.14309/ajg.0000000000000502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Abdominal pain is a cardinal feature of irritable bowel syndrome (IBS); however, differences in abdominal pain among IBS subtypes remain unknown. We aimed to characterize abdominal pain symptoms among established IBS subtypes using data from the National Gastrointestinal (GI) Survey. METHODS Individuals participating in the National GI Survey completed National Institutes of Health GI Patient-Reported Outcomes Measurement Information System (GI-PROMIS) questionnaires. Adults meeting modified Rome III IBS criteria and reporting abdominal pain in the previous 7 days were eligible. Outcomes included abdominal pain severity, bothersomeness, interference with daily activities, frequency, and location. Results were stratified by subtype (diarrhea [IBS-D], constipation [IBS-C], and mixed [IBS-M]). Regression models adjusted for demographics and comorbidities. RESULTS One thousand one hundred fifty-eight individuals (245 IBS-D, 232 IBS-C, and 681 IBS-M) with active IBS symptoms (defined as abdominal pain in the past 7 days) were included. Demographics were similar among the subtypes except for age, race/ethnicity, education, and marital status. The GI-PROMIS score was lower for IBS-D (percentile score of 68.6, SD = 25.1; P = 0.001) and IBS-M (69.1, SD = 25.1; P < 0.001) compared with IBS-C (75.5, SD = 20.7). Abdominal pain was more bothersome (P = 0.001), caused more interference with daily activities (P = 0.03), and was more frequent (P = 0.047) for individuals with IBS-C compared with individuals with IBS-D. No differences in these domains were seen between individuals with IBS-D and IBS-M. Individuals with IBS-C and IBS-M had more widespread pain compared with those with IBS-D. DISCUSSION In this population-based study, we found that abdominal pain characteristics differ between the IBS subtypes. Namely, individuals with IBS-C experience more bothersome, frequent, and diffuse abdominal pain compared with those with IBS-D.
Collapse
Affiliation(s)
- Eric D. Shah
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Christopher V. Almario
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brennan M. Spiegel
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California
| | - William D. Chey
- Division of Gastroenterology, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
48
|
Baram MA, Abbasnezhad A, Ghanadi K, Anbari K, Choghakhori R, Ahmadvand H. Serum Levels of Chemerin, Apelin, and Adiponectin in Relation to Clinical Symptoms, Quality of Life, and Psychological Factors in Irritable Bowel Syndrome. J Clin Gastroenterol 2020; 54:e40-e49. [PMID: 31306342 DOI: 10.1097/mcg.0000000000001227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Adipokines have endocrine roles in metabolism and immunity. Dysregulation of adipokine levels is associated with several diseases with chronic inflammation. We aimed to assess the serum concentrations of chemerin, apelin, and adiponectin in irritable bowel syndrome (IBS). Furthermore, we evaluated the possible association of these adipokines with clinical symptoms, quality of life (QoL), and psychological factors. MATERIALS AND METHODS In this case-control study, 114 male and female IBS patients were recruited from outpatient clinics. Along with the IBS patients, 114 sex and age-matched healthy volunteers were recruited. Patients filled in the questionnaires of the IBS severity scoring system (IBSSS), gastrointestinal (GI) and somatic symptoms, IBS specific QoL (IBS-QoL), and psychological disorders, and went to the lab for blood sampling. RESULTS Serum levels of both adiponectin and apelin were significantly (P=0.04, 0.03, respectively) lower, whereas chemerin was significantly (P=0.01) higher in IBS patients. Chemerin was higher in IBS-D compared with both IBS-C and IBS-A, while apelin and adiponectin were not different between subtypes. After adjustments for confounders only, chemerin had a positive association with IB severity scoring system and GI symptoms. Furthermore, chemerin had positive associations, whereas apelin and adiponectin had inverse associations with somatic symptoms and psychological factors. There were no significant associations between adipokines including chemerin, apelin, and adiponectin, and IBS-QoL. CONCLUSIONS Chemerin had significant associations with both the severity of clinical symptoms and psychological factors in IBS; thus, it could be considered as a potential therapeutic target in these patients; however, further studies are needed.
Collapse
Affiliation(s)
| | | | | | | | - Razieh Choghakhori
- Nutritional Health Research Center
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences
| | - Hassan Ahmadvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences
- Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
49
|
Roudsari NM, Lashgari NA, Momtaz S, Farzaei MH, Marques AM, Abdolghaffari AH. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review. Daru 2019; 27:755-780. [PMID: 31273572 PMCID: PMC6895345 DOI: 10.1007/s40199-019-00284-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a well diagnosed disease, thoroughly attributed to series of symptoms criteria that embrace a broad range of abdominal complainers. Such criteria help to diagnosis the disease and can guide controlled clinical trials to seek new therapeutic agents. Accordingly, a verity of mechanisms and pathophysiological conditions including inflammation, oxidative stress, lipid peroxidation and different life styles are involved in IBS. Predictably, diverse therapeutic approaches are available and prescribed by clinicians due to major manifestations (i.e., diarrhea-predominance, constipation-predominance, abdominal pain and visceral hypersensitivity), psychological disturbances, and patient preferences between herbal treatments versus pharmacological therapies, dietary or microbiological approaches. Herein, we gathered the latest scientific data between 1973 and 2019 from databases such as PubMed, Google Scholar, Scopus and Cochrane library on relevant studies concerning beneficial effects of herbal treatments for IBS, in particular polyphenols. This is concluded that polyphenols might be applicable for preventing IBS and improving the IBS symptoms, mainly through suppressing the inflammatory signaling pathways, which nowadays are known as novel platform for the IBS management. Graphical abstract.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - André M Marques
- Oswaldo Cruz Foundation (FIOCRUZ), Institute of Technology in Pharmaceuticals (Farmanguinhos), Rio de Janeiro, RJ, Brazil
| | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
50
|
Fukumoto M, Takeuchi T, Koubayashi E, Harada S, Ota K, Kojima Y, Higuchi K. Induction of brain-derived neurotrophic factor in enteric glial cells stimulated by interleukin-1β via a c-Jun N-terminal kinase pathway. J Clin Biochem Nutr 2019; 66:103-109. [PMID: 32231405 DOI: 10.3164/jcbn.19-55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Brain-derived neurotrophic factor exhibits neurotropic and neuroprotective functions and is increased in the colonic mucosa of patients with irritable bowel syndrome in correlation with the severity and frequency of abdominal pain. However, there are no reports of brain-derived neurotrophic factor expression in enteric glial cells. We evaluated the mRNA and protein expressions of brain-derived neurotrophic factor in enteric glial cells and culture medium and levels of mitogen-activated protein kinase after stimulation with interleukin-1β. Brain-derived neurotrophic factor mRNA expression was increased by interleukin-1β (3.125-75 ng/ml) and time-dependently increased 3-fold (24 h) and 4-fold (48 h) by interleukin-1β (50 ng/ml). Pro- and mature brain-derived neurotrophic factor proteins were both significantly increased at 48 h by interleukin-1β. However, the mature form was predominant in the cultured medium. Interleukin-1β increased phosphorylated-p38 mitogen-activated protein kinase expressions 2-fold higher at 5 and 15 min, and also phosphorylated-c-Jun N-terminal kinase expression 5-fold at 5 min and 10-fold at 15 min. Prior treatment with phosphorylated-c-Jun N-terminal kinase inhibitors decreased interleukin-1β-induced brain-derived neurotrophic factor by 50%. Thus, brain-derived neurotrophic factor expression was induced by interleukin-1β in enteric glial cells via a phosphorylated-c-Jun N-terminal kinase pathway, which might affect the enteric nervous system during stress.
Collapse
Affiliation(s)
- Masanobu Fukumoto
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Toshihisa Takeuchi
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Eiko Koubayashi
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Satoshi Harada
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhiro Ota
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Yuichi Kojima
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhide Higuchi
- Internal Medicine (II), Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|