1
|
Ozdemir O, Bychkovsky BL, Unal B, Onder G, Amanvermez U, Aydin E, Ergun B, Sahin I, Gokbayrak M, Ugurtas C, Koroglu MN, Cakir B, Kalay I, Cine N, Ozbek U, Rana HQ, Hatirnaz Ng O, Agaoglu NB. Molecular and In Silico Analysis of the CHEK2 Gene in Individuals with High Risk of Cancer Predisposition from Türkiye. Cancers (Basel) 2024; 16:3876. [PMID: 39594831 PMCID: PMC11592704 DOI: 10.3390/cancers16223876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background and Objectives:Checkpoint kinase 2 (CHEK2) is a tumor suppressor gene involved in DNA repair and cell cycle regulation. Pathogenic or likely pathogenic (P/LP) variants in CHEK2 are associated with increased cancer risk. Conversely, recent large cohort studies have identified certain variants that, despite being classified as P/LP by in silico analysis, are considered low risk. Thus, the genotype-phenotype correlations of CHEK2 require a better understanding. In this study, we aimed to characterize germline CHEK2 variants from a group of individuals who applied to cancer genetic clinics in the Marmara Region of Türkiye. We also aimed to assess the phenotypic impacts of these variants by using a new score of statistically significant in silico predictors (SSIPs). Methods: We analyzed 1707 individuals with high risk cancer predisposition, focusing on germline CHEK2 variants, using SSIP scores and population-specific data. Results:CHEK2 variants appeared in approximately 8% of cases. The SSIP scores indicated that the missense mutation, p.Arg117Gly, significantly impairs DNA repair. Almost half of the variants had higher allele frequencies than the variants listed in the Genome Aggregation Database (gnomAD), and three variants had significantly higher frequencies compared to the variants listed on the Turkish Variome database (p.Thr476Met, p.Arg137Gln, c.592+3A>T), emphasizing the importance of population-specific data. Conclusions: This comprehensive analysis of CHEK2 variants in the Turkish population provides crucial insights for cancer geneticists and oncologists. Our findings will help to enhance the evaluation and management of cancer predisposition associated with CHEK2 in Türkiye and other regions that have significant Turkish populations.
Collapse
Affiliation(s)
- Ozkan Ozdemir
- Department of Medical Biology, School of Medicine, Acibadem University, 34752 Istanbul, Türkiye;
- Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem University, 34752 Istanbul, Türkiye; (G.O.); (U.A.); (E.A.); (I.S.); (U.O.)
| | - Brittany L. Bychkovsky
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Busra Unal
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, 34764 Istanbul, Türkiye; (B.U.); (I.K.)
| | - Gizem Onder
- Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem University, 34752 Istanbul, Türkiye; (G.O.); (U.A.); (E.A.); (I.S.); (U.O.)
- Department of Molecular Biology and Biochemistry, Institute of Health Sciences, Acibadem University, 34752 Istanbul, Türkiye
| | - Ufuk Amanvermez
- Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem University, 34752 Istanbul, Türkiye; (G.O.); (U.A.); (E.A.); (I.S.); (U.O.)
- Department of Genome Studies, Institute of Health Sciences, Acibadem University, 34752 Istanbul, Türkiye
| | - Eylul Aydin
- Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem University, 34752 Istanbul, Türkiye; (G.O.); (U.A.); (E.A.); (I.S.); (U.O.)
- Department of Genome Studies, Institute of Health Sciences, Acibadem University, 34752 Istanbul, Türkiye
| | - Berk Ergun
- Geniva Informatics and Health Services Incorporated Company, 34752 Istanbul, Türkiye;
| | - Ilayda Sahin
- Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem University, 34752 Istanbul, Türkiye; (G.O.); (U.A.); (E.A.); (I.S.); (U.O.)
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem University, 34752 Istanbul, Türkiye
| | - Merve Gokbayrak
- Department of Medical Genetics, School of Medicine, Kocaeli University, 41001 Izmit, Türkiye; (M.G.); (C.U.); (N.C.)
| | - Cansu Ugurtas
- Department of Medical Genetics, School of Medicine, Kocaeli University, 41001 Izmit, Türkiye; (M.G.); (C.U.); (N.C.)
| | - Merve Nur Koroglu
- Department of Biostatistics and Bioinformatics, Health Sciences Institute, Acibadem University, 34752 Istanbul, Türkiye;
| | - Berfin Cakir
- Department of Genetics and Bioengineering, Istanbul Bilgi University, 34060 Istanbul, Türkiye;
| | - Irem Kalay
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, 34764 Istanbul, Türkiye; (B.U.); (I.K.)
| | - Naci Cine
- Department of Medical Genetics, School of Medicine, Kocaeli University, 41001 Izmit, Türkiye; (M.G.); (C.U.); (N.C.)
| | - Ugur Ozbek
- Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem University, 34752 Istanbul, Türkiye; (G.O.); (U.A.); (E.A.); (I.S.); (U.O.)
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Türkiye
| | - Huma Q. Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, School of Medicine, Acibadem University, 34752 Istanbul, Türkiye;
- Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem University, 34752 Istanbul, Türkiye; (G.O.); (U.A.); (E.A.); (I.S.); (U.O.)
| | - Nihat Bugra Agaoglu
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medical Genetics, Division of Cancer Genetics, Umraniye Training and Research Hospital, 34764 Istanbul, Türkiye; (B.U.); (I.K.)
- IKF—Institut für Klinische Krebsforschung GmbH, 60488 Frankfurt, Germany
| |
Collapse
|
2
|
Wang S, Zi H, Li M, Kong J, Fan C, Bai Y, Sun J, Wang T. Development and validation of a mitotic catastrophe-related genes prognostic model for breast cancer. PeerJ 2024; 12:e18075. [PMID: 39314848 PMCID: PMC11418815 DOI: 10.7717/peerj.18075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background Breast cancer has become the most common malignant tumor in women worldwide. Mitotic catastrophe (MC) is a way of cell death that plays an important role in the development of tumors. However, the exact relationship between MC-related genes (MCRGs) and the development of breast cancer is still unclear, and further research is needed to elucidate this complexity. Methods Transcriptome data and clinical data of breast cancer were downloaded from the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. We identified differential expression of MCRGs by comparing tumor tissue with normal tissue. Subsequently, we used COX regression analysis and LASSO regression analysis to construct the prognosis risk model of MCRGs. Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used to evaluate the predictive ability of prognostic model. Moreover, the clinical relevance, gene set enrichment analysis (GSEA), immune landscape, tumor mutation burden (TMB), and immunotherapy and drug sensitivity analysis between high-risk and low-risk groups were systematically investigated. Finally, we validated the expression levels of genes involved in constructing the prognostic model through real-time quantitative polymerase chain reaction (RT-qPCR) at the cellular and tissue levels. Results We identified 12 prognostic associated MCRGs, four of which were selected to construct prognostic model. The Kaplan-Meier analysis suggested that patients in the high-risk group had a shorter overall survival (OS). The Cox regression analysis and ROC analysis indicated that risk model had independent and excellent ability in predicting prognosis of breast cancer patients. Mechanistically, a remarkable difference was observed in clinical relevance, GSEA, immune landscape, TMB, immunotherapy response, and drug sensitivity analysis. RT-qPCR results showed that genes involved in constructing the prognostic model showed significant abnormal expressions and the expression change trends were consistent with the bioinformatics results. Conclusions We established a prognosis risk model based on four MCRGs that had the ability to predict clinical prognosis and immune landscape, proposing potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Shuai Wang
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Haoyi Zi
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Mengxuan Li
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Jing Kong
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Cong Fan
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Yujie Bai
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Jianing Sun
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| | - Ting Wang
- The First Affiliated Hospital of Air Force Medical University, Department of Thyroid, Breast and Vascular Surgery, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Ding W, Xi S, Gao K, Weng D, Xu S, Huang G, Yu M, Yue H, Wang J. Clinical significance of LINC02532 in hepatitis B virus-associated hepatocellular carcinoma and its regulatory effect on tumor progression. Clin Res Hepatol Gastroenterol 2024; 48:102403. [PMID: 38901567 DOI: 10.1016/j.clinre.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIM Long non-coding RNAs (lncRNAs) play an important role in tumor progression, including in hepatocellular carcinoma (HCC) induced by hepatitis B virus (HBV). Therefore, the aim of this study was to investigate the role of LINC02532 in HCC, mainly for diagnostic prognostic value and cellular function, as well as mechanistic aspects. METHODS Initially, GEO and VirBase databases were used to screen for aberrant lncRNAs in HBV-HCC.Then, HBV-HCC persons followed up in our center were retrospectively studied to investigate the diagnostic, prognostic value of LINC02532 in HBV-HCC. Subsequently, the role of LINC02532 in HBV-HCC was measured using cellular function assay methods and possible mechanisms were analyzed in conjunction with bioinformatic predictive science. RESULTS LINC02532 was a lncRNA abnormally expressed in HBV-HCC. LINC02532 was significantly up-regulated in the expression level in HBV-HCC tissues compared with normal tissues from patients. Moreover, LINC02532 could distinguish HBV-HCC and predict the prognosis of HBV-HCC. In vitro experiments showed that LINC02532 could regulate miR-455-3p and promote the malignant characterization of HBV-HCC cells. CHEK2 was a target gene of miR-455-3p. CONCLUSIONS The prognosis and diagnosis of HBV-HCC can rely on the expression of LINC02532. LINC02532 was important for further progression of HBV-HCC, by moderating miR-455-3p/CHEK2.
Collapse
Affiliation(s)
- Wei Ding
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Sujuan Xi
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Kewei Gao
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Danping Weng
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Sheng Xu
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Guoping Huang
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Min Yu
- Department of Radiotherapy, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China
| | - Haiyan Yue
- Department of Gastroenterology, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China.
| | - Jianguo Wang
- Department of Radiotherapy, PLA Naval Medical Center, No.338 Huaihai West Road, Changning District, Shanghai 200052, China.
| |
Collapse
|
4
|
Zhou X, Hang S, Wang Q, Xu L, Wang P. Decoding the Role of O-GlcNAcylation in Hepatocellular Carcinoma. Biomolecules 2024; 14:908. [PMID: 39199296 PMCID: PMC11353135 DOI: 10.3390/biom14080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Post-translational modifications (PTMs) influence protein functionality by modulating protein stability, localization, and interactions with other molecules, thereby controlling various cellular processes. Common PTMs include phosphorylation, acetylation, ubiquitination, glycosylation, SUMOylation, methylation, sulfation, and nitrosylation. Among these modifications, O-GlcNAcylation has been shown to play a critical role in cancer development and progression, especially in hepatocellular carcinoma (HCC). This review outlines the role of O-GlcNAcylation in the development and progression of HCC. Moreover, we delve into the underlying mechanisms of O-GlcNAcylation in HCC and highlight compounds that target O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) to improve treatment outcomes. Understanding the role of O-GlcNAcylation in HCC will offer insights into potential therapeutic strategies targeting OGT and OGA, which could improve treatment for patients with HCC.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Sirui Hang
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Qingqing Wang
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Liu Xu
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou 310000, China
| |
Collapse
|
5
|
Evariste Leonce AA, Devi P, Richard TS, Panda B, Devabattula G, Godugu C, Phelix Bruno T. Anti-melanoma and antioxidant properties of the methanol extract from the leaves of Phragmenthera capitata (Spreng.) Balle and Globimetula braunii (Engl.) Van Tiegh. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:88-100. [PMID: 37916849 DOI: 10.1515/jcim-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVES Phragmenthera capitata (Spreng.) Balle and Globimetula braunii (Engler.) Van Tiegh are African mistletoe traditionally used in cancers treatment. Thus, the aim of the study was to assess the anti-melanoma potential of the methanol extract of Phragmenthera capitata (Spreng.) Balle (PCMe-OH) and Globimetula braunii (Engler.) (GBMe-OH) Van Tiegh. METHODS Antioxidant potential was evaluated using DPPH, FRAP and hydroxyl assays. Total flavonoid and phenolic contents was also determined. MTT assay was used to estimate the effects on cell viability using SK-MLE28 and B16-F10 cell lines. Colony formation and wound healing were also assessed. Fluorometry methods were used for qualitative analysis of apoptosis and estimate ROS production. Western blot analysis was used for protein expression. RESULTS Phragmenthera capitata (PCMe-OH) showed the highest antioxidant activity and possess the highest phenolic contents (1,490.80 ± 55 mgGAE/g extract) in comparison with G. braunii (GBMe-OH) and (1,071.40 ± 45 mgGAE/g extract). Flavonoid content was similar in both extracts (11.63 ± 5.51 mg CATE/g of extract and 12.46 ± 2.58 mg CATE/g of extract respectively). PC-MeOH showed the highest cytotoxicity effect (IC50 of 55.35 ± 1.17 μg/mL) and exhibited anti-migrative potential on B16-F10 cells. Furthermore, PC-MeOH at 55.35 and 110.7 μg/mL; promoted apoptosis-induced cell death in B16-F10 cells by increasing intracellular ROS levels and reducing Bcl-2 expression level at 110.7 μg/mL. Significant upregulation of P-PTEN expression was recorded with PC-MeOH at 110.7 μg/mL; inhibiting therefore PI3K/AKT/m-Tor signaling pathway. Moreover, at 55.37 μg/mL significant reduction of c-myc and cyclin D1 was observed; dysregulating the MAPK kinase signaling pathway and cell cycle progression. CONCLUSIONS Phragmenthera capitata may be developed into selective chemotherapy to fight against melanoma.
Collapse
Affiliation(s)
- Azabadji Ashu Evariste Leonce
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
- Department of Biochemistry, Dschang University, Research Unit of Biochemistry of Medicinal Plants, Food Sciences and Nutrition, Dschang, Cameroon
| | - Priyanka Devi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Tagne Simo Richard
- Department of Biochemistry, Dschang University, Research Unit of Biochemistry of Medicinal Plants, Food Sciences and Nutrition, Dschang, Cameroon
- Department of Biomedical Sciences, University of Ngaoundere-Cameroon, Ngaoundere, Cameroon
| | - Biswajit Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Geetanjali Devabattula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Chandraiah Godugu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Telefo Phelix Bruno
- Department of Biochemistry, Dschang University, Research Unit of Biochemistry of Medicinal Plants, Food Sciences and Nutrition, Dschang, Cameroon
| |
Collapse
|
6
|
Zheng S, Guerrero-Haughton E, Foijer F. Chromosomal Instability-Driven Cancer Progression: Interplay with the Tumour Microenvironment and Therapeutic Strategies. Cells 2023; 12:2712. [PMID: 38067140 PMCID: PMC10706135 DOI: 10.3390/cells12232712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chromosomal instability (CIN) is a prevalent characteristic of solid tumours and haematological malignancies. CIN results in an increased frequency of chromosome mis-segregation events, thus yielding numerical and structural copy number alterations, a state also known as aneuploidy. CIN is associated with increased chances of tumour recurrence, metastasis, and acquisition of resistance to therapeutic interventions, and this is a dismal prognosis. In this review, we delve into the interplay between CIN and cancer, with a focus on its impact on the tumour microenvironment-a driving force behind metastasis. We discuss the potential therapeutic avenues that have resulted from these insights and underscore their crucial role in shaping innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Siqi Zheng
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erika Guerrero-Haughton
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
- Sistema Nacional de Investigación, SENACYT, Panama City 0816-02593, Panama
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Bin Y, Ding P, Liu L, Tong F, Dong X. Classification of the immune microenvironment associated with 12 cell death modes and construction of a prognostic model for squamous cell lung cancer. J Cancer Res Clin Oncol 2023; 149:9051-9070. [PMID: 37169931 DOI: 10.1007/s00432-023-04789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE An increasing number of patients with lung squamous cell carcinoma (LUSC) are benefiting from immunotherapy. However, the individual immune profile of patients who respond to treatment is unclear. Multiple programmed cell death (PCD) patterns play an important role in the proliferation and differentiation of tumor cells, predicting the efficacy of immunotherapy using a risk model for programmed cell death gene combinations LUSC risk model. METHODS Genes associated with 12 types of PCD were analyzed to establish a prognostic model. Risk scores were calculated using PCDG-based expression profiles, and LUSC patients were classified into two groups. Tumor immune microenvironment (TIME) characteristics and immunotherapy responses were compared between the two groups. Finally, staging was predicted using the extreme gradient boosting tree algorithm (eXtreme Gradient Boosting, XGBoost), and an algorithmic model was constructed to predict the prognosis of LUSC patients based on the PCDG risk score. RESULTS A stepwise downscaling of 1256 PCDGs was performed to screen out 16 genes associated with LUSC prognosis to construct a risk model. Immune cell infiltration levels, the immunotherapy response, and prognostic differences were different between these two groups of patients. The classification prediction model based on the XGBoost algorithm and the prognostic model based on the risk score were able to distinguish the risk subtypes and individual prognosis of LUSC patients, respectively. CONCLUSIONS PCD patterns exert a crucial effect on the development of LUSC. An evaluation of different PCD patterns in LUSC improves the understanding of the characteristics of infiltrating immune cells and mutational features of the TIME, distinguishes LUSC patients who might benefit from immunotherapy, and predicts their future survival.
Collapse
Affiliation(s)
- Yawen Bin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Ding
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lichao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Wang RH, Luo T, Guo YP, Yang ZX, Zhang HY, Hao HY, Du PF. dbMisLoc: A Manually Curated Database of Conditional Protein Mis-localization Events. Interdiscip Sci 2023:10.1007/s12539-023-00564-0. [PMID: 37000408 DOI: 10.1007/s12539-023-00564-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Over the last few years, an increasing number of protein mis-localization events have been reported under various conditions. It is important to understand these events and their relationship with complex disorders. Although many efforts had been made in establishing models with statistical or machine learning algorithms, a comprehensive database resource is still missing. Since the records of experimental-validated protein mis-localization events spread across many literatures, a collection of all these reports in a unique website is demanded. In this paper, we created the dbMisLoc database by manually curating conditional protein mis-localization events from various literatures. The dbMisLoc database records the protein localizations, mis-localizations, conditions for mis-localization, and the original reports. The dbMisLoc database allows the users to intuitively view, search, visualize and download protein mis-localization records. The dbMisLoc database integrates a BLAST search engine, which can search mis-localized proteins that are similar to user queries. The dbMisLoc database can be accessed directly through ( https://dbml.pufengdu.org ). The source code of dbMisLoc database is available from the GitHub repository ( https://github.com/quinlanW/dbMisLoc ) for free. Users can host their own mirrors of dbMisLoc database on their own servers. dbMisLoc is database for manually curated protein mis-localization events. It contains mis-localization events in 14 categories of conditions such as diseases, drug treatments and environmental stresses.
Collapse
Affiliation(s)
- Ren-Hua Wang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Tao Luo
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Yu-Peng Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Zi-Xin Yang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - He-Yi Zhang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Hong-Yu Hao
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
| | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
9
|
The Adaptability of Chromosomal Instability in Cancer Therapy and Resistance. Int J Mol Sci 2022; 24:ijms24010245. [PMID: 36613695 PMCID: PMC9820635 DOI: 10.3390/ijms24010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Variation in chromosome structure is a central source of DNA damage and DNA damage response, together representinga major hallmark of chromosomal instability. Cancer cells under selective pressure of therapy use DNA damage and DNA damage response to produce newfunctional assets as an evolutionary mechanism. Recent efforts to understand DNA damage/chromosomal instability and elucidate its role in initiation or progression of cancer have also disclosed its vulnerabilities represented by inappropriate DNA damage response, chromatin changes, andinflammation. Understanding these vulnerabilities can provide important clues for predicting treatment response and for the development of novel strategies that prevent the emergence of therapy resistant tumors.
Collapse
|
10
|
Zhang J, Xun M, Li C, Chen Y. The O-GlcNAcylation and its promotion to hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188806. [PMID: 36152903 DOI: 10.1016/j.bbcan.2022.188806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
O-GlcNAcylation is a posttranslational modification that attaches O-linked β-N-acetylglucosamine (O-GlcNAc) to the serine and threonine residues of proteins. Such a glycosylation would alter the activities, stabilities, and interactions of target proteins that are functional in a wide range of biological processes and diseases. Accumulating evidence indicates that O-GlcNAcylation is tightly associated with hepatocellular carcinoma (HCC) in its onset, growth, invasion and metastasis, drug resistance, and stemness. Here we summarize the discoveries of the role of O-GlcNAcylation in HCC and its function mechanism, aiming to deepen our understanding of HCC pathology, generate more biomarkers for its diagnosis and prognosis, and offer novel molecular targets for its treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Min Xun
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Chaojie Li
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 410001, China.
| |
Collapse
|
11
|
Hu Y, Tang C, Zhu W, Ye H, Lin Y, Wang R, Zhou T, Wen S, Yang J, Fang C. Identification of chromosomal instability-associated genes as hepatocellular carcinoma progression-related biomarkers to guide clinical diagnosis, prognosis and therapy. Comput Biol Med 2022; 148:105896. [PMID: 35868048 DOI: 10.1016/j.compbiomed.2022.105896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is a type of cancer characterized by high heterogeneity and a complex multistep progression process. Significantly-altered biomarkers for HCC need to be identified. Differentially expressed genes and weighted gene co-expression network analyses were used to identify progression-related biomarkers. LASSO-Cox regression and random forest algorithms were used to construct the progression-related prognosis (PRP) score. Three chromosomal instability-associated genes (KIF20A, TOP2A, and TTK) have been identified as progression-related biomarkers. The robustness of the PRP scores were validated using four independent cohorts. Immune status was observed using the single-sample gene set enrichment analysis (ssGSEA). Comprehensive analysis showed that the patients with high PRP score had wider genomic alterations, more malignant phenotypes, and were in a state of immunosuppression. The diagnostic models constructed via logistic regression based on the three genes showed satisfactory performances in distinguishing HCC from cirrhotic tissues or dysplastic nodules. The nomogram combining PRP scores with clinical factors had a better performance in predicting prognosis than the tumor node metastasis classification (TNM) system. We further confirmed that KIF20A, TOP2A, and TTK were highly expressed in HCC tissues than in cirrhotic tissues. Downregulation of all three genes aggravated chromosomal instabilities in HCC and suppressed HCC cells viability both in vitro and in vivo. Overall, our study highlights the important roles of chromosomal instability-associated genes during the progression of HCC and their potential clinical diagnosis and prognostic value and provides promising new ideas for developing therapeutic strategies to improve the outcomes of HCC patients.
Collapse
Affiliation(s)
- Yueyang Hu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Chuanyu Tang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Wen Zhu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Hanjie Ye
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Yuxing Lin
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Ruixuan Wang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Tianjun Zhou
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Sai Wen
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China.
| |
Collapse
|
12
|
Identification and Validation of Prognosis-Related Necroptosis Genes for Prognostic Prediction in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3172099. [PMID: 35813858 PMCID: PMC9259286 DOI: 10.1155/2022/3172099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
Background The prediction of hepatocellular carcinoma (HCC) survival is challenging because of its rapid progression. In recent years, necroptosis was found to be involved in the progression of multiple cancer types. However, the role of necroptosis in HCC remains unclear. Methods Clinicopathological parameters and transcriptomic data of 370 HCC patients were obtained from TCGA-LIHC dataset. Prognosis-related necroptosis genes (PRNGs) were identified and utilized to construct a LASSO risk model. The GEO cohorts (GSE54236 and GSE14520) were used for external validation. We evaluated the distribution of HCC patients, the difference in prognosis, and the accuracy of the prognostic prediction of the LASSO risk model. The immune microenvironment and functional enrichment of different risk groups were further clarified. Finally, we performed a drug sensitivity analysis on the PRNGs that constructed the LASSO model and verified their mRNA expression levels in vitro. Results: A total of 48 differentially expressed genes were identified, 23 of which were PRNGs. We constructed the LASSO risk model using nine genes: SQSTM1, FLT3, HAT1, PLK1, MYCN, KLF9, HSP90AA1, TARDBP, and TNFRSF21. The outcomes of low-risk patients were considerably better than those of high-risk patients in both the training and validation cohorts. In addition, stronger bile acid metabolism, xenobiotic metabolism, and more active immune cells and immune functions were observed in low-risk patients, and high expressions of TARDBP, PLK1, and FLT3 were associated with greater drug sensitivity. With the exception of FLT3, the mRNA expression of the other eight genes was verified in Huh7 and 97H cells. Conclusions. The PRNG signature provides a novel and effective method for predicting the outcome of HCC as well as potential targets for further research.
Collapse
|
13
|
Zhang Y, Chen Y, Zhang Z, Tao X, Xu S, Zhang X, Zurashvili T, Lu Z, Bayascas JR, Jin L, Zhao J, Zhou X. Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice. Cell Death Dis 2022; 13:279. [PMID: 35351852 PMCID: PMC8964741 DOI: 10.1038/s41419-022-04725-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022]
Abstract
Acyl-CoA oxidase 2 (Acox2) is an enzyme involved in peroxisomal bile acid synthesis and branched-chain fatty acid degradation. Acox2 knockout (−/−) mice spontaneously developed liver cancer with marked lymphocytic infiltrate. Tandem-affinity purification coupled with mass spectrometry analysis revealed that Acox2 interacted with methylcrotonoyl-CoA carboxylase followed by co-immunoprecipitation confirmation. Here we reported that non-histone lysine crotonylation (Kcr) levels were downregulated in Acox2−/− mice livers. Interestingly, Kcr signals were concentrated in the nucleus of tumor cells but mostly located in the cytoplasm of adjacent normal liver cells of Acox2−/− mice. Quantitative analysis of the global crotonylome further revealed that 54% (27/50) of downregulated non-histone Kcr sites were located in mitochondrial (11/50) and peroxisomal (17/50) enzymes including Ehhadh, Scp2, Hsd17b4, Crot, Etfa, Cpt1a, Eci1/2, Hadha, Etfdh, and Idh2. Subsequent site-directed mutagenesis and transcriptome analysis revealed that Ehhadh K572cr might have site-specific regulatory roles by downregulating TOP3B expression that lead to increased DNA damage in vitro. Our findings suggested Acox2 is a regulator of Kcr that might play critical role on hepatic metabolic homeostasis.
Collapse
|
14
|
Wang KX, Du GH, Qin XM, Gao L. 1H-NMR-based metabolomics reveals the biomarker panel and molecular mechanism of hepatocellular carcinoma progression. Anal Bioanal Chem 2022; 414:1525-1537. [PMID: 35024914 DOI: 10.1007/s00216-021-03768-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers in the world. Biomarkers for early diagnosis of HCC are still lacking, and noninvasive and effective biomarkers are urgently needed. Metabolomics is committed to studying the changes of metabolites under stimulation, and provides a new approach for discovery of potential biomarkers. In the current work, 1H nuclear magnetic resonance (NMR) metabolomics approach was utilized to explore the potential biomarkers in HCC progression, and the biomarker panel was evaluated by receiver operating characteristic (ROC) curve analyses. Our results revealed that a biomarker panel consisting of hippurate, creatinine, putrescine, choline, and taurine might be involved in HCC progression. Functional pathway analysis showed that taurine and hypotaurine metabolism is markedly involved in the occurrence and development of HCC. Furthermore, our results indicated that the TPA activity and the level and expression of PKM2 were gradually increased in HCC progression. This research provides a scientific basis for screening potential biomarkers of HCC.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
15
|
Wang KX, Du GH, Qin XM, Gao L. Compound Kushen Injection intervenes metabolic reprogramming and epithelial-mesenchymal transition of HCC via regulating β-catenin/c-Myc signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153781. [PMID: 34649212 DOI: 10.1016/j.phymed.2021.153781] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers worldwide. The invasion and metastasis characteristics of HCC dramatically affect the prognosis and survival of HCC patients. Compound Kushen Injection (CKI) is a GMP produced, proverbially applied traditional Chinese medicine formula in China to treat cancer-associated pains, and used as an adjunctive therapy for HCC. Until so far, whether CKI could suppress the metastasis of HCC through regulation of epithelial-mesenchymal transition or metabolic reprogramming is still ambiguous. PURPOSE In this study, the anti-metastasis effects of CKI were clarified and its pharmacological mechanisms were systematically explored. METHODS Cell invasion and cell adhesion assay were performed in SMMC-7721 cells to assess the anti-metastasis role of CKI, and the histopathological evaluation and biochemical detection were utilized in DEN-induced HCC rats to verify the anti-HCC effect of CKI. Serum and liver samples were analyzed with 1H NMR metabolomics approach to screen the differential metabolites and further target quantification the content of key metabolites. Finally, western blotting and immunofluorescence assay were applied to verify the crucial signaling pathway involved in metabolites. RESULTS CKI markedly repressed the invasion and adhesion in SMMC-7721 cells and significantly improved the liver function of DEN-induced HCC rats. CKI significantly regulated the expression of epithelial-mesenchymal transition (EMT) markers (Vimentin and E-cadherin). Metabolomics results showed that CKI regulated the metabolic reprogramming of HCC by inhibiting the key metabolites (citrate and lactate) and enzymes (HK and PK) in glycolysis process. Importantly, we found that c-Myc mediates the inhibitory effect of CKI on glycolysis. We further demonstrated that CKI inhibits c-Myc expression through modulating Wnt/β-catenin pathway in SMMC-7721 cells and DEN-induced HCC rats. Furthermore, through activating Wnt/β-catenin pathway with LiCl, the inhibitory effects of CKI on HCC were diminished. CONCLUSION Together, this study reveals that CKI intervenes metabolic reprogramming and epithelial-mesenchymal transition of HCC via regulating β-catenin/c-Myc signaling pathway. Our research provides a new understanding of the mechanism of CKI against invasion and metastasis of HCC from the perspective of metabolic reprogramming.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
16
|
Tsuge M. Are Humanized Mouse Models Useful for Basic Research of Hepatocarcinogenesis through Chronic Hepatitis B Virus Infection? Viruses 2021; 13:v13101920. [PMID: 34696350 PMCID: PMC8541657 DOI: 10.3390/v13101920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that can lead to liver dysfunction, including liver cirrhosis and hepatocellular carcinoma (HCC). Current antiviral therapies can control viral replication in patients with chronic HBV infection; however, there is a risk of HCC development. HBV-related proteins may be produced in hepatocytes regardless of antiviral therapies and influence intracellular metabolism and signaling pathways, resulting in liver carcinogenesis. To understand the mechanisms of liver carcinogenesis, the effect of HBV infection in human hepatocytes should be analyzed. HBV infects human hepatocytes through transfer to the sodium taurocholate co-transporting polypeptide (NTCP). Although the NTCP is expressed on the hepatocyte surface in several animals, including mice, HBV infection is limited to human primates. Due to this species-specific liver tropism, suitable animal models for analyzing HBV replication and developing antivirals have been lacking since the discovery of the virus. Recently, a humanized mouse model carrying human hepatocytes in the liver was developed based on several immunodeficient mice; this is useful for analyzing the HBV life cycle, antiviral effects of existing/novel antivirals, and intracellular signaling pathways under HBV infection. Herein, the usefulness of human hepatocyte chimeric mouse models in the analysis of HBV-associated hepatocarcinogenesis is discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Department of Biomedical Science, Research and Development Division, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-257-1510
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
17
|
Patil S, Jahagirdar S, Khot M, Sengupta K. Studying the Role of Chromosomal Instability (CIN) in GI Cancers Using Patient-derived Organoids. J Mol Biol 2021; 434:167256. [PMID: 34547328 DOI: 10.1016/j.jmb.2021.167256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023]
Abstract
Chromosomal instability (CIN) is associated with the initiation and progression of gastrointestinal (GI) tract cancers. Cancers of the GI tract are typically characterized by altered chromosome numbers. While the dynamics of CIN have been extensively characterized in 2D monolayer cell cultures derived from GI tumors, the tumor microenvironment and 3D tumor architecture also contribute to the progression of CIN, which is not captured in 2D cell culture systems. To overcome these limitations, self-organizing cellular structures that retain organ-specific 3D architecture, namely organoids, have been derived from various tissues of the GI tract. Organoids derived from normal tissue and patient tumors serve as a useful paradigm to study the crosstalk between tumor cells in the context of a tissue microenvironment and its impact on chromosomal stability. Such a paradigm, therefore, has a considerable advantage over 2D cell culture systems in drug screening and personalized medicine. Here, we review the importance of patient-derived tumor organoids (PDTOs) as a model to study CIN in cancers of the GI tract.
Collapse
Affiliation(s)
- Shalaka Patil
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India. https://twitter.com/@ShalakaPatil11
| | - Sanika Jahagirdar
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India. https://twitter.com/@SanikaJag
| | - Maithilee Khot
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India. https://twitter.com/@MaithileeKhot
| | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India.
| |
Collapse
|
18
|
Guo C, Zhou J, Ma B, Wang R, Ge Y, Wang Z, Ji B, Wang W, Zhang J, Wang Z. A Somatic Mutation-Derived LncRNA Signature of Genomic Instability Predicts Prognosis for Patients With Liver Cancer. Front Surg 2021; 8:724792. [PMID: 34504866 PMCID: PMC8421795 DOI: 10.3389/fsurg.2021.724792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Genomic instability is considered as one of the hallmarks of hepatocellular carcinoma (HCC) and poses a significant challenge to the clinical treatment. The emerging evidence has revealed the roles of long non-coding RNAs (lncRNAs) in the maintenance of genomic instability. This study is aimed to develop a genomic instability-related lncRNA signature for determining HCC prognosis and the suitability of patients for immunotherapy. Methods: In this study, data related to transcriptome profiling, clinical features, and the somatic mutations of patients with HCC were downloaded from The Cancer Genomic Atlas (TCGA). Bioinformatics analysis was performed to identify and construct a somatic mutation-derived genomic instability-associated lncRNA signature (GILncSig). Single-sample gene set enrichment analysis (ssGSEA) was applied to estimate the levels of immune cell infiltration. A nomogram was constructed, and calibration was performed to assess the effectiveness of the model. Results: In the study, seven genomic instability-related lncRNAs were identified and used to define a prognostic signature. Patients with HCC were stratified into high- and low-risk groups with significant differences in the survival (median survival time = 1.489, 1.748 year; p = 0.006) based on the optimal cutoff value (risk score = 1.010) of the risk score in the training group. In addition, GILncSig was demonstrated to be an independent risk factor for the patients with HCC when compared to the clinical parameters (p < 0.001). According to the receiver operating characteristic (ROC) curve, nomogram, and calibration plot, the signature could predict the survival rate for the patients with HCC in the 1st, 3rd, and 5th years. Furthermore, ssGSEA revealed the potential of the signature in guiding decisions for administering clinical treatment. Conclusions: In this study, we developed a novel prognostic model based on the somatic mutation-derived lncRNAs and validated it using an internal dataset. The independence of the GILncSig was estimated using univariate and follow-up multivariate analyses. Immunologic analysis was used to evaluate the complex factors involved in the HCC progression.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhou
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Boyu Ma
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Ji
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Wang KX, Chen YP, Lu AP, Du GH, Qin XM, Guan DG, Gao L. A metabolic data-driven systems pharmacology strategy for decoding and validating the mechanism of Compound Kushen Injection against HCC. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114043. [PMID: 33753143 DOI: 10.1016/j.jep.2021.114043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Kushen Injection (CKI) is a widely used TCM formula for treatment of carcinomatous pain and tumors of digestive system including hepatocellular carcinoma (HCC). However, the potential mechanisms of CKI for treatment of HCC have not been systematically and deeply studied. AIM OF STUDY A metabolic data-driven systems pharmacology approach was utilized to investigate the potential mechanisms of CKI for treatment of HCC. MATERIALS AND METHODS Based on phenotypic data generated by metabolomics and genotypic data of drug targets, a propagation model based on Dijkstra program was proposed to decode the effective network of key genotype-phenotype of CKI in treating HCC. The pivotal pathway was predicted by target propagation mode of our proposed model, and was validated in SMMC-7721 cells and diethylnitrosamine-induced rats. RESULTS Metabolomics results indicated that 12 differential metabolites, and 5 metabolic pathways might be involved in the anti-HCC effect of CKI. A total of 86 metabolic related genes that affected by CKI were obtained. The results calculated by propagation model showed that 6475 shortest distance chains might be involved in the anti-HCC effect of CKI. According to the results of propagation mode, EGFR was identified as the core target of CKI for the anti-HCC effect. Finally, EGFR and its related pathway EGFR-STAT3 signaling pathway were validated in vivo and in vitro. CONCLUSION The proposed method provides a methodological reference for explaining the underlying mechanism of TCM in treating HCC.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, China.
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
| |
Collapse
|
20
|
Lulli M, Del Coco L, Mello T, Sukowati C, Madiai S, Gragnani L, Forte P, Fanizzi FP, Mazzocca A, Rombouts K, Galli A, Carloni V. DNA Damage Response Protein CHK2 Regulates Metabolism in Liver Cancer. Cancer Res 2021; 81:2861-2873. [PMID: 33762357 DOI: 10.1158/0008-5472.can-20-3134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Defective mitosis with chromosome missegregation can have a dramatic effect on genome integrity by causing DNA damage, activation of the DNA damage response (DDR), and chromosomal instability. Although this is an energy-dependent process, mechanisms linking DDR to cellular metabolism are unknown. Here we show that checkpoint kinase 2 (CHK2), a central effector of DDR, regulates cellular energy production by affecting glycolysis and mitochondrial functions. Patients with hepatocellular carcinoma (HCC) had increased CHK2 mRNA in blood, which was associated with elevated tricarboxylic acid cycle (TCA) metabolites. CHK2 controlled expression of succinate dehydrogenase (SDH) and intervened with mitochondrial functions. DNA damage and CHK2 promoted SDH activity marked by increased succinate oxidation through the TCA cycle; this was confirmed in a transgenic model of HCC with elevated DNA damage. Mitochondrial analysis identified CHK2-controlled expression of SDH as key in sustaining reactive oxygen species production. Cells with DNA damage and elevated CHK2 relied significantly on glycolysis for ATP production due to dysfunctional mitochondria, which was abolished by CHK2 knockdown. This represents a vulnerability created by the DNA damage response that could be exploited for development of new therapies. SIGNIFICANCE: This study uncovers a link between a central effector of DNA damage response, CHK2, and cellular metabolism, revealing potential therapeutic strategies for targeting hepatocellular carcinoma.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", General Pathology Unit, University of Florence, Florence, Italy
| | - Laura Del Coco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Caecilia Sukowati
- Fondazione Italiana Fegato, AREA Science Park, Trieste, Italy, Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Stefania Madiai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Gragnani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Forte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari, School of Medicine, Bari, Italy
| | - Krista Rombouts
- University College London (UCL) Institute for Liver & Digestive Health, London, United Kingdom
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
21
|
Li TH, Qin C, Zhao BB, Cao HT, Yang XY, Wang YY, Li ZR, Zhou XT, Wang WB. Identification METTL18 as a Potential Prognosis Biomarker and Associated With Immune Infiltrates in Hepatocellular Carcinoma. Front Oncol 2021; 11:665192. [PMID: 34123827 PMCID: PMC8187872 DOI: 10.3389/fonc.2021.665192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Methyltransferase-like 18 (METTL18), a METTL family member, is abundant in hepatocellular carcinoma (HCC). Studies have indicated the METTL family could regulate the progress of diverse malignancies while the role of METTL18 in HCC remains unclear. Data of HCC patients were acquired from the cancer genome atlas (TCGA) and gene expression omnibus (GEO). The expression level of METTL18 in HCC patients was compared with normal liver tissues by Wilcoxon test. Then, the logistic analysis was used to estimate the correlation between METTL18 and clinicopathological factors. Besides, Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and single-sample Gene Set Enrichment Analysis (ssGSEA) were used to explore relevant functions and quantify the degree of immune infiltration for METTL18. Univariate and Multivariate Cox analyses and Kaplan-Meier analysis were used to estimate the association between METTL18 and prognosis. Besides, by cox multivariate analysis, a nomogram was conducted to forecast the influence of METTL18 on survival rates. METTL18-high was associated with Histologic grade, T stage, Pathologic stage, BMI, Adjacent hepatic tissue inflammation, AFP, Vascular invasion, and TP53 status (P < 0.05). HCC patients with METTL18-high had a poor Overall-Survival [OS; hazard ratio (HR): 1.87, P < 0.001), Disease-Specific Survival (DSS, HR: 1.76, P = 0.015), and Progression-Free Interval (PFI, HR: 1.51, P = 0.006). Multivariate analysis demonstrated that METTL18 was an independent factor for OS (HR: 2.093, P < 0.001), DSS (HR: 2.404, P = 0.015), and PFI (HR: 1.133, P = 0.006). Based on multivariate analysis, the calibration plots and C-indexes of nomograms showed an efficacious predictive effect for HCC patients. GSEA demonstrated that METTL18-high could activate G2M checkpoint, E2F targets, KRAS signaling pathway, and Mitotic Spindle. There was a positive association between the METTL18 and abundance of innate immunocytes (T helper 2 cells) and a negative relation to the abundance of adaptive immunocytes (Dendritic cells, Cytotoxic cells etc.). Finally, we uncovered knockdown of METTL18 significantly suppressed the proliferation, invasion, and migration of HCC cells in vitro. This research indicates that METTL18 could be a novel biomarker to evaluate HCC patients' prognosis and an important regulator of immune responses in HCC.
Collapse
Affiliation(s)
- Tian-Hao Li
- Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bang-Bo Zhao
- Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong-Tao Cao
- Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Ying Yang
- Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan-Yang Wang
- Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ze-Ru Li
- Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xing-Tong Zhou
- Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Bin Wang
- Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Xiang J, Chen C, Liu R, Gou D, Chang L, Deng H, Gao Q, Zhang W, Tuo L, Pan X, Liang L, Xia J, Huang L, Yao K, Wang B, Hu Z, Huang A, Wang K, Tang N. Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and hepatocellular carcinoma growth upon glucose deprivation. J Clin Invest 2021; 131:144703. [PMID: 33690219 DOI: 10.1172/jci144703] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Although cancer cells are frequently faced with a nutrient- and oxygen-poor microenvironment, elevated hexosamine-biosynthesis pathway (HBP) activity and protein O-GlcNAcylation (a nutrient sensor) contribute to rapid growth of tumor and are emerging hallmarks of cancer. Inhibiting O-GlcNAcylation could be a promising anticancer strategy. The gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) is downregulated in hepatocellular carcinoma (HCC). However, little is known about the potential role of PCK1 in enhanced HBP activity and HCC carcinogenesis under glucose-limited conditions. In this study, PCK1 knockout markedly enhanced the global O-GlcNAcylation levels under low-glucose conditions. Mechanistically, metabolic reprogramming in PCK1-loss hepatoma cells led to oxaloacetate accumulation and increased de novo uridine triphosphate synthesis contributing to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis. Meanwhile, deletion of PCK1 also resulted in AMPK-GFAT1 axis inactivation, promoting UDP-GlcNAc synthesis for elevated O-GlcNAcylation. Notably, lower expression of PCK1 promoted CHK2 threonine 378 O-GlcNAcylation, counteracting its stability and dimer formation, increasing CHK2-dependent Rb phosphorylation and HCC cell proliferation. Moreover, aminooxyacetic acid hemihydrochloride and 6-diazo-5-oxo-L-norleucine blocked HBP-mediated O-GlcNAcylation and suppressed tumor progression in liver-specific Pck1-knockout mice. We reveal a link between PCK1 depletion and hyper-O-GlcNAcylation that underlies HCC oncogenesis and suggest therapeutic targets for HCC that act by inhibiting O-GlcNAcylation.
Collapse
Affiliation(s)
- Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Dongmei Gou
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lin Tuo
- Sichuan Provincial People's Hospital, Sichuan, China
| | - Xuanming Pan
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Bohong Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, and
| |
Collapse
|
23
|
Su Y, Zeng Z, Rong D, Yang Y, Wu B, Cao Y. PSMC2, ORC5 and KRTDAP are specific biomarkers for HPV-negative head and neck squamous cell carcinoma. Oncol Lett 2021; 21:289. [PMID: 33732365 PMCID: PMC7905686 DOI: 10.3892/ol.2021.12550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis of patients with human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is poorer than those with HPV-positive HNSCC. The present study aimed to identify novel and specific biomarkers of HPV-negative HNSCC using bioinformatics analysis and associated experiments. The gene expression profiles of HPV-negative HNSCC tissues and corresponding clinical data were downloaded from The Cancer Genome Atlas database and used in a weighted gene co-expression network analysis. Genes in clinically significant co-expression modules were used to construct a protein-protein interaction (PPI) network. The genes demonstrating a high degree score in the PPI network and a high correlation with tumor grade were considered hub genes. The diagnostic value of the hub genes associated with HPV-negative and HPV-positive HNSCC was analyzed using differential expression gene (DEG) analysis, immunohistochemical (IHC) staining and a receiver operating characteristic (ROC) curve analysis. Seven genes [Serrate RNA effector molecule (SRRT), checkpoint kinase 2 (CHEK2), small nuclear ribonucleoprotein polypeptide E (SNRPE), proteasome 26S subunit ATPase 2 (PSMC2), origin recognition complex subunit 5 (ORC5), S100 calcium binding protein A7 and keratinocyte differentiation associated protein (KRTDAP)] were demonstrated to be hub genes in clinically significant co-expression modules. DEG, IHC and ROC curve analyses revealed that SRRT, CHEK2 and SNRPE were significantly upregulated in HPV-negative and HPV-positive HNSCC tissues compared with in adjacent tissues, and these genes demonstrated a high diagnostic value for distinguishing HNSCC tissues. However, PSMC2, ORC5 and KRTDAP were the only differentially expressed genes identified in HPV-negative HNSCC tissues, and these genes demonstrated a high diagnostic value for HPV-negative HNSCC. PSMC2, ORC5 and KRTDAP may therefore serve as novel and specific biomarkers for HPV-negative HNSCC, potentially improving the diagnosis and treatment of patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Yushen Su
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Dongyun Rong
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Public Health School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yushi Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Bei Wu
- Department of Obstetrics and Gynecology, 925 Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
24
|
Li M, Liu H, Zhao Q, Han S, Zhou L, Liu W, Li W, Gao F. Targeting Aurora B kinase with Tanshinone IIA suppresses tumor growth and overcomes radioresistance. Cell Death Dis 2021; 12:152. [PMID: 33542222 PMCID: PMC7862432 DOI: 10.1038/s41419-021-03434-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Aurora B kinase is aberrantly overexpressed in various tumors and shown to be a promising target for anti-cancer therapy. In human oral squamous cell carcinoma (OSCC), the high protein level of Aurora B is required for maintaining of malignant phenotypes, including in vitro cell growth, colony formation, and in vivo tumor development. By molecular modeling screening of 74 commercially available natural products, we identified that Tanshinone IIA (Tan IIA), as a potential Aurora B kinase inhibitor. The in silico docking study indicates that Tan IIA docks into the ATP-binding pocket of Aurora B, which is further confirmed by in vitro kinase assay, ex vivo pull-down, and ATP competitive binding assay. Tan IIA exhibited a significant anti-tumor effect on OSCC cells both in vitro and in vivo, including reduction of Aurora B and histone H3 phosphorylation, induction of G2/M cell cycle arrest, increase the population of polyploid cells, and promotion of apoptosis. The in vivo mouse model revealed that Tan IIA delayed tumor growth of OSCC cells. Tan IIA alone or in combination with radiation overcame radioresistance in OSCC xenograft tumors. Taken together, our data indicate that Tan IIA is an Aurora B kinase inhibitor with therapeutic potentials for cancer treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha, 410004, Hunan, People's Republic of China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
- Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, Hunan, People's Republic of China
| | - Haidan Liu
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qin Zhao
- Changsha Stomatological Hospital, Changsha, 410004, Hunan, People's Republic of China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Shuangze Han
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains and Post-Translational Modifications: Structural Features and Drug Discovery Applications. Curr Med Chem 2020; 27:6306-6355. [DOI: 10.2174/0929867326666190620101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Background:
Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs).
Objective:
This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field.
Method:
Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed.
Results and Conclusion:
PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
26
|
Younis MA, Khalil IA, Harashima H. Gene Therapy for Hepatocellular Carcinoma: Highlighting the Journey from Theory to Clinical Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahmoud A. Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12, Nishi‐6, Kita‐ku Sapporo 060‐0812 Japan
- Faculty of Pharmacy Assiut University Assiut 71526 Egypt
| | - Ikramy A. Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12, Nishi‐6, Kita‐ku Sapporo 060‐0812 Japan
- Faculty of Pharmacy Assiut University Assiut 71526 Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12, Nishi‐6, Kita‐ku Sapporo 060‐0812 Japan
| |
Collapse
|
27
|
Tian Y, Wang Y, Xu S, Guan C, Zhang Q, Li W. The Expression and Therapeutic Potential of Checkpoint Kinase 2 in Laryngeal Squamous Cell Carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2613-2622. [PMID: 32753843 PMCID: PMC7351626 DOI: 10.2147/dddt.s245267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/12/2020] [Indexed: 12/29/2022]
Abstract
Introduction Laryngeal squamous cell carcinoma (LSCC) is the most common histological subtype of laryngeal cancer. The involved molecular mechanisms and suitable therapeutic targets for LSCC still need to be further investigated. Checkpoint kinase 2 (CHK2) participates in several cellular physiology pathways and plays a role in tumor progression. However, the roles of CHK2 in LSCC remain unclear. Methods mRNA expression data were obtained from The Cancer Genome Atlas (TCGA) database, and bioinformatic analysis was performed. Western blot and immunohistochemical analyses were conducted to detect protein expression. MTS assays were performed to examine cell growth of LSCC-derived cell lines. Results In the present study, we found that both active form of CHK2 and total CHK2 protein expressions were up-regulated in LSCC tissues. Positive expression of CHK2 was closely associated with advanced clinical features and poor prognosis. Moreover, potential CHK2-involving bioprocesses and signaling pathways were analyzed. In addition, repressed proliferation of LSCC cells was induced by CHK2 inhibitor. Discussion Taken together, our findings elucidated that CHK2 may act as an oncogenic factor in LSCC, suggesting a potential target for clinical treatment.
Collapse
Affiliation(s)
- Ying Tian
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shan Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chao Guan
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qingfu Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, People's Republic of China
| | - Wei Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
28
|
Reddy D, Ghosh P, Kumavath R. Strophanthidin Attenuates MAPK, PI3K/AKT/mTOR, and Wnt/β-Catenin Signaling Pathways in Human Cancers. Front Oncol 2020; 9:1469. [PMID: 32010609 PMCID: PMC6978703 DOI: 10.3389/fonc.2019.01469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the most prevalent in cancer-related deaths, while breast carcinoma is the second most dominant cancer in women, accounting for the most number of deaths worldwide. Cancers are heterogeneous diseases that consist of several subtypes based on the presence or absence of hormone receptors and human epidermal growth factor receptor 2. Several drugs have been developed targeting cancer biomarkers; nonetheless, their efficiency are not adequate due to the high reemergence rate of cancers and fundamental or acquired resistance toward such drugs, which leads to partial therapeutic possibilities. Recent studies on cardiac glycosides (CGs) positioned them as potent cytotoxic agents that target multiple pathways to initiate apoptosis and autophagic cell death in many cancers. In the present study, our aim is to identify the anticancer activity of a naturally available CG (strophanthidin) in human breast (MCF-7), lung (A549), and liver cancer (HepG2) cells. Our results demonstrate a dose-dependent cytotoxic effect of strophanthidin in MCF-7, A549, and HepG2 cells, which was further supported by DNA damage on drug treatment. Strophanthidin arrested the cell cycle at the G2/M phase; this effect was further validated by checking the inhibited expressions of checkpoint and cyclin-dependent kinases in strophanthidin-induced cells. Moreover, strophanthidin inhibited the expression of several key proteins such as MEK1, PI3K, AKT, mTOR, Gsk3α, and β-catenin from MAPK, PI3K/AKT/mTOR, and Wnt/β-catenin signaling. The current study adequately exhibits the role of strophanthidin in modulating the expression of various key proteins involved in cell cycle arrest, apoptosis, and autophagic cell death. Our in silico studies revealed that strophanthidin can interact with several key proteins from various pathways. Taken together, this study demonstrates the viability of strophanthidin as a promising anticancer agent, which may serve as a new anticancer drug.
Collapse
Affiliation(s)
- Dhanasekhar Reddy
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| |
Collapse
|
29
|
Delogu W, Caligiuri A, Provenzano A, Rosso C, Bugianesi E, Coratti A, Macias-Barragan J, Galastri S, Di Maira G, Marra F. Myostatin regulates the fibrogenic phenotype of hepatic stellate cells via c-jun N-terminal kinase activation. Dig Liver Dis 2019; 51:1400-1408. [PMID: 31005555 DOI: 10.1016/j.dld.2019.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Myostatin is mainly expressed in skeletal muscle, where it negatively regulates trophism. This myokine is implicated in the pathophysiology of nonalcoholic steatohepatitis, an emerging cause of liver fibrosis. In this study we explored the effects of myostatin on the biology of hepatic stellate cells. METHODS The effects of myostatin were assessed both in LX-2 and in human primary stellate cells. Cell migration was determined in Boyden chambers. Activation of intracellular pathways was evaluated by Western blotting. Procollagen type 1 secretion was measured by enzyme immunoassay. The role of c-Jun N-terminal kinase was assessed by pharmacologic and genetic inhibition. RESULTS Activin receptor-2B was up-regulated in livers of mice with experimental fibrosis, and detectable in human stellate cells. Serum myostatin levels increased in a model of acute liver injury. Myostatin reduced HSC proliferation, induced cell migration, and increased expression of procollagen type1, tissue inhibitor of metalloproteinase-1, and transforming growth factor-β1. Myostatin activated different signaling pathways, including c-Jun N-terminal kinase and Smad3. Genetic and/or pharmacologic inhibition of c-Jun N-terminal kinase activity significantly reduced cell migration and procollagen secretion in response to myostatin. CONCLUSIONS Activation of activin receptor-2B by myostatin modulates the fibrogenic phenotype of human stellate cells, indicating that a myokine may be implicated in the pathogenesis of hepatic fibrosis.
Collapse
Affiliation(s)
- Wanda Delogu
- Dipartimento di Medicina Sperimentale Clinica, University of Florence, Florence, Italy
| | - Alessandra Caligiuri
- Dipartimento di Medicina Sperimentale Clinica, University of Florence, Florence, Italy
| | - Angela Provenzano
- Dipartimento di Medicina Sperimentale Clinica, University of Florence, Florence, Italy
| | - Chiara Rosso
- Dipartimento di Scienze Mediche, University of Turin, Turin, Italy
| | | | - Andrea Coratti
- SOD Chirurgia Oncologia a indirizzo robotico, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Jose Macias-Barragan
- Dipartimento di Medicina Sperimentale Clinica, University of Florence, Florence, Italy
| | - Sara Galastri
- Dipartimento di Medicina Sperimentale Clinica, University of Florence, Florence, Italy
| | - Giovanni Di Maira
- Dipartimento di Medicina Sperimentale Clinica, University of Florence, Florence, Italy
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale Clinica, University of Florence, Florence, Italy; Research Center Denothe, University of Florence, Florence, Italy.
| |
Collapse
|
30
|
Zhang W, Feng Y, Guo Q, Guo W, Xu H, Li X, Yi F, Guan Y, Geng N, Wang P, Cao L, O'Rourke BP, Jo J, Kwon J, Wang R, Song X, Lee IH, Cao L. SIRT1 modulates cell cycle progression by regulating CHK2 acetylation-phosphorylation. Cell Death Differ 2019; 27:482-496. [PMID: 31209362 PMCID: PMC7206007 DOI: 10.1038/s41418-019-0369-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/26/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
Both the stress-response protein, SIRT1, and the cell cycle checkpoint kinase, CHK2, play critical roles in aging and cancer via the modulation of cellular homeostasis and the maintenance of genomic integrity. However, the underlying mechanism linking the two pathways remains elusive. Here, we show that SIRT1 functions as a modifier of CHK2 in cell cycle control. Specifically, SIRT1 interacts with CHK2 and deacetylates it at lysine 520 residue, which suppresses CHK2 phosphorylation, dimerization, and thus activation. SIRT1 depletion induces CHK2 hyperactivation-mediated cell cycle arrest and subsequent cell death. In vivo, genetic deletion of Chk2 rescues the neonatal lethality of Sirt1−/− mice, consistent with the role of SIRT1 in preventing CHK2 hyperactivation. Together, these results suggest that CHK2 mediates the function of SIRT1 in cell cycle progression, and may provide new insights into modulating cellular homeostasis and maintaining genomic integrity in the prevention of aging and cancer.
Collapse
Affiliation(s)
- Wenyu Zhang
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yanling Feng
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Qiqiang Guo
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Wendong Guo
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Hongde Xu
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xiaoman Li
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Fei Yi
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yi Guan
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Nanxi Geng
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Pingyuan Wang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Longyue Cao
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Brian P O'Rourke
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Juhyeon Jo
- Department of Life Science, College of Natural Science Office #106, Science building C, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Jiyun Kwon
- Department of Life Science, College of Natural Science Office #106, Science building C, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Ruihong Wang
- Faculty of Health Science, University of Macau, Macau, China
| | - Xiaoyu Song
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| | - In Hye Lee
- Department of Life Science, College of Natural Science Office #106, Science building C, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Liu Cao
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
31
|
Tahmasebi-Birgani M, Ansari H, Carloni V. Defective mitosis-linked DNA damage response and chromosomal instability in liver cancer. Biochim Biophys Acta Rev Cancer 2019; 1872:60-65. [PMID: 31152819 DOI: 10.1016/j.bbcan.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, represents a health problem in hepatic viruses-eradicating era because obesity, type 2 diabetes, and nonalcoholic steatohepatitis (NASH) are considered emerging pathogenic factors. Metabolic disorders underpin mitotic errors that lead to numerical and structural chromosome aberrations in a significant proportion of cell divisions. Here, we review that genomically unstable HCCs show evidence for a paradoxically DNA damage response (DDR) which leads to ongoing chromosome segregation errors. The understanding of DDR induced by defective mitoses is crucial to our ability to develop or improve liver cancer therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ansari
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
32
|
Bianchini F, Portioli E, Ferlenghi F, Vacondio F, Andreucci E, Biagioni A, Ruzzolini J, Peppicelli S, Lulli M, Calorini L, Battistini L, Zanardi F, Sartori A. Cell-targeted c(AmpRGD)-sunitinib molecular conjugates impair tumor growth of melanoma. Cancer Lett 2019; 446:25-37. [PMID: 30639534 DOI: 10.1016/j.canlet.2018.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022]
Abstract
Drug resistance and off-organ toxicity remain unsolved issues in chemotherapy of advanced-stage melanoma patients. Thus, the creation of new molecular conjugates able to combine a selective accumulation, high ability of internalization and signaling pathway inhibition, are highly requested. Recently, we reported a new class of molecular conjugates, compounds 1-3, where the anti-αVβ3 integrin peptidomimetic c(AmpRGD), which is a selective ligand for αVβ3 integrin, was covalently bound to the tyrosine kinase inhibitor sunitinib. Here, we report that these c(AmpRGD)-sunitinib conjugates and, in particular, compound 3, are selectively internalized by human melanoma cells through αVβ3 receptor-mediated endocytosis. Compound 3 is more effective than sunitinib in reducing in vitro melanoma cells proliferation, cloning efficiency, migration, and invasion. More interestingly, compound 3 is able to significantly reduce the growth of xenografted melanoma tumor developed in immune-compromised mice, more efficiently than an equimolar dose of sunitinib. Indeed, its targeting ability was demonstrated by the selective localization at the tumor level with respect to healthy tissues. Thus, c(AmpRGD)-sunitinib conjugates such as compound 3 could serve as intriguing multiple-target agents to selectively reach melanoma cells and interfere with the progression of the disease.
Collapse
Affiliation(s)
- Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Elisabetta Portioli
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27A, 43124, Parma, Italy
| | - Francesca Ferlenghi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27A, 43124, Parma, Italy
| | - Federica Vacondio
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27A, 43124, Parma, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Lucia Battistini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27A, 43124, Parma, Italy
| | - Franca Zanardi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27A, 43124, Parma, Italy
| | - Andrea Sartori
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27A, 43124, Parma, Italy.
| |
Collapse
|
33
|
Sun C, Huang S, Ju W, Hou Y, Wang Z, Liu Y, Wu L, He X. Elevated DSN1 expression is associated with poor survival in patients with hepatocellular carcinoma. Hum Pathol 2018; 81:113-120. [PMID: 30136646 DOI: 10.1016/j.humpath.2018.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
Abstract
Dosage suppressor of Nnf1 (DSN1) is a component of the kinetochore protein complex that is required for proper chromosome segregation. Some studies have explored that DSN1 is related to colorectal cancer progression. However, the role of DSN1 in hepatocellular carcinoma (HCC) remains unknown. This study aimed to explore DSN1 expression in HCC tissues. We obtained data from The Cancer Genome Atlas and Gene Expression Omnibus to analyze DSN1 expression in HCC. DSN1 mRNA expression was assessed in 30 pairs of HCC samples via reverse-transcription quantitative polymerase chain reaction. Immunohistochemical analysis of 95 HCC tissue specimens was performed to assess DSN1 expression and examine the clinicopathological characteristics of DSN1 in HCC. Results showed that DSN1 was upregulated in HCC tissues and was strongly associated with sex (P = .031), α-fetoprotein (P < .001), tumor size (P = .032), tumor nodule number (P = .028), cancer embolus (P = .011), and differentiation grade (P = .001). Moreover, Kaplan-Meier and Cox proportional-hazards analyses indicated that high DSN1 expression was related to poor HCC patient survival and that DSN1 can serve as an independent prognostic factor for overall survival and disease-free survival. In conclusion, our findings indicate that DSN1 could serve as a novel prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziming Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Youjie Liu
- Basic Medical College, Jinan University, Guangzhou, 510632, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
34
|
Diaz G, Engle RE, Tice A, Melis M, Montenegro S, Rodriguez-Canales J, Hanson J, Emmert-Buck MR, Bock KW, Moore IN, Zamboni F, Govindarajan S, Kleiner DE, Farci P. Molecular Signature and Mechanisms of Hepatitis D Virus-Associated Hepatocellular Carcinoma. Mol Cancer Res 2018; 16:1406-1419. [PMID: 29858376 DOI: 10.1158/1541-7786.mcr-18-0012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/19/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
There is limited data on the molecular mechanisms whereby hepatitis D virus (HDV) promotes liver cancer. Therefore, serum and liver specimens obtained at the time of liver transplantation from well-characterized patients with HDV-HCC (n = 5) and with non-HCC HDV cirrhosis (n = 7) were studied using an integrated genomic approach. Transcriptomic profiling was performed using laser capture-microdissected (LCM) malignant and nonmalignant hepatocytes, tumorous and nontumorous liver tissue from patients with HDV-HCC, and liver tissue from patients with non-HCC HDV cirrhosis. HDV-HCC was also compared with hepatitis B virus (HBV) HBV-HCC alone, and hepatitis C virus (HCV) HCV-HCC. HDV malignant hepatocytes were characterized by an enrichment of upregulated transcripts associated with pathways involved in cell-cycle/DNA replication, damage, and repair (Sonic Hedgehog, GADD45, DNA-damage-induced 14-3-3σ, cyclins and cell-cycle regulation, cell cycle: G2-M DNA-damage checkpoint regulation, and hereditary breast cancer). Moreover, a large network of genes identified functionally relate to DNA repair, cell cycle, mitotic apparatus, and cell division, including 4 cancer testis antigen genes, attesting to the critical role of genetic instability in this tumor. Besides being overexpressed, these genes were also strongly coregulated. Gene coregulation was high not only when compared with nonmalignant hepatocytes, but also to malignant hepatocytes from HBV-HCC alone or HCV-HCC. Activation and coregulation of genes critically associated with DNA replication, damage, and repair point to genetic instability as an important mechanism of HDV hepatocarcinogenesis. This specific HDV-HCC trait emerged also from the comparison of the molecular pathways identified for each hepatitis virus-associated HCC. Despite the dependence of HDV on HBV, these findings suggest that HDV and HBV promote carcinogenesis by distinct molecular mechanisms.Implications: This study identifies a molecular signature of HDV-associated hepatocellular carcinoma and suggests the potential for new biomarkers for early diagnostics. Mol Cancer Res; 16(9); 1406-19. ©2018 AACR.
Collapse
Affiliation(s)
- Giacomo Diaz
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ronald E Engle
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Ashley Tice
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Marta Melis
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Stephanie Montenegro
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Jaime Rodriguez-Canales
- Laser Capture Microdissection Core Facility, Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jeffrey Hanson
- Laser Capture Microdissection Core Facility, Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Michael R Emmert-Buck
- Laser Capture Microdissection Core Facility, Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Fausto Zamboni
- Liver Transplantation Center, Brotzu Hospital, Cagliari, Italy
| | - Sugantha Govindarajan
- Department of Pathology, Rancho Los Amigos Hospital, University of Southern California, Downey, California
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland.
| |
Collapse
|
35
|
Eferl R, Trauner M. Chromosomal instability in HCC: a key function for checkpoint kinase 2. Gut 2018; 67:204-205. [PMID: 28476916 DOI: 10.1136/gutjnl-2017-314101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Robert Eferl
- Department for Internal Medicine I, Institute of Cancer Research, Medical University Vienna & Comprehensive Cancer Center (CCC), Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|