1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Song S, Fan Y, Zou G, Huo L, Kumar J, Li Y, Wang R, Dai E, Jin J, Scott AW, Shao S, Pizzi MP, Vykoukal JV, Katayama H, Hanash S, Calin GA, Zhang X, Lee MG, Wang Z, Lo YH, Gan Q, Waters RE, Yin F, Wang L, Cheng X, Ajani JA, Dhar SS. KAP1 promotes gastric adenocarcinoma progression by activating Hippo/YAP1 signaling via binding to HNRNPAB. Cancer Lett 2025; 621:217695. [PMID: 40189014 DOI: 10.1016/j.canlet.2025.217695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Gastric adenocarcinoma (GAC) remains a significant global health challenge, with over a million new cases annually. Peritoneal carcinomatosis (PC), detected in ∼20 % of cases at diagnosis and ∼45 % later, is uniformly fatal, with limited treatment options. This study investigated the role of KAP1 in GAC progression, focusing on its interaction with YAP1 and cancer stemness traits. Analysis of over 596 primary GACs and 72 PC samples revealed that high nuclear KAP1 expression correlates with poor prognosis. KAP1 knockdown reduced oncogenic activity and stemness traits in GAC cells. Mechanistically, KAP1 positively regulates YAP1 transcription by binding to its promoter and reducing H3K27ac levels. Mass spectrometry identified an interaction between KAP1 and HNRNPAB, further modulating YAP1 signaling. Expression of the KRAB domain of ZFP568 without its DNA-binding zinc fingers inhibited both KAP1 and YAP1 expression, significantly reducing colony formation and tumor growth in vivo. Additionally, emerging antisense oligonucleotides (ASOs) targeting KAP1 or YAP1 effectively suppressed mouse tumor progression. These findings establish KAP1 as a critical driver of tumor progression in GAC through YAP1 regulation and HNRNPAB interaction, highlighting its potential therapeutic target. This study advances our understanding and offers a preclinical framework to improve outcomes for GAC.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gengyi Zou
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Janani Kumar
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ruiping Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Shao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody V Vykoukal
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir Hanash
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xing Zhang
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Gyu Lee
- Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Yuan-Hung Lo
- Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qiong Gan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca E Waters
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Yin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Cheng
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Shilpa S Dhar
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Lee J, Kim IH, Seol D, Lee S, Yoo M, Lee TK, Yoon SH, Lee E, Hwang D, Kang SH, Park YS, Ku B, Jeon SY, Choi Y, Jung K, Kim JW, Kim JW, Ahn SH, Lee KW, Kim HH, Oh HJ, Lee DW, Suh YS. High-Throughput Chemotherapeutic Drug Screening System for Gastric Cancer (Cure-GA). Ann Surg Oncol 2025; 32:3781-3795. [PMID: 39847282 PMCID: PMC11976768 DOI: 10.1245/s10434-024-16850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses. METHODS Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment. Cell-Matrigel mixtures were automatically printed onto the micropillar surface then stabilized in an optimal culture medium for 3 days to form tumoroids. These tumoroids were exposed in the drug-containing media for 7 days. Cell viability was measured by fluorescence imaging and adenosine triphosphate assays. On average, 0.31 ± 0.23 g of fresh tumor tissue yielded 4.05×106 ± 4.38×106 viable cells per sample. RESULTS Drug response results were successfully acquired from 103 gastric cancer tissues (success rate = 72%) within 13 ± 2 days, averaging 6.4 ± 2.7 results per sample. Pearson correlation analysis showed viable cell numbers significantly impacted drug data acquisition (p < 0.00001). Tumoroids retained immunohistochemical characteristics, mutation signatures, and gene expression consistent with primary tumors. Drug reactivity data enabled prediction of synergistic drug correlations. Additionally, a multiparameter index-based prognosis model for patients undergoing gastrectomy followed by adjuvant XELOX was developed, showing significant differences in 1-year recurrence-free survival rates between drug responders and non-responders (p < 0.0001). CONCLUSIONS The Cure-GA platform enables rapid evaluation of chemotherapeutic responses using patient-derived tumoroids, providing clinicians with crucial insights for personalized treatment strategies and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Hee Kim
- Department of Precision Medicine, Medical and Bio Decision (MBD Co., Ltd), Suwon, Republic of Korea
| | - Donghyeok Seol
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sangjun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Surgery, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Mira Yoo
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - So Hee Yoon
- Department of Precision Medicine, Medical and Bio Decision (MBD Co., Ltd), Suwon, Republic of Korea
| | - Eunju Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Republic of Korea
| | - Duyeong Hwang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - So Hyun Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Bosung Ku
- Department of Precision Medicine, Medical and Bio Decision (MBD Co., Ltd), Suwon, Republic of Korea
| | - Sang Youl Jeon
- Department of Precision Medicine, Medical and Bio Decision (MBD Co., Ltd), Suwon, Republic of Korea
| | - Yongmun Choi
- Department of Precision Medicine, Medical and Bio Decision (MBD Co., Ltd), Suwon, Republic of Korea
| | - Keehoon Jung
- Department of Anatomy and Cell Biology / Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Republic of Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea.
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Kan L, Yu Y, Wang Y, Shi L, Fan T, Chen H, Ren C. The application of organoids in investigating immune evasion in the microenvironment of gastric cancer and screening novel drug candidates. Mol Cancer 2025; 24:125. [PMID: 40287758 PMCID: PMC12032790 DOI: 10.1186/s12943-025-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) is a prevalent digestive system tumor, the fifth most diagnosed cancer worldwide, and a leading cause of cancer deaths. GC is distinguished by its pronounced heterogeneity and a dynamically evolving tumor microenvironment (TME). The lack of accurate disease models complicates the understanding of its mechanisms and impedes the discovery of novel drugs. A growing body of evidence suggests that GC organoids, developed using organoid culture technology, preserve the genetic, phenotypic, and behavioral characteristics. GC organoids hold significant potential for predicting treatment responses in individual patients. This review provides a comprehensive overview of the current clinical treatment strategies for GC, as well as the history, construction and clinical applications of organoids. The focus is on the role of organoids in simulating the TME to explore mechanisms of immune evasion and intratumoral microbiota in GC, as well as their applications in guiding clinical drug therapy and facilitating novel drug screening. Furthermore, we summarize the limitations of GC organoid models and underscore the need for continued technological advancements to benefit both basic and translational oncological research.
Collapse
Affiliation(s)
- Liuyue Kan
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yaxue Wang
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Tingyuan Fan
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hui Chen
- Department of Geriatrics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Laboratory Medicine, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Soltani M, Ahmadzadeh N, Nasiraei Haghighi H, Khatamian N, Homayouni Tabrizi M. Targeted cancer therapy potential of quercetin-conjugated with folic acid-modified nanocrystalline cellulose nanoparticles: a study on AGS and A2780 cell lines. BMC Biotechnol 2025; 25:29. [PMID: 40241055 PMCID: PMC12001405 DOI: 10.1186/s12896-025-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigates the effects of quercetin-conjugated nanocrystalline cellulose/cetyltrimethylammonium bromide/folic acid nanoparticles (NCC/CTAB/FA NPs) on AGS and A2780 cancer cell lines, focusing on their cytotoxicity and antioxidant capacity. Dynamic light scattering (DLS) analysis revealed an average particle size of 388.70 nm, suitable for cellular uptake and release kinetics. The NCC/CTAB/FA NPs exhibited a rod and spherical morphology and uniform distribution, as confirmed by field emission scanning electron microscopy (FESEM). Fourier-transform infrared (FTIR) spectroscopy confirmed the successful synthesis and functional group integration, supporting the NPs' ability for drug delivery. The encapsulation efficiency value was 81.17%, demonstrating the effective incorporation of Quercetin. Cytotoxicity assays indicated significant reductions in cell viability for AGS and A2780 cells with IC50 values of 3.2 µg/mL and 16.04 µg/mL, respectively, while HDF cells exhibited higher viability. Flow cytometry analysis revealed a dose-dependent induction of apoptosis in AGS cells, supported by changes in gene expression related to apoptosis and inflammation. Furthermore, antioxidant capacity assays demonstrated practical free radical scavenging abilities, with IC50 values of 151.65 µg/mL for ABTS and 349.54 µg/mL for DPPH. NCC/CTAB/FA/Quercetin NPs exhibit promising characteristics for targeted cancer therapy and antioxidant applications.
Collapse
Affiliation(s)
- Mozhgan Soltani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Negar Ahmadzadeh
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Niloufar Khatamian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
6
|
Tan Y, Xing Y, Yuan S, Sun F, Lin X, Bao S, Jiang D, Zhang J, Sun SL. Potential Value of AURKA and CDK6 Amplification for the Response of Patients With Gastric Cancer to Neoadjuvant Chemotherapy. Mol Carcinog 2025. [PMID: 40222043 DOI: 10.1002/mc.23921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
Many patients respond poorly to neoadjuvant chemotherapy (NACT), negatively affecting the surgical success rate. Identifying effective biomarkers and understanding the potential resistance mechanisms are urgently needed. Data of 18 patients with advanced stomach cancer who were treated with NACT categorized according to tumor regression grade into major histological response (MJHR) and nonhistological response (NHR) groups were retrospectively analyzed. Genomic signatures associated with the response to NACT were identified using whole-exome and RNA sequencing. Extraction of molecular signatures revealed increased deficient mismatch repair signature and tumor mutation levels in the NHR group. Compared to the MJHR group, the NHR group was also characterized by a greater number of copy number alterations (p = 0.08), which was further confirmed by RNA sequencing, and upregulation of aurora kinase A (AURKA) (p = 0.05) and cyclin-dependent kinase 6 (CDK6) (p = 0.049). Western blot analysis and immunohistochemical analyses further confirmed high CDK6 (p < 0.01/p < 0.0001) and AURKA (p < 0.01/p < 0.001) expression levels in the NHR group. Finally, palbociclib, an inhibitor of CDK4/6, effectively inhibited the proliferation (p < 0.05) and induced apoptosis of oxaliplatin-resistant gastric cancer cells (p < 0.01) in vitro. These findings support the potential value of AURKA and CDK6 amplification, as well as their effects on the tumor microenvironment, in predicting poor outcomes of NACT in patients with locally advanced gastric cancer. Thus, CDK4/6 inhibitors could be used to treat NACT-resistant patients with gastric cancer.
Collapse
Affiliation(s)
- Yuen Tan
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, China
| | - Yao Xing
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, China
| | - Shuai Yuan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, China
| | - Xiaohui Lin
- School of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Simeng Bao
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, China
| | - Dongyue Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, China
| | - Jianjun Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, China
| | - Shu-Lan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, China
| |
Collapse
|
7
|
Nagashima Y, Yamamoto H, Elbadawy M, Ishihara Y, Tsurukami I, Abugomaa A, Kaneda M, Yamawaki H, Usui T, Sasaki K. Establishment of an experimental model of canine apocrine gland anal sac adenocarcinoma organoid culture using a three-dimensional culture method. Sci Rep 2025; 15:6108. [PMID: 39972078 PMCID: PMC11840023 DOI: 10.1038/s41598-025-90623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Canine apocrine gland anal sac adenocarcinoma (AGASACA) is a rare, malignant tumor in dogs. To date, few cell lines are available and used to establish the current treatment protocols. Organoids are three-dimensional cell cultures derived mainly from stem cells and can reproduce tissue's epithelial structure, function, and genetics, and thus, of great promise in precision medicine. In the current investigation, 10 AGASACA organoid lines were developed from surgically removed tissues of AGASACA-affected dogs and analyzed for comparison with the original tissues. AGASACA organoids were successfully generated from all cases and were positive for CK7, HER2, p53, p63, VEGF, and Ki67, and negative for CK20, consistent with previous reports in dogs and humans. Electron microscopic imaging of AGASACA organoids showed organelles, including numerous granules and fat droplets that characterize apocrine gland cells. AGASACA organoids were tumorigenic in vivo in immunodeficient mice. In addition, treatment of the AGASACA organoids with carboplatin, mitoxantrone, toceranib, and lapatinib revealed different sensitivity profiles among lineages, with carboplatin and lapatinib, in particular, being divided into sensitive and resistant ones. In contrast, mitoxantrone and toceranib showed generally high efficacy in all organoids. In conclusion, our established AGASACA organoids have the potential to be an experimental tool for the development of novel therapies for canine and human apocrine gland adenocarcinoma.
Collapse
Affiliation(s)
- Yuko Nagashima
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
- AIRDEC Mini CO., LTD, 1-2-36 Kajino-Cho, Koganei, Tokyo, 184-0002, Japan
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan.
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Elqaliobiya, Egypt.
- Department of Pathology, College of Veterinary Medicine, Precision One Health Initiative, University of Georgia, Athens, GA, 30602, USA.
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Issei Tsurukami
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 Ban-Cho, Towada, Aomori, 034-8628, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
8
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2025; 48:1-26. [PMID: 38806997 PMCID: PMC11850459 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Wang Z, Zhao F, Lang H, Ren H, Zhang Q, Huang X, He C, Xu C, Tan C, Ma J, Duan S, Wang Z. Organoids in skin wound healing. BURNS & TRAUMA 2025; 13:tkae077. [PMID: 39759541 PMCID: PMC11697111 DOI: 10.1093/burnst/tkae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Stem cells (SCs) can self-replicate and differentiate into multiple lineages. Organoids, 3D cultures derived from SCs, can replicate the spatial structure and physiological characteristics of organs in vitro. Skin organoids can effectively simulate the physiological structure and function of skin tissue, reliably restoring the natural skin ecology in various in vitro environments. Skin organoids have been employed extensively in skin development and pathology research, offering valuable insights for drug screening. Moreover, they play crucial roles in skin regeneration and tissue repair. This in-depth review explores the construction and applications of skin organoids in wound healing, with a focus on their construction process, including skin appendage integration, and significant advancements in wound-healing research.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning 110013, China
| | - Haiyue Ren
- Department of Pathology, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No. 1 Hospital), No. 215 Zhongshan Street, Wuhan, Hubei 430022, China
| | - Qiqi Zhang
- Department of Pathology, Chengdu Third People's Hospital, No. 82 Qinglong Street, Chengdu, Sichuan 610031, China
| | - Xing Huang
- Department of Anaesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yantaxi Road, Xi'an, Shanxi 710061, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Chiyu Tan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Shu Duan
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, China
| |
Collapse
|
10
|
Zhu Z, Cheng Y, Liu X, Ding W, Liu J, Ling Z, Wu L. Advances in the Development and Application of Human Organoids: Techniques, Applications, and Future Perspectives. Cell Transplant 2025; 34:9636897241303271. [PMID: 39874083 PMCID: PMC11775963 DOI: 10.1177/09636897241303271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing. Recent advancements have led to the successful development of a variety of organoid types, reflecting a broad range of human organs and tissues. This progress has expanded their application across several domains, including regenerative medicine, where organoids offer potential for tissue replacement and repair; disease modeling, which allows for the study of disease mechanisms and progression in a controlled environment; drug discovery and evaluation, where organoids provide a more accurate platform for testing drug efficacy and safety; and microecological research, where they contribute to understanding the interactions between microbes and host tissues. This review provides a comprehensive overview of the historical development of organoid technology, highlights the key achievements and ongoing challenges in the field, and discusses the current and emerging applications of organoids in both laboratory research and clinical practice.
Collapse
Affiliation(s)
- Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingbin Wu
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|
11
|
Tan R, Hong F, Wang T, Zhong N, Zhao H, Xu RH, Shen L, Liu Y, Yao X, Xiang D, Gao D, Xiong J, Hui L, Zhao B, Miao Z, Hao J, Li Y, Hu S, Fu B, Hua G, Wang L, Zeng ZL, Chen C, Wu J, Wang C, Wang C, Zhan X, Song C, Sun Z, Yu C, Yang Y, Niu G, Wang Y, Zhao T, Chen YG. Standard: Human gastric cancer organoids. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:33. [PMID: 39729207 DOI: 10.1186/s13619-024-00217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Gastric cancer is one of the most common malignancies with poor prognosis. The use of organoids to simulate gastric cancer has rapidly developed over the past several years. Patient-derived gastric cancer organoids serve as in vitro models that closely mimics donor characteristics, offering new opportunities for both basic and applied research. The "Human Gastric Cancer Organoid" is part of a series of guidelines for human gastric cancer organoids in China, jointly drafted by experts from the Chinese Society for Cell Biology and its branches, and initially released on October 29, 2024. This standard outlines terminology, technical requirements, assessment protocols, and applies to production, evaluation procedures, and quality control for human gastric cancer organoids. The publication of this guideline aims to assist institutions in endorsing, establishing, and applying best practices, advancing the international standardization of human gastric cancer organoids for clinical development and therapeutic application.
Collapse
Affiliation(s)
- Ronghui Tan
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Fan Hong
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Ting Wang
- The State Key Laboratory of Membrane Biology, Tsinghua‑Peking Center for Life Sciences,, School of Life Sciences , Tsinghua University, Beijing, 100084, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Nanshan Zhong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongling Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Gastrointestinal Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, 200232, China
- Department of Biliary-Pancreatic Surgery, Renji HospitalAffiliated to, Shanghai Jiaotong University School of Medicine , Shanghai, 200127, China
| | - Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, 230027, China
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, 200232, China
- Department of Biliary-Pancreatic Surgery, Renji HospitalAffiliated to, Shanghai Jiaotong University School of Medicine , Shanghai, 200127, China
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330031, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330031, China
| | - Lijian Hui
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai, 200031, China
| | - Bing Zhao
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, 110001, China
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, 110001, China
| | - Jie Hao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 510080, China
| | - Boqiang Fu
- National Institute of Metrology, Beijing, 100029, China
| | - Guoqiang Hua
- Department of Radiation Oncology and Cancer Institute, Fudan University Shanghai Cancer Center Fudan University, Shanghai, 200433, China
- D1Med Technology (Shanghai) Inc, Shanghai, 201802, China
| | - Lei Wang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chong Chen
- Gastric Cancer Centerand, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Peking University International Cancer Institute, Peking University, Beijing, 100191, China
| | - Changlin Wang
- China National Institute of Standardization, Beijing, 100191, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chunnian Wang
- Department of Gastrointestinal Pathology, Ningbo Diagnostic Pathology Center, Ningbo, 315021, China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Second Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Chen Song
- Huayi Regeneration Technology Co., Ltd, Chengdu, 611135, China
| | - Zhijian Sun
- K2 Oncology Co., Ltd, KeChuang Street, Beijing, 100176, China
| | - Chunping Yu
- Lilly (China) Research and Development Center, Shanghai, 201203, China
| | | | - Gengming Niu
- Shanghai OneTar Biomedicine Co., Ltd, Shanghai, 201203, China
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Tongbiao Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ye-Guang Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- The State Key Laboratory of Membrane Biology, Tsinghua‑Peking Center for Life Sciences,, School of Life Sciences , Tsinghua University, Beijing, 100084, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
12
|
Yang R, Qi Y, Zhang X, Gao H, Yu Y. Living biobank: Standardization of organoid construction and challenges. Chin Med J (Engl) 2024; 137:3050-3060. [PMID: 39663560 PMCID: PMC11706585 DOI: 10.1097/cm9.0000000000003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Indexed: 12/13/2024] Open
Abstract
ABSTRACT In multiple areas such as science, technology, and economic activities, it is necessary to unify the management of repetitive tasks or concepts by standardization to obtain the best order and high efficiency. Organoids, as living tissue models, have rapidly developed in the past decade. Organoids can be used repetitively for in vitro culture, cryopreservation, and recovery for further utilization. Because organoids can recapitulate the parental tissues' morphological phenotypes, cell functions, biological behaviors, and genomic profiles, they are known as renewable "living biobanks". Organoids cover two mainstream fields: Adult stem cell-derived organoids (also known as patient-derived organoids) and induced pluripotent stem cell-derived and/or embryonic stem cell-derived organoids. Given the increasing importance of organoids in the development of new drugs, standardized operation, and management in all steps of organoid construction is an important guarantee to ensure the high quality of products. In this review, we systematically introduce the standardization of organoid construction operation procedures, the standardization of laboratory construction, and available standardization documents related to organoid culture that have been published so far. We also proposed the challenges and prospects in this field.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao Qi
- National Engineering Center for Biochip at Shanghai, Shanghai 200120, China
| | - Xiaoyan Zhang
- National Engineering Center for Biochip at Shanghai, Shanghai 200120, China
| | - Hengjun Gao
- National Engineering Center for Biochip at Shanghai, Shanghai 200120, China
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
13
|
Zhou S, Lin N, Yu L, Su X, Liu Z, Yu X, Gao H, Lin S, Zeng Y. Single-cell multi-omics in the study of digestive system cancers. Comput Struct Biotechnol J 2024; 23:431-445. [PMID: 38223343 PMCID: PMC10787224 DOI: 10.1016/j.csbj.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
Digestive system cancers are prevalent diseases with a high mortality rate, posing a significant threat to public health and economic burden. The diagnosis and treatment of digestive system cancer confront conventional cancer problems, such as tumor heterogeneity and drug resistance. Single-cell sequencing (SCS) emerged at times required and has developed from single-cell RNA-seq (scRNA-seq) to the single-cell multi-omics era represented by single-cell spatial transcriptomics (ST). This article comprehensively reviews the advances of single-cell omics technology in the study of digestive system tumors. While analyzing and summarizing the research cases, vital details on the sequencing platform, sample information, sampling method, and key findings are provided. Meanwhile, we summarize the commonly used SCS platforms and their features, as well as the advantages of multi-omics technologies in combination. Finally, the development trends and prospects of the application of single-cell multi-omics technology in digestive system cancer research are prospected.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Nanfei Lin
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, & Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaowan Yu
- Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| |
Collapse
|
14
|
Lee S, Choi JH, Park SY, Kim J. Gastric Organoid, a Promising Modeling for Gastric Stem Cell Homeostasis and Therapeutic Application. Int J Stem Cells 2024; 17:337-346. [PMID: 38698632 PMCID: PMC11612215 DOI: 10.15283/ijsc23075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
The elucidation of the pathophysiology underlying various diseases necessitates the development of research platforms that faithfully mimic in vivo conditions. Traditional model systems such as two-dimensional cell cultures and animal models have proven inadequate in capturing the complexities of human disease modeling. However, recent strides in organoid culture systems have opened up new avenues for comprehending gastric stem cell homeostasis and associated diseases, notably gastric cancer. Given the significance of gastric cancer, a thorough understanding of its pathophysiology and molecular underpinnings is imperative. To this end, the utilization of patient-derived organoid libraries emerges as a remarkable platform, as it faithfully mirrors patient-specific characteristics, including mutation profiles and drug sensitivities. Furthermore, genetic manipulation of gastric organoids facilitates the exploration of molecular mechanisms underlying gastric cancer development. This review provides a comprehensive overview of recent advancements in various adult stem cell-derived gastric organoid models and their diverse applications.
Collapse
Affiliation(s)
- Subin Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
| | - Jang-Hyun Choi
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| | - So-Yeon Park
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jihoon Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| |
Collapse
|
15
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
16
|
Niazi V, Parseh B. Organoid models of breast cancer in precision medicine and translational research. Mol Biol Rep 2024; 52:2. [PMID: 39570495 DOI: 10.1007/s11033-024-10101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
One of the most famous and heterogeneous cancers worldwide is breast cancer (BC). Owing to differences in the gene expression profiles and clinical features of distinct BC subtypes, different treatments are prescribed for patients. However, even with more thorough pathological evaluations of tumors than in the past, available treatments do not perform equally well for all individuals. Precision medicine is a new approach that considers the effects of patients' genes, lifestyle, and environment to choose the right treatment for an individual patient. As a powerful tool, the organoid culture system can maintain the morphological and genetic characteristics of patients' tumors. Evidence also shows that organoids have high predictive value for patient treatment. In this review, a variety of BC studies performed on organoid culture systems are evaluated. Additionally, the potential of using organoid models in BC translational research, especially in immunotherapy, drug screening, and precision medicine, has been reported.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran.
| |
Collapse
|
17
|
Xin L, Zou YH, Liu CX, Lu H, Fan LJ, Xu HS, Zhou Q, Liu J, Yue ZQ, Gan JH. Methionine restriction promotes cisplatin sensitivity of gastric cancer resistant cells by down-regulating circ-CDK13 level. Exp Cell Res 2024; 443:114315. [PMID: 39488295 DOI: 10.1016/j.yexcr.2024.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Methionine restriction (MR) is a research direction in the treatment of gastric cancer (GC). The aim of this study was to investigate the molecular mechanism of MR on enhancing cisplatin (DDP) sensitivity of drug-resistant GC cells. METHODS Twenty pairs of GC tissues and adjacent normal gastric mucosa tissues were collected. DDP-resistant cell lines (KATO/DDP and MKN45/DDP), mouse model of GC and GC patient-derived organoid (PDO) models were established. Lentivirus-mediated METase overexpression was used for MR. Cell viability and apoptosis were detected by MTT assay and flow cytometry. Western blotting was used to detect multi-drug resistance-1 (MDR1), MDR-associated protein 1 (MRP1) eukaryotic initiation factor 4A-Ⅲ (EIF4A3), and METase protein expressions. The levels of circRNAs were detected by qRT-PCR. Tumor volume and weight were measured. The proliferation of tumor cells was detected by immunohistochemical staining. RESULTS The differentially expressed circRNAs of GC were screened in Gene Expression Omnibus database. MR in KATO/DDP and MKN45/DDP cells significantly down-regulated circ-CDK13 level. Overexpression of circ-CDK13 significantly inhibited apoptosis of sensitive cells (KATO III and MKN45). Interference with circ-CDK13 significantly promoted apoptosis of drug-resistant cells (KATO/DDP and MKN45/DDP). MR enhanced the DDP sensitivity of GC resistant cells, GC PDO and GC mice by down-regulating circ-CDK13. EIF4A3 binds to the downstream flanking sequence of circ-CDK13, and interference with EIF4A3 reduces circ-CDK13 levels, but does not affect CDK13. The expressions of circ-CDK13 and EIF4A3 in GC clinical samples were increased and positively correlated. Simultaneously overexpression of METase and EIF4A3 in resistant cells inhibited apoptosis, and further interference with circ-CDK13 reversed this effect. CONCLUSION MR inhibits circ-CDK13 level by down-regulating EIF4A3, thereby increasing the sensitivity of GC drug-resistant cells to DDP.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Yong-Hui Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Chen-Xi Liu
- Excellent Ophthalmology Class 221, School of Ophthalmology & Optometry, Nanchang University, China
| | - Hao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Luo-Jun Fan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - He-Song Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jiang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhen-Qi Yue
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jin-Heng Gan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| |
Collapse
|
18
|
Long B, Zhou H, Xiao L, Jiang X, Li J, Ma Z, He N, Xin W, Zhang B, Zhu X, Yu Z, Jiao Z. Targeting NUF2 suppresses gastric cancer progression through G2/M phase arrest and apoptosis induction. Chin Med J (Engl) 2024; 137:2437-2451. [PMID: 39193700 PMCID: PMC11479523 DOI: 10.1097/cm9.0000000000003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC), a malignant tumor with poor prognosis, is one of the leading causes of cancer-related deaths worldwide; consequently, identifying novel therapeutic targets is crucial for its corresponding treatment. NUF2 , a component of the NDC80 kinetochore complex, promotes cancer progression in multiple malignancies. Therefore, this study aimed to explore the potential of NUF2 as a therapeutic target to inhibit GC progression. METHODS Clinical samples were obtained from patients who underwent radical resection of GC at Lanzhou University Second Hospital from 2016 to 2021. Cell count assays, colony formation assays, and cell-derived xenotransplantation (CDX) models were used to determine the effects of NUF2 on GC progression. Flow cytometry was used to detect the effect of NUF2 or quercetin on cell cycle progression and apoptosis. A live-cell time-lapse imaging assay was performed to determine the effect of NUF2 on the regulation of mitotic progression. Transcriptomics was used to investigate the NUF2 -associated molecular mechanisms. Virtual docking and microscale thermophoresis were used to identify NUF2 inhibitors. Finally, CDX, organoid, and patient-derived xenograft (PDX) models were used to examine the efficacy of the NUF2 inhibitor in GC. RESULTS NUF2 expression was significantly increased in GC and was negatively correlated with prognosis. The deletion of NUF2 suppressed GC progression both in vivo and in vitro . NUF2 significantly regulated the mitogen-activated protein kinase (MAPK) pathway, promoted G2/M phase transition, and inhibited apoptosis in GC cells. Additionally, quercetin was identified as a selective NUF2 inhibitor with low toxicity that significantly suppressed tumor growth in GC cells, organoids, CDX, and PDX models. CONCLUSIONS Collectively, NUF2 -mediated G2/M phase transition and apoptosis inhibition promoted GC progression; additionally, NUF2 inhibitors exhibited potent anti-GC activity. This study provides a new strategy for targeting NUF2 to suppress GC progression in clinical settings.
Collapse
Affiliation(s)
- Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huinian Zhou
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lixia Xiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiangyan Jiang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jian Li
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhijian Ma
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Na He
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Xin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Boya Zhang
- The Second Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoqin Zhu
- The Second Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zeyuan Yu
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
19
|
Lu J, Zhu P, Zhang X, Zeng L, Xu B, Zhou P. tRNA-derived fragments: Unveiling new roles and molecular mechanisms in cancer progression. Int J Cancer 2024; 155:1347-1360. [PMID: 38867475 DOI: 10.1002/ijc.35041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
tRNA-derived fragments (tRFs) are novel small noncoding RNAs (sncRNAs) that range from approximately 14 to 50 nt. They are generated by the cleavage of mature tRNAs or precursor tRNAs (pre-tRNAs) at specific sites. Based on their origin and length, tRFs can be classified into three categories: (1) tRF-1 s; (2) tRF-3 s, tRF-5 s, and internal tRFs (i-tRFs); and (3) tRNA halves. They play important roles in stress response, signal transduction, and gene expression processes. Recent studies have identified differential expression of tRFs in various tumors. Aberrantly expressed tRFs have critical clinical value and show promise as new biomarkers for tumor diagnosis and prognosis and as therapeutic targets. tRFs regulate the malignant progression of tumors via various mechanisms, primarily including modulation of noncoding RNA biogenesis, global chromatin organization, gene expression regulation, modulation of protein translation, regulation of epigenetic modification, and alternative splicing regulation. In conclusion, tRF-mediated regulatory pathways could present new avenues for tumor treatment, and tRFs could serve as promising therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jingjing Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Ping Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiufen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Linzi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bujie Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Ma J, Zhao J, Wu Z, Tan J, Xu M, Ye W, Zhong M, Xiong Y, Pan G, Zhou H, Zhou S, Hong X. Dehydroabietylamine exerts antitumor effects by affecting nucleotide metabolism in gastric cancer. Carcinogenesis 2024; 45:759-772. [PMID: 38869064 PMCID: PMC11464700 DOI: 10.1093/carcin/bgae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
Nucleotide metabolism is the ultimate and most critical link in the self-replication process of tumors, including gastric cancer (GC). However, in clinical treatment, classic antitumor drugs such as 5-fluorouracil (5-FU) are mostly metabolic analogs of purines or pyrimidines, which lack specificity for tumor cells and therefore have significant side effects. It is unclear whether there are other drugs that can target nucleotide metabolism, except for nucleic acid analogs. Here, we found that a natural compound, dehydroabietylamine (DHAA), significantly reduced the viability and proliferation of GC cells and organoids. DHAA disrupts the purine and pyrimidine metabolism of GC cells, causing DNA damage and further inducing apoptosis. DHAA treatment decreased transcription and protein levels of key enzymes involved in the nucleotide metabolism pathway, with significant reductions in the expression of pyrimidine metabolism key enzymes CAD, DHODH, and purine metabolism key enzymes PAICS. We also found that DHAA directly binds to and reduces the expression of Forkhead box K2 (FOXK2), a common transcription factor for these metabolic enzymes. Ultimately, DHAA was shown to delay tumorigenesis in K19-Wnt1/C2mE transgenic mice model and reduce levels of CAD, DHODH, and PAICS in vivo. We demonstrate that DHAA exerts an anticancer effect on GC by targeting transcription factor FOXK2, reducing transcription of key genes for nucleotide metabolism and impairing nucleotide biosynthesis, thus DHAA is a promising candidate for GC therapy.
Collapse
Affiliation(s)
- Jingsong Ma
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Jiabao Zhao
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Zhengxin Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jinshui Tan
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Meijuan Xu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Wenjie Ye
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yubo Xiong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Guangchao Pan
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Huiwen Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Shengyi Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| |
Collapse
|
21
|
Ma SC, Xie YL, Wang Q, Fu SG, Wu HZ. Application of eye organoids in the study of eye diseases. Exp Eye Res 2024; 247:110068. [PMID: 39233304 DOI: 10.1016/j.exer.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The eyes are one of the most important sensory organs in the human body. Currently, diseases such as limbal stem cell deficiency, cataract, retinitis pigmentosa and dry eye seriously threaten the quality of people's lives, and the treatment of advanced blinding eye disease and dry eye is ineffective and costly. Thus, new treatment modalities are urgently needed to improve patients' symptoms and suffering. In recent years, stem cell-derived three-dimensional structural organoids have been shown to mimic specific structures and functions similar to those of organs in the human body. Currently, 3D culture systems are used to construct organoids for different ocular growth and development models and ocular disease models to explore their physiological and pathological mechanisms. Eye organoids can also be used as a platform for drug screening. This paper reviews the latest research progress in regard to eye organoids (the cornea, lens, retina, lacrimal gland, and conjunctiva).
Collapse
Affiliation(s)
- Shi-Chao Ma
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-Lin Xie
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qian Wang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shan-Gui Fu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Ze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332007, Jiangxi, China.
| |
Collapse
|
22
|
Wei X, Li S, Li Z, Wang L, Fan W, Ruan K, Gao J. Fragment-based discovery of small molecule inhibitors of the HDGFRP2 PWWP domain. FEBS Lett 2024; 598:2533-2543. [PMID: 39031937 DOI: 10.1002/1873-3468.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
The PWWP domain of hepatoma-derived growth factor-related protein 2 (HDGFRP2) recognizes methylated histones to initiate the recruitment of homologous recombination repair proteins to damaged silent genes. The combined depletion of HDGFRP2 and its paralog PSIP1 effectively impedes the onset and progression of diffuse intrinsic pontine glioma (DIPG). Here, we discovered varenicline and 4-(4-bromo-1H-pyrazol-3-yl) pyridine (BPP) as inhibitors of the HDGFRP2 PWWP domain through a fragment-based screening method. The complex crystal structures reveal that both Varenicline and BPP engage with the aromatic cage of the HDGFRP2 PWWP domain, albeit via unique binding mechanisms. Notably, BPP represents the first single-digit micromolar inhibitor of the HDGFRP2 PWWP domain with a high ligand efficiency. As a dual inhibitor targeting both HDGFRP2 and PSIP1 PWWP domains, BPP offers an exceptional foundation for further optimization into a chemical tool to dissect the synergetic function of HDGFRP2 and PSIP1 in DIPG pathogenesis.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuju Li
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zihuan Li
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Wang
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Fan
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ke Ruan
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia Gao
- Department of Medical Oncology, The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Xin M, Li Q, Wang D, Wang Z. Organoids for Cancer Research: Advances and Challenges. Adv Biol (Weinh) 2024; 8:e2400056. [PMID: 38977414 DOI: 10.1002/adbi.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 07/10/2024]
Abstract
As 3D culture technology advances, new avenues have opened for the development of physiological human cancer models. These preclinical models provide efficient ways to translate basic cancer research into clinical tumor therapies. Recently, cancer organoids have emerged as a model to dissect the more complex tumor microenvironment. Incorporating cancer organoids into preclinical programs have the potential to increase the success rate of oncology drug development and recapitulate the most efficacious treatment regimens for cancer patients. In this review, four main types of cancer organoids are introduced, their applications, advantages, limitations, and prospects are discussed, as well as the recent application of single-cell RNA-sequencing (scRNA-seq) in exploring cancer organoids to advance this field.
Collapse
Affiliation(s)
- Miaomaio Xin
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
- University of South Bohemia in Ceske Budejovice, Vodnany, 38925, Czech Republic
| | - Qian Li
- Changsha Medical University, Changsha, Hunan Province, 410000, China
| | - Dongyang Wang
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
| | - Zheng Wang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing, Sichuan Province, 404100, China
| |
Collapse
|
24
|
Chen C, Chen X, Hu Y, Pan B, Huang Q, Dong Q, Xue X, Shen X, Chen X. Utilizing machine learning to integrate single-cell and bulk RNA sequencing data for constructing and validating a novel cell adhesion molecules related prognostic model in gastric cancer. Comput Biol Med 2024; 180:108998. [PMID: 39137671 DOI: 10.1016/j.compbiomed.2024.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cell adhesion molecules (CAMs) play a vital role in cell-cell interactions, immune response modulation, and tumor cell migration. However, the unique role of CAMs in gastric cancer (GC) remains largely unexplored. METHODS This study characterized the genetic alterations and mRNA expression of CAMs. The role of CD34, a representative molecule, was validated in 375 GC tissues. The activity of the CAM pathway was further tested using single-cell and bulk characterization. Next, data from 839 patients with GC from three cohorts was analyzed using univariate Cox and random survival forest methods to develop and validate a CAM-related prognostic model. RESULTS Most CAM-related genes exhibited multi-omics alterations and were associated with clinical outcomes. There was a strong correlation between increased CD34 expression and advanced clinical staging (P = 0.026), extensive vascular infiltration (P = 0.003), and unfavorable prognosis (Log-rank P = 0.022). CD34 expression was also found to be associated with postoperative chemotherapy and tumor immunotherapy response. Furthermore, the CAM pathway was significantly activated and mediated poor prognosis. Additionally, eight prognostic signature genes (PSGs) were identified in the training cohort. There was a substantial upregulation of the expression of immune checkpoints and a pronounced infiltration of immune cells in GC tissues with high PSG score, which is consistent with the prediction of increased sensitivity to immunotherapy. Moreover, 9 compounds from the CTRPv2 database and 13 from the Profiling Relative Inhibition Simultaneously in Mixture (PRISM) database were identified as potential therapeutic drugs for patients with GC with high PSG score. CONCLUSION Thorough understanding of CAM pathways regulation and the innovative PSG score model hold significant implications for medical diagnosis, potentially enhancing personalized treatment strategies and improving patient outcomes in GC management.
Collapse
Affiliation(s)
- Chenbin Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xietao Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Hu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Bujian Pan
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qunjia Huang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Pathology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiantong Dong
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaodong Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
25
|
Chen G, Han R, Wang L, Ma W, Zhang W, Lu Z, Wang L. Establishment of patient-derived organoids and a characterization based drug discovery platform for treatment of gastric cancer. Cancer Cell Int 2024; 24:288. [PMID: 39143546 PMCID: PMC11323579 DOI: 10.1186/s12935-024-03460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) encompasses many different histological and molecular subtypes. It is a major driver of cancer mortality because of poor survival and limited treatment options. Personalised medicine in the form of patient-derived organoids (PDOs) represents a promising approach for improving therapeutic outcomes. The goal of this study was to overcome the limitations of current models by ameliorating organoid cultivation. METHODS Organoids derived from cancer tissue were evaluated by haematoxylin and eosin staining, immunohistochemistry, mRNA, and whole-exome sequencing. Three representative chemotherapy drugs, 5-fluorouracil, docetaxel, and oxaliplatin, were compared for their efficacy against different subtypes of gastric organoids by ATP assay and apoptosis staining. In addition, drug sensitivity screening results from two publicly available databases, the Genomics of Drug Sensitivity in Cancer and Cancer Cell Line Encyclopaedia, were pooled and applied to organoid lines. Once key targeting genes were confirmed, chemotherapy was used in combination with poly (ADP ribose) polymerase (PARP)-targeted therapy. RESULTS We successfully constructed GC PDOs surgically resected from GC patient tissue. PDOs closely reflected the histopathological and genomic features of the corresponding primary tumours. Whole-exosome sequencing and mRNA analysis revealed that changes to the original tumour genome were maintained during long-term culture. The drugs caused divergent responses in intestinal, poorly differentiated intestinal, and diffuse gastric cancer organoids, which were confirmed in organoid lines. Poorly differentiated intestinal GC patients benefited from a combination of 5-fluorouracil and veliparib. CONCLUSION The present study demonstrates that combining chemotherapy with PARP targeting may improve the treatment of chemotherapy-resistant tumours.
Collapse
Affiliation(s)
- Guo Chen
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Translational Medicine Center, Shaanxi Provincial People's Hospital, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an, China
| | - Ruidong Han
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an, China
| | - Wen Ma
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenli Zhang
- Translational Medicine Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zifan Lu
- Translational Medicine Center, Shaanxi Provincial People's Hospital, Xi'an, China.
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, The Fourth Military Medical University, Xi'an, China.
| | - Lei Wang
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
26
|
Yang R, Qi Y, Kwan W, Du Y, Yan R, Zang L, Yao X, Li C, Zhu Z, Zhang X, Gao H, Cheong IH, Kozlakidis Z, Yu Y. Paired organoids from primary gastric cancer and lymphatic metastasis are useful for personalized medicine. J Transl Med 2024; 22:754. [PMID: 39135062 PMCID: PMC11318189 DOI: 10.1186/s12967-024-05512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Organoids are approved by the US FDA as an alternative to animal experiments to guide drug development and for sensitivity screening. Stable organoids models of gastric cancer are desirable for personalized medicine and drug screening. METHODS Tumor tissues from a primary cancer of the stomach and metastatic cancer of the lymph node were collected for 3D culture. By long-term culture for over 50 generations in vitro, we obtained stably growing organoid lines. We analyzed short tandem repeats (STRs) and karyotypes of cancer cells, and tumorigenesis of the organoids in nude mice, as well as multi-omics profiles of the organoids. A CCK8 method was used to determine the drugs sensitivity to fluorouracil (5-Fu), platinum and paclitaxel. RESULTS Paired organoid lines from primary cancer (SPDO1P) and metastatic lymph node (SPDO1LM) were established with unique STRs and karyotypes. The organoid lines resulted in tumorigenesis in vivo and had clear genetic profiles. Compared to SPDO1P from primary cancer, upregulated genes of SPDO1LM from the metastatic lymph node were enriched in pathways of epithelial-mesenchymal transition and angiogenesis with stronger abilities of cell migration, invasion, and pro-angiogenesis. Based on drug sensitivity analysis, the SOX regimen (5-Fu plus oxaliplatin) was used for chemotherapy with an optimal clinical outcome. CONCLUSIONS The organoid lines recapitulate the drug sensitivity of the parental tissues. The paired organoid lines present a step-change toward living biobanks for further translational usage.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yao Qi
- Shanghai Engineering Center for Molecular Medicine, Zhangjiang, Shanghai, 200120, China
| | - Wingyan Kwan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yutong Du
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ranlin Yan
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Zang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuexin Yao
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chen Li
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyan Zhang
- Shanghai Engineering Center for Molecular Medicine, Zhangjiang, Shanghai, 200120, China
| | - Hengjun Gao
- Shanghai Engineering Center for Molecular Medicine, Zhangjiang, Shanghai, 200120, China
| | - Io Hong Cheong
- Healthy Macau New-Generation Association, Macau, 999078, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group of International Agency for Research on Cancer, World Health Organization, 25 avenue Tony Garnier, LYON CEDEX 07, CS 90627, 69366, France.
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
27
|
Yang Z, Yu J, Wong CC. Gastrointestinal Cancer Patient Derived Organoids at the Frontier of Personalized Medicine and Drug Screening. Cells 2024; 13:1312. [PMID: 39195202 PMCID: PMC11352269 DOI: 10.3390/cells13161312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Around one-third of the total global cancer incidence and mortality are related to gastrointestinal (GI) cancers. Over the past few years, rapid developments have been made in patient-derived organoid (PDO) models for gastrointestinal cancers. By closely mimicking the molecular properties of their parent tumors in vitro, PDOs have emerged as powerful tools in personalized medicine and drug discovery. Here, we review the current literature on the application of PDOs of common gastrointestinal cancers in the optimization of drug treatment strategies in the clinic and their rising importance in pre-clinical drug development. We discuss the advantages and limitations of gastrointestinal cancer PDOs and outline the microfluidics-based strategies that improve the throughput of PDO models in order to extract the maximal benefits in the personalized medicine and drug discovery process.
Collapse
Affiliation(s)
- Zhenjie Yang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
28
|
Hu C, Cao F, Jiang Y, Liu K, Li T, Gao Y, Li W, Han W. Molecular insights into chronic atrophic gastritis treatment: Coptis chinensis Franch studied via network pharmacology, molecular dynamics simulation and experimental analysis. Comput Biol Med 2024; 178:108804. [PMID: 38941899 DOI: 10.1016/j.compbiomed.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Chronic atrophic gastritis (CAG), characterized by inflammation and erosion of the gastric lining, is a prevalent digestive disorder and considered a precursor to gastric cancer (GC). Coptis chinensis France (CCF) is renowned for its potent heat-clearing, detoxification, and anti-inflammatory properties. Zuojin Pill (ZJP), a classic Chinese medicine primarily composed of CCF, has demonstrated effectiveness in CAG treatment. This study aims to elucidate the potential mechanism of CCF treatment for CAG through a multifaceted approach encompassing network pharmacology, molecular docking, molecular dynamics simulation and experimental verification. The study identified three major active compounds of CCF and elucidated key pathways, such as TNF signaling, PI3K-Akt signaling and p53 signaling. Molecular docking revealed interactions between these active compounds and pivotal targets like PTGS2, TNF, MTOR, and TP53. Additionally, molecular dynamics simulation validated berberine as the primary active compound of CCF, which was further confirmed through experimental verification. This study not only identified berberine as the primary active compound of CCF but also provided valuable insights into the molecular mechanisms underlying CCF's efficacy in treating CAG. Furthermore, it offers a reference for refining therapeutic strategies for CAG management.
Collapse
Affiliation(s)
- Chengxiang Hu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Fuyan Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yongxin Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Wannan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
29
|
Vistoso Monreal A, Zhao H, Sedghizadeh PP, Lin DC. Patient-derived tumor organoids to model drug response in gastric cancer. Cell Rep Med 2024; 5:101650. [PMID: 39019014 PMCID: PMC11293348 DOI: 10.1016/j.xcrm.2024.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
Gastric cancer poses diverse treatment challenges due to its high tumor heterogeneity. Through the use of patient-derived tumor organoid (PDO) models, new research1 has identified genes and molecular signatures that are predictive of chemotherapeutic response, providing valuable insights for clinical management and translational advancements.
Collapse
Affiliation(s)
- Anette Vistoso Monreal
- Department of Diagnostic Sciences, Anesthesia & Emergency Medicine, Infection and Immunity Laboratory, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Parish P Sedghizadeh
- Department of Diagnostic Sciences, Anesthesia & Emergency Medicine, Infection and Immunity Laboratory, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Zhao Y, Li S, Zhu L, Huang M, Xie Y, Song X, Chen Z, Lau HCH, Sung JJY, Xu L, Yu J, Li X. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Rep Med 2024; 5:101627. [PMID: 38964315 PMCID: PMC11293329 DOI: 10.1016/j.xcrm.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The efficacy of chemotherapy varies significantly among patients with gastric cancer (GC), and there is currently no effective strategy to predict chemotherapeutic outcomes. In this study, we successfully establish 57 GC patient-derived organoids (PDOs) from 73 patients with GC (78%). These organoids retain histological characteristics of their corresponding primary GC tissues. GC PDOs show varied responses to different chemotherapeutics. Through RNA sequencing, the upregulation of tumor suppression genes/pathways is identified in 5-fluorouracil (FU)- or oxaliplatin-sensitive organoids, whereas genes/pathways associated with proliferation and invasion are enriched in chemotherapy-resistant organoids. Gene expression biomarker panels, which could distinguish sensitive and resistant patients to 5-FU and oxaliplatin (area under the dose-response curve [AUC] >0.8), are identified. Moreover, the drug-response results in PDOs are validated in patient-derived organoids-based xenograft (PDOX) mice and are consistent with the actual clinical response in 91.7% (11/12) of patients with GC. Assessing chemosensitivity in PDOs can be utilized as a valuable tool for screening chemotherapeutic drugs in patients with GC.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangru Li
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingle Huang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinming Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Harry Cheuk-Hay Lau
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao-Yiu Sung
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Liu J, Zhang B, Cui Y, Song H, Shang D. In vitro co-culture models for studying organoids-macrophages interaction: the golden technology of cancer immunotherapy. Am J Cancer Res 2024; 14:3222-3240. [PMID: 39113861 PMCID: PMC11301299 DOI: 10.62347/bqfh7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Macrophages, as the largest immune cell group in tumour tissues, play a crucial role in influencing various malignant behaviours of tumour cells and tumour immune evasion. As the research on macrophages and cancer immunotherapy develops, the importance of appropriate research models becomes increasingly evident. The development of organoids has bridged the gap between traditional two-dimensional (2D) cultures and animal experiments. Recent studies have demonstrated that organoids exhibit similar physiological characteristics to the source tissue and closely resemble the in vivo genome and molecular markers of the source tissue or organ. However, organoids still lack an immune component. Developing a co-culture model of organoids and macrophages is crucial for studying the interaction and mechanisms between tumour cells and macrophages. This paper presents an overview of the establishment of co-culture models, the current research status of organoid macrophage interactions, and the current status of immunotherapy. In addition, the application prospects and shortcomings of the model are explained. Ultimately, it is hoped that the co-culture model will offer a preclinical testing platform for maximising a precise cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Yuying Cui
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Huiyi Song
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian, Liaoning, PR China
| |
Collapse
|
32
|
Hompe ED, Sachdeva UM. Updates in Translational Science for Esophageal and Gastric Cancers. Surg Oncol Clin N Am 2024; 33:571-581. [PMID: 38789199 DOI: 10.1016/j.soc.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In this article, the authors summarize the current state of translational science for esophageal and gastric cancers. The available targeted therapies, immunotherapies, and recently discovered molecular targets are reviewed. The authors introduce circulating tumor deoxyribonucleic acid and its promise as a biomarker to detect disease recurrence. The authors present patient-derived organoids as a new model for studying carcinogenesis and treatment responses. Finally, we discuss the implications of organoid models for precision oncology and describe exciting new work applying gene editing technology to organoids and studying tumor-microenvironment interactions using 3-dimensional co-culture systems.
Collapse
Affiliation(s)
- Eliza D Hompe
- Division of Thoracic Surgery, Massachusetts General Hospital, 55 Fruit Street, Austen 7, Boston, MA 02114, ISA
| | - Uma M Sachdeva
- Division of Thoracic Surgery, Massachusetts General Hospital, 55 Fruit Street, Austen 7, Boston, MA 02114, ISA; Department of Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Chen H, Li Y, Li H, Chen X, Fu H, Mao D, Chen W, Lan L, Wang C, Hu K, Li J, Zhu C, Evans I, Cheung E, Lu D, He Y, Behrens A, Yin D, Zhang C. NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature 2024; 631:663-669. [PMID: 38961290 PMCID: PMC11254748 DOI: 10.1038/s41586-024-07620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically1,2. This results in substantial accumulation of lacate, the end product of anaerobic glycolysis, in cancer cells3. However, how cancer metabolism affects chemotherapy response and DNA repair in general remains incompletely understood. Here we report that lactate-driven lactylation of NBS1 promotes homologous recombination (HR)-mediated DNA repair. Lactylation of NBS1 at lysine 388 (K388) is essential for MRE11-RAD50-NBS1 (MRN) complex formation and the accumulation of HR repair proteins at the sites of DNA double-strand breaks. Furthermore, we identify TIP60 as the NBS1 lysine lactyltransferase and the 'writer' of NBS1 K388 lactylation, and HDAC3 as the NBS1 de-lactylase. High levels of NBS1 K388 lactylation predict poor patient outcome of neoadjuvant chemotherapy, and lactate reduction using either genetic depletion of lactate dehydrogenase A (LDHA) or stiripentol, a lactate dehydrogenase A inhibitor used clinically for anti-epileptic treatment, inhibited NBS1 K388 lactylation, decreased DNA repair efficacy and overcame resistance to chemotherapy. In summary, our work identifies NBS1 lactylation as a critical mechanism for genome stability that contributes to chemotherapy resistance and identifies inhibition of lactate production as a promising therapeutic cancer strategy.
Collapse
Affiliation(s)
- Hengxing Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, China
| | - Huafu Li
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Xiancong Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huafeng Fu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Deli Mao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Linxiang Lan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Chunming Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chengming Zhu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ian Evans
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Eddie Cheung
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Daning Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Axel Behrens
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
34
|
Piraino F, Costa M, Meyer M, Cornish G, Ceroni C, Garnier V, Hoehnel-Ka S, Brandenberg N. Organoid models: the future companions of personalized drug development. Biofabrication 2024; 16:032009. [PMID: 38608454 DOI: 10.1088/1758-5090/ad3e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.
Collapse
Affiliation(s)
| | - Mariana Costa
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Marine Meyer
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Wang J, Qu J, Hou Q, Huo X, Zhao X, Chang L, Xu C. Strategies for the Isolation and Identification of Gastric Cancer Stem Cells. Stem Cells Int 2024; 2024:5553852. [PMID: 38882596 PMCID: PMC11178399 DOI: 10.1155/2024/5553852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Gastric cancer stem cells (GCSCs) originate from both gastric adult stem cells and bone marrow cells and are conspicuously present within the histological milieu of gastric cancer tissue. GCSCs play pivotal and multifaceted roles in the initiation, progression, and recurrence of gastric cancer. Hence, the characterization of GCSCs not only facilitates precise target identification for prospective therapeutic interventions in gastric cancer but also has significant implications for targeted therapy and the prognosis of gastric cancer. The prevailing techniques for GCSC purification involve their isolation using surface-specific cell markers, such as those identified by flow cytometry and immunomagnetic bead sorting techniques. In addition, in vitro culture and side-population cell sorting are integral methods in this context. This review discusses the surface biomarkers, isolation techniques, and identification methods of GCSCs, as well as their role in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jianhua Wang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Jie Qu
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Qiang Hou
- Second Department of General Surgery Shaanxi Provincial People's Hospital, Xi'an 710068 710068, China
- Department of Graduate School Yan'an University, Yan'an 716009, China
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases Shaanxi Provincial People's Hospital, Xi'an 710068, China
- Shaanxi Engineering Research Center of Cell Immunology Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
36
|
Jin H, Yang Q, Yang J, Wang F, Feng J, Lei L, Dai M. Exploring tumor organoids for cancer treatment. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0216185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As a life-threatening chronic disease, cancer is characterized by tumor heterogeneity. This heterogeneity is associated with factors that lead to treatment failure and poor prognosis, including drug resistance, relapse, and metastasis. Therefore, precision medicine urgently needs personalized tumor models that accurately reflect the tumor heterogeneity. Currently, tumor organoid technologies are used to generate in vitro 3D tissues, which have been shown to precisely recapitulate structure, tumor microenvironment, expression profiles, functions, molecular signatures, and genomic alterations in primary tumors. Tumor organoid models are important for identifying potential therapeutic targets, characterizing the effects of anticancer drugs, and exploring novel diagnostic and therapeutic options. In this review, we describe how tumor organoids can be cultured and summarize how researchers can use them as an excellent tool for exploring cancer therapies. In addition, we discuss tumor organoids that have been applied in cancer therapy research and highlight the potential of tumor organoids to guide preclinical research.
Collapse
Affiliation(s)
- Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University 4 , Changsha 410011, Hunan, China
| | - Jing Yang
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
37
|
Wei PJ, Guo Z, Gao Z, Ding Z, Cao RF, Su Y, Zheng CH. Inference of gene regulatory networks based on directed graph convolutional networks. Brief Bioinform 2024; 25:bbae309. [PMID: 38935070 PMCID: PMC11209731 DOI: 10.1093/bib/bbae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inferring gene regulatory network (GRN) is one of the important challenges in systems biology, and many outstanding computational methods have been proposed; however there remains some challenges especially in real datasets. In this study, we propose Directed Graph Convolutional neural network-based method for GRN inference (DGCGRN). To better understand and process the directed graph structure data of GRN, a directed graph convolutional neural network is conducted which retains the structural information of the directed graph while also making full use of neighbor node features. The local augmentation strategy is adopted in graph neural network to solve the problem of poor prediction accuracy caused by a large number of low-degree nodes in GRN. In addition, for real data such as E.coli, sequence features are obtained by extracting hidden features using Bi-GRU and calculating the statistical physicochemical characteristics of gene sequence. At the training stage, a dynamic update strategy is used to convert the obtained edge prediction scores into edge weights to guide the subsequent training process of the model. The results on synthetic benchmark datasets and real datasets show that the prediction performance of DGCGRN is significantly better than existing models. Furthermore, the case studies on bladder uroepithelial carcinoma and lung cancer cells also illustrate the performance of the proposed model.
Collapse
Affiliation(s)
- Pi-Jing Wei
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Ziqiang Guo
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Zhen Gao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Zheng Ding
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Rui-Fen Cao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Yansen Su
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Chun-Hou Zheng
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| |
Collapse
|
38
|
Liu YY, Wu DK, Chen JB, Tang YM, Jiang F. Advances in the study of gastric organoids as disease models. World J Gastrointest Oncol 2024; 16:1725-1736. [PMID: 38764838 PMCID: PMC11099456 DOI: 10.4251/wjgo.v16.i5.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
Gastric organoids are models created in the laboratory using stem cells and sophisticated three-dimensional cell culture techniques. These models have shown great promise in providing valuable insights into gastric physiology and advanced disease research. This review comprehensively summarizes and analyzes the research advances in culture methods and techniques for adult stem cells and induced pluripotent stem cell-derived organoids, and patient-derived organoids. The potential value of gastric organoids in studying the pathogenesis of stomach-related diseases and facilitating drug screening is initially discussed. The construction of gastric organoids involves several key steps, including cell extraction and culture, three-dimensional structure formation, and functional expression. Simulating the structure and function of the human stomach by disease modeling with gastric organoids provides a platform to study the mechanism of gastric cancer induction by Helicobacter pylori. In addition, in drug screening and development, gastric organoids can be used as a key tool to evaluate drug efficacy and toxicity in preclinical trials. They can also be used for precision medicine according to the specific conditions of patients with gastric cancer, to assess drug resistance, and to predict the possibility of adverse reactions. However, despite the impressive progress in the field of gastric organoids, there are still many unknowns that need to be addressed, especially in the field of regenerative medicine. Meanwhile, the reproducibility and consistency of organoid cultures are major challenges that must be overcome. These challenges have had a significant impact on the development of gastric organoids. Nonetheless, as technology continues to advance, we can foresee more comprehensive research in the construction of gastric organoids. Such research will provide better solutions for the treatment of stomach-related diseases and personalized medicine.
Collapse
Affiliation(s)
- Yi-Yang Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - De-Kun Wu
- Teaching Experiment and Training Center, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Ji-Bing Chen
- Central Laboratory, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - You-Ming Tang
- Department of Digestive Disease, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Feng Jiang
- AIDS Research Center, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
39
|
Zheng X, Zhang X, Yu S. Organoids derived from metastatic cancers: Present and future. Heliyon 2024; 10:e30457. [PMID: 38720734 PMCID: PMC11077038 DOI: 10.1016/j.heliyon.2024.e30457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Organoids are three-dimensional structures derived from primary tissue or tumors that closely mimic the architecture, histology, and function of the parental tissue. In recent years, patient-derived organoids (PDOs) have emerged as powerful tools for modeling tumor heterogeneity, drug screening, and personalized medicine. Although most cancer organoids are derived from primary tumors, the ability of organoids from metastatic cancer to serve as a model for studying tumor biology and predicting the therapeutic response is an area of active investigation. Recent studies have shown that organoids derived from metastatic sites can provide valuable insights into tumor biology and may be used to validate predictive models of the drug response. In this comprehensive review, we discuss the feasibility of culturing organoids from multiple metastatic cancers and evaluate their potential for advancing basic cancer research, drug development, and personalized therapy. We also explore the limitations and challenges associated with using metastasis organoids for cancer research. Overall, this review provides a comprehensive overview of the current state and future prospects of metastatic cancer-derived organoids.
Collapse
Affiliation(s)
- Xuejing Zheng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Zhang
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Jiang KL, Wang XX, Liu XJ, Guo LK, Chen YQ, Jia QL, Yang KM, Ling JH. Success rate of current human-derived gastric cancer organoids establishment and influencing factors: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:1626-1646. [PMID: 38660634 PMCID: PMC11037053 DOI: 10.4251/wjgo.v16.i4.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Human-derived gastric cancer organoids (GCOs) are widely used in gastric cancer research; however, the culture success rate is generally low. AIM To explore the potential influencing factors, and the literature on successful culture rates of GCOs was reviewed using meta-analysis. METHODS PubMed, Web of Science, and EMBASE were searched for studies. Two trained researchers selected the studies and extracted data. STATA 17.0 software was used for meta-analysis of the incidence of each outcome event. The adjusted Methodological Index for Non-Randomized Studies scale was used to assess the quality of the included studies. Funnel plots and Egger's test were used to detect publication bias. Subgroup analyses were conducted for sex, tissue source, histological classification, and the pathological tumor-node-metastasis (pTNM) cancer staging system. RESULTS Eight studies with a pooled success rate of 66.6% were included. GCOs derived from women and men had success rates of 67% and 46.7%, respectively. GCOs from surgery or biopsy/endoscopic submucosal dissection showed success rates of 70.9% and 53.7%, respectively. GCOs of poorly-differentiated, moderately-differentiated and signet-ring cell cancer showed success rates of 64.6%, 31%, and 32.7%, respectively. GCOs with pTNM stages I-II and III-IV showed success rates of 38.3% and 65.2%, respectively. Y-27632 and non-Y-27632 use showed success rates of 58.2% and 70%, respectively. GCOs generated with collagenase were more successful than those constructed with Liberase TH and TrypLE (72.1% vs 71%, respectively). EDTA digestion showed a 50% lower success rate than other methods (P = 0.04). CONCLUSION GCO establishment rate is low and varies by sex, tissue source, histological type, and pTNM stage. Omitting Y-27632, and using Liberase TH, TrypLE, or collagenase yields greater success than EDTA.
Collapse
Affiliation(s)
- Kai-Lin Jiang
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Xiang-Xiang Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Xue-Jiao Liu
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Li-Kun Guo
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Yong-Qi Chen
- Department of Pathology, Shuguang Hospital, Shanghai 200021, China
| | - Qing-Ling Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Ke-Ming Yang
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| | - Jiang-Hong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai 200021, China
| |
Collapse
|
41
|
Yan S, He Y, Zhu Y, Ye W, Chen Y, Zhu C, Zhan F, Ma Z. Human patient derived organoids: an emerging precision medicine model for gastrointestinal cancer research. Front Cell Dev Biol 2024; 12:1384450. [PMID: 38638528 PMCID: PMC11024315 DOI: 10.3389/fcell.2024.1384450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality with a poor prognosis. It is one of the leading causes of cancer-related deaths worldwide. Most of these diseases lack effective treatment, occurring as a result of inappropriate models to develop safe and potent therapies. As a novel preclinical model, tumor patient-derived organoids (PDOs), can be established from patients' tumor tissue and cultured in the laboratory in 3D architectures. This 3D model can not only highly simulate and preserve key biological characteristics of the source tumor tissue in vitro but also reproduce the in vivo tumor microenvironment through co-culture. Our review provided an overview of the different in vitro models in current tumor research, the derivation of cells in PDO models, and the application of PDO model technology in gastrointestinal cancers, particularly the applications in combination with CRISPR/Cas9 gene editing technology, tumor microenvironment simulation, drug screening, drug development, and personalized medicine. It also elucidates the ethical status quo of organoid research and the current challenges encountered in clinical research, and offers a forward-looking assessment of the potential paths for clinical organoid research advancement.
Collapse
Affiliation(s)
- Sicheng Yan
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxuan He
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuehong Zhu
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wangfang Ye
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Chen
- Department of Colorectal Surgery, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Cong Zhu
- Department of Colorectal Surgery, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Fuyuan Zhan
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhihong Ma
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
42
|
Xu J, Gong J, Li M, Kang Y, Ma J, Wang X, Liang X, Qi X, Yu B, Yang J. Gastric cancer patient-derived organoids model for the therapeutic drug screening. Biochim Biophys Acta Gen Subj 2024; 1868:130566. [PMID: 38244703 DOI: 10.1016/j.bbagen.2024.130566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a highly heterogeneous disease featuring many various histological and molecular subtypes. Therefore, it is imperative to have well-characterized in vitro models for personalized treatment development. Gastric cancer patient-derived organoids (PDOs), re-capitulating in vivo conditions, exhibit high clinical efficacy in predicting drug sensitivity to facilitate the development of cancer precision medicine. METHODS PDOs were established from surgically resected GC tumor tissues. Histological and molecular characterization of PDOs and primary tissues were performed via IHC and sequencing analysis. We also conducted drug sensitivity tests using PDO cultures with five chemotherapeutic drugs and twenty-two targeted drugs. RESULTS We have successfully constructed a PDOs biobank that included EBV+, intestinal/CIN, diffuse/GS, mixed and Her2+ GC subtypes, and these PDOs captured the pathological and genetic characteristics of corresponding tumors and exhibited different sensitivities to the tested agents. In a clinical case study, we performed an additional drug sensitivity test for a patient who reached an advanced progressive stage after surgery. We discovered that the combination of napabucasin and COTI-2 exhibited a stronger synergistic effect than either drug alone. CONCLUSION PDOs maintained the histological and genetic characteristics of original cancer tissues. PDOs biobank opens up new perspectives for studying cancer cell biology and personalized medicine as a preclinical study platform.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Gong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengyang Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ye Kang
- MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jinrong Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi Wang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xiao Liang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
43
|
Xu J, Yu B, Wang F, Yang J. Xenograft and organoid models in developing precision medicine for gastric cancer (Review). Int J Oncol 2024; 64:41. [PMID: 38390969 PMCID: PMC10919760 DOI: 10.3892/ijo.2024.5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Gastric cancer (GC), a highly heterogeneous disease, has diverse histological and molecular subtypes. For precision medicine, well‑characterized models encompassing the full spectrum of subtypes are necessary. Patient‑derived tumor xenografts and organoids serve as important preclinical models in GC research. The main advantage of these models is the retention of phenotypic and genotypic heterogeneity present in parental tumor tissues. Utilizing diverse sequencing techniques and preclinical models for GC research facilitates accuracy in predicting personalized clinical responses to anti‑cancer treatments. The present review summarizes the latest advances of these two preclinical models in GC treatment and drug response assessment.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
44
|
Yang JC, Zhang YH, Hu B. Gastric organoids: Rise of a latecomer. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:182-191. [DOI: 10.11569/wcjd.v32.i3.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
|
45
|
Jose A, Kulkarni P, Thilakan J, Munisamy M, Malhotra AG, Singh J, Kumar A, Rangnekar VM, Arya N, Rao M. Integration of pan-omics technologies and three-dimensional in vitro tumor models: an approach toward drug discovery and precision medicine. Mol Cancer 2024; 23:50. [PMID: 38461268 PMCID: PMC10924370 DOI: 10.1186/s12943-023-01916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/15/2023] [Indexed: 03/11/2024] Open
Abstract
Despite advancements in treatment protocols, cancer is one of the leading cause of deaths worldwide. Therefore, there is a need to identify newer and personalized therapeutic targets along with screening technologies to combat cancer. With the advent of pan-omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and lipidomics, the scientific community has witnessed an improved molecular and metabolomic understanding of various diseases, including cancer. In addition, three-dimensional (3-D) disease models have been efficiently utilized for understanding disease pathophysiology and as screening tools in drug discovery. An integrated approach utilizing pan-omics technologies and 3-D in vitro tumor models has led to improved understanding of the intricate network encompassing various signalling pathways and molecular cross-talk in solid tumors. In the present review, we underscore the current trends in omics technologies and highlight their role in understanding genotypic-phenotypic co-relation in cancer with respect to 3-D in vitro tumor models. We further discuss the challenges associated with omics technologies and provide our outlook on the future applications of these technologies in drug discovery and precision medicine for improved management of cancer.
Collapse
Affiliation(s)
- Anmi Jose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pallavi Kulkarni
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jaya Thilakan
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Anvita Gupta Malhotra
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Vivek M Rangnekar
- Markey Cancer Center and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India.
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
46
|
Jiang KL, Jia YB, Liu XJ, Jia QL, Guo LK, Wang XX, Yang KM, Wu CH, Liang BB, Ling JH. Bibliometrics analysis based on the Web of Science: Current trends and perspective of gastric organoid during 2010-2023. World J Gastroenterol 2024; 30:969-983. [PMID: 38516239 PMCID: PMC10950634 DOI: 10.3748/wjg.v30.i8.969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Three-dimensional organoid culture systems have been established as a robust tool for elucidating mechanisms and performing drug efficacy testing. The use of gastric organoid models holds significant promise for advancing personalized medicine research. However, a comprehensive bibliometric review of this bur-geoning field has not yet been published. AIM To analyze and understand the development, impact, and direction of gastric organoid research using bibliometric methods using data from the Web of Science Core Collection (WoSCC) database. METHODS This analysis encompassed literature pertaining to gastric organoids published between 2010 and 2023, as indexed in the WoSCC. CiteSpace and VOSviewer were used to depict network maps illustrating collaborations among authors, institutions and keywords related to gastric organoid. Citation, co-citation, and burst analysis methodologies were applied to assess the impact and progress of research. RESULTS A total of 656 relevant studies were evaluated. The majority of research was published in gastroenterology-focused journals. Globally, Yana Zavros, Hans Clevers, James M Wells, Sina Bartfeld, and Chen Zheng were the 5 most productive authors, while Hans Clevers, Huch Meritxell, Johan H van Es, Marc Van de Wetering, and Sato Toshiro were the foremost influential scientists in this area. Institutions from the University Medical Center Utrecht, Netherlands Institute for Developmental Biology (Utrecht), and University of Cincinnati (Cincinnati, OH, United States) made the most significant contributions. Currently, gastric organoids are used mainly in studies investigating gastric cancer (GC), Helicobacter pylori-infective gastritis, with a focus on the mechanisms of GC, and drug screening tests. CONCLUSION Key focus areas of research using gastric organoids include unraveling disease mechanisms and enhancing drug screening techniques. Major contributions from renowned academic institutions highlight this field's dynamic growth.
Collapse
Affiliation(s)
- Kai-Lin Jiang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
- Laboratory of Cancer Biology, University of Oxford, Oxford OX37DQ, United Kingdom
| | - Yue-Bo Jia
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xue-Jiao Liu
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Qing-Ling Jia
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Li-Kun Guo
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xiang-Xiang Wang
- School of Traditional Chinese Medicine, Shanghai University of Chinese Medicine, Shanghai 200021, China
| | - Ke-Ming Yang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Chen-Heng Wu
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Bei-Bei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jiang-Hong Ling
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| |
Collapse
|
47
|
Shao W, Yu YJ, Xia HN, Zheng YY, Sun ZH, Yan HZ. Mechanism of action of CDH1 gene on gastric organoid growth and E-cadherin expression in mice. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:141-147. [DOI: 10.11569/wcjd.v32.i2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
|
48
|
Cai HQ, Zhang LY, Fu LM, Xu B, Jiao Y. Mutational landscape of TP53 and CDH1 in gastric cancer. World J Gastrointest Surg 2024; 16:276-283. [PMID: 38463349 PMCID: PMC10921187 DOI: 10.4240/wjgs.v16.i2.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In this editorial we comment on an article published in a recent issue of the World J Gastrointest Surg. A common gene mutation in gastric cancer (GC) is the TP53 mutation. As a tumor suppressor gene, TP53 is implicated in more than half of all tumor occurrences. TP53 gene mutations in GC tissue may be related with clinical pathological aspects. The TP53 mutation arose late in the progression of GC and aided in the final switch to malignancy. CDH1 encodes E-cadherin, which is involved in cell-to-cell adhesion, epithelial structure maintenance, cell polarity, differentiation, and intracellular signaling pathway modulation. CDH1 mutations and functional loss can result in diffuse GC, and CDH1 mutations can serve as independent prognostic indicators for poor prognosis. GC patients can benefit from genetic counseling and testing for CDH1 mutations. Demethylation therapy may assist to postpone the onset and progression of GC. The investigation of TP53 and CDH1 gene mutations in GC allows for the investigation of the relationship between these two gene mutations, as well as providing some basis for evaluating the prognosis of GC patients.
Collapse
Affiliation(s)
- Hong-Qiao Cai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Yue Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Ming Fu
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Bin Xu
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
49
|
Li W, Dong X, Wan Z, Wang W, Zhang J, Mi Y, Li R, Xu Z, Wang B, Li N, He G. PXMP4 promotes gastric cancer cell epithelial-mesenchymal transition via the PI3K/AKT signaling pathway. Mol Biol Rep 2024; 51:350. [PMID: 38401002 DOI: 10.1007/s11033-024-09312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Peroxisomal membrane protein 4 (PXMP4), a member of the peroxisome membrane protein PXMP2/4 family, participates in the progression of several malignant cancers. Nevertheless, the effect of PXMP4 in the development of gastric cancer (GC) is still unknown. As a result, the focus of this investigation was to elucidate the potential mechanisms of PXMP4 in GC. METHODS AND RESULTS Firstly, bioinformatics analysis results showed higher expression of PXMP4 in GC tissues. Secondly, clinical analysis of 57 patients with GC revealed correlations between PXMP4 expression and differentiation, depth of invasion, as well as TNM stage. Furthermore, individuals with elevated PXMP4 expression in GC exhibited an unfavorable prognosis. In vitro data showed the involvement of knockdown/overexpression of PXMP4 in the proliferation, invasion, and migration of GC cells, and triggering the epithelial-mesenchymal transition (EMT) of GC cells through the activation of the PI3K/AKT signaling pathway. LY294002, a PI3K/AKT inhibitor, inhibited the expression of PI3K/AKT-related proteins but did not affect the expression of PXMP4. CONCLUSIONS These findings indicate that PXMP4 potentially functions as an upstream molecule in the PI3K/AKT pathway, governing the EMT process in GC.
Collapse
Affiliation(s)
- Wei Li
- School of forensic Medicine, Xinxiang Medical University, Xinxiang, 453000, China
| | - Xiangyang Dong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Zhidan Wan
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wenxin Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Jingyu Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Yongrun Mi
- School of forensic Medicine, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ruiyuan Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
- Sanquan College, Xinxiang Medical University, Xinxiang, 453000, China
| | - Zishan Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Beixi Wang
- The Fourth Clinical College, Xinxiang Medical University, Xinxiang, 453000, China
| | - Na Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| | - Guoyang He
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
50
|
Mulaudzi PE, Abrahamse H, Crous A. Insights on Three Dimensional Organoid Studies for Stem Cell Therapy in Regenerative Medicine. Stem Cell Rev Rep 2024; 20:509-523. [PMID: 38095787 PMCID: PMC10837234 DOI: 10.1007/s12015-023-10655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Regenerative medicine has developed as a promising discipline that utilizes stem cells to address limitations in traditional therapies, using innovative techniques to restore and repair damaged organs and tissues. One such technique is the generation of three-dimensional (3D) organoids in stem cell therapy. Organoids are 3D constructs that resemble specific organs' structural and functional characteristics and are generated from stem cells or tissue-specific progenitor cells. The use of 3D organoids is advantageous in comparison to traditional two-dimensional (2D) cell culture by bridging the gap between in vivo and in vitro research. This review aims to provide an overview of the advancements made towards regenerative medicine using stem cells to generate organoids, explore the techniques used in generating 3D organoids and their applications and finally elucidate the challenges and future directions in regenerative medicine using 3D organoids.
Collapse
Affiliation(s)
- Precious Earldom Mulaudzi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|