1
|
Peña-Asensio J, Calvo-Sánchez H, Miquel-Plaza J, Sanz-de-Villalobos E, González-Praetorius A, Delgado-Fernandez A, Torralba M, Larrubia JR. HBsAg level defines different clinical phenotypes of HBeAg(-) chronic HBV infection related to HBV polymerase-specific CD8 + cell response quality. Front Immunol 2024; 15:1352929. [PMID: 38545116 PMCID: PMC10966405 DOI: 10.3389/fimmu.2024.1352929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Background HBe-antigen(Ag)-negative chronic hepatitis B virus (HBV) infection is characterized by little liver fibrosis progression and vigorous HBV-multispecific CD8+ T-cell response. Aims To assess whether HBsAg level could discriminate different HBeAg-negative chronic HBV infection subtypes with dissimilar quality of HBV-specific CD8+ T-cell response. Methods We recruited 63 HBeAg-negative chronic HBV infection patients in which indirect markers of liver inflammation/fibrosis, portal pressure, viral load (VL), and HBV-specific CD8+ cell effector function were correlated with HBsAg level. Results A positive linear trend between HBsAg level and APRI, liver stiffness (LS), liver transaminases, and HBV VL, and a negative correlation with platelet count were observed. Frequency of cases with HBV-specific CD8+ T-cell proliferation against at least two HBV epitopes was higher in HBsAg < 1,000 IU/ml group. CD8+ T-cell expansion after HBVpolymerase456-63-specific stimulation was impaired in HBsAg > 1,000 IU/ml group, while the response against HBVcore18-27 was preserved and response against envelope183-91 was nearly abolished, regardless of HBsAg level. Cases with preserved HBVpolymerase456-63 CD8+ cell response had lower LS/duration of infection and APRI/duration of infection rates. HBV-polymerase456-63-specific CD8+ T-cell proliferation intensity was negatively correlated with LS/years of infection ratio. Conclusion HBsAg > 1,000 IU/ml HBeAg-negative chronic HBV infection group shows indirect data of higher degree of inflammation, liver stiffness, and fibrosis progression speed, which are related to an impaired HBV-polymerase-specific CD8+ T-cell response.
Collapse
Affiliation(s)
- Julia Peña-Asensio
- Department of Biology of Systems, University of Alcalá, Alcalá de Henares, Spain
- Translational Research Group in Cellular Immunology, Instituto de Investigación Sanitaria de Castilla La-Mancha (IDISCAM), Toledo, Spain
| | - Henar Calvo-Sánchez
- Translational Research Group in Cellular Immunology, Instituto de Investigación Sanitaria de Castilla La-Mancha (IDISCAM), Toledo, Spain
- Section of Gastroenterology, Guadalajara University Hospital, Guadalajara, Spain
- Department of Medicine and Medical Specialties, University of Alcalá, Alcalá de Henares, Spain
| | - Joaquín Miquel-Plaza
- Translational Research Group in Cellular Immunology, Instituto de Investigación Sanitaria de Castilla La-Mancha (IDISCAM), Toledo, Spain
- Section of Gastroenterology, Guadalajara University Hospital, Guadalajara, Spain
| | - Eduardo Sanz-de-Villalobos
- Translational Research Group in Cellular Immunology, Instituto de Investigación Sanitaria de Castilla La-Mancha (IDISCAM), Toledo, Spain
- Section of Gastroenterology, Guadalajara University Hospital, Guadalajara, Spain
| | - Alejandro González-Praetorius
- Translational Research Group in Cellular Immunology, Instituto de Investigación Sanitaria de Castilla La-Mancha (IDISCAM), Toledo, Spain
- Section of Microbiology, Guadalajara University Hospital, Guadalajara, Spain
| | - Alberto Delgado-Fernandez
- Translational Research Group in Cellular Immunology, Instituto de Investigación Sanitaria de Castilla La-Mancha (IDISCAM), Toledo, Spain
| | - Miguel Torralba
- Translational Research Group in Cellular Immunology, Instituto de Investigación Sanitaria de Castilla La-Mancha (IDISCAM), Toledo, Spain
- Department of Medicine and Medical Specialties, University of Alcalá, Alcalá de Henares, Spain
- Service of Internal Medicine, Guadalajara University Hospital, Guadalajara, Spain
| | - Juan-Ramón Larrubia
- Translational Research Group in Cellular Immunology, Instituto de Investigación Sanitaria de Castilla La-Mancha (IDISCAM), Toledo, Spain
- Section of Gastroenterology, Guadalajara University Hospital, Guadalajara, Spain
- Department of Medicine and Medical Specialties, University of Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
2
|
Hu JL, Huang AL. Classifying hepatitis B therapies with insights from covalently closed circular DNA dynamics. Virol Sin 2024; 39:9-23. [PMID: 38110037 PMCID: PMC10877440 DOI: 10.1016/j.virs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
The achievement of a functional cure for chronic hepatitis B (CHB) remains limited to a minority of patients treated with currently approved drugs. The primary objective in developing new anti-HBV drugs is to enhance the functional cure rates for CHB. A critical prerequisite for the functional cure of CHB is a substantial reduction, or even eradication of covalently closed circular DNA (cccDNA). Within this context, the changes in cccDNA levels during treatment become as a pivotal concern. We have previously analyzed the factors influencing cccDNA dynamics and introduced a preliminary classification of hepatitis B treatment strategies based on these dynamics. In this review, we employ a systems thinking perspective to elucidate the fundamental aspects of the HBV replication cycle and to rationalize the classification of treatment strategies according to their impact on the dynamic equilibrium of cccDNA. Building upon this foundation, we categorize current anti-HBV strategies into two distinct groups and advocate for their combined use to significantly reduce cccDNA levels within a well-defined timeframe.
Collapse
Affiliation(s)
- Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Bertoletti A, Le Bert N. Quest for immunological biomarkers in the management of CHB patients. Gut 2023; 72:2012-2014. [PMID: 36922017 DOI: 10.1136/gutjnl-2023-329437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
4
|
Fu YL, Zhou SN, Hu W, Li J, Zhou MJ, Li XY, Wang YY, Zhang P, Chen SY, Fan X, Song JW, Jiao YM, Xu R, Zhang JY, Zhen C, Zhou CB, Yuan JH, Shi M, Wang FS, Zhang C. Metabolic interventions improve HBV envelope-specific T-cell responses in patients with chronic hepatitis B. Hepatol Int 2023; 17:1125-1138. [PMID: 36976426 PMCID: PMC10522531 DOI: 10.1007/s12072-023-10490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/16/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Restoration of HBV-specific T cell immunity is a promising approach for the functional cure of chronic Hepatitis B (CHB), necessitating the development of valid assays to boost and monitor HBV-specific T cell responses in patients with CHB. METHODS We analyzed hepatitis B virus (HBV) core- and envelope (env)-specific T cell responses using in vitro expanded peripheral blood mononuclear cells (PBMCs) from patients with CHB exhibiting different immunological phases, including immune tolerance (IT), immune activation (IA), inactive carrier (IC), and HBeAg-negative hepatitis (ENEG). Additionally, we evaluated the effects of metabolic interventions, including mitochondria-targeted antioxidants (MTA), polyphenolic compounds, and ACAT inhibitors (iACAT), on HBV-specific T-cell functionality. RESULTS We found that HBV core- and env-specific T cell responses were finely coordinated and more profound in IC and ENEG than in the IT and IA stages. HBV env-specific T cells were more dysfunctional but prone to respond to metabolic interventions using MTA, iACAT, and polyphenolic compounds than HBV core-specific T-cells. The responsiveness of HBV env-specific T cells to metabolic interventions can be predicted by the eosinophil (EO) count and the coefficient of variation of red blood cell distribution width (RDW-CV). CONCLUSION These findings may provide valuable information for metabolically invigorating HBV-specific T-cells to treat CHB.
Collapse
Affiliation(s)
- Yu-Long Fu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Yu Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - You-Yuan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Si-Yuan Chen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Roca Suarez AA, Planel S, Grand X, Couturier C, Tran T, Porcheray F, Becker J, Reynier F, Delgado A, Cascales E, Peyrot L, Tamellini A, Saliou A, Elie C, Baum C, Vuong BQ, Testoni B, Roques P, Zoulim F, Hasan U, Chemin I. Interspecies comparison of the early transcriptomic changes associated with hepatitis B virus exposure in human and macaque immune cell populations. Front Cell Infect Microbiol 2023; 13:1248782. [PMID: 37727809 PMCID: PMC10505653 DOI: 10.3389/fcimb.2023.1248782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection affects 300 million individuals worldwide, representing a major factor for the development of hepatic complications. Although existing antivirals are effective in suppressing replication, eradication of HBV is not achieved. Therefore, a multi-faceted approach involving antivirals and immunomodulatory agents is required. Non-human primates are widely used in pre-clinical studies due to their close evolutionary relationship to humans. Nonetheless, it is fundamental to identify the differences in immune response between humans and these models. Thus, we performed a transcriptomic characterization and interspecies comparison of the early immune responses to HBV in human and cynomolgus macaques. METHODS We characterized early transcriptomic changes in human and cynomolgus B cells, T cells, myeloid and plasmacytoid dendritic cells (pDC) exposed to HBV ex vivo for 2 hours. Differentially-expressed genes were further compared to the profiles of HBV-infected patients using publicly-available single-cell data. RESULTS HBV induced a wide variety of transcriptional changes in all cell types, with common genes between species representing only a small proportion. In particular, interferon gamma signaling was repressed in human pDCs. At the gene level, interferon gamma inducible protein 16 (IFI16) was upregulated in macaque pDCs, while downregulated in humans. Moreover, IFI16 expression in pDCs from chronic HBV-infected patients anti-paralleled serum HBsAg levels. CONCLUSION Our characterization of early transcriptomic changes induced by HBV in humans and cynomolgus macaques represents a useful resource for the identification of shared and divergent host responses, as well as potential immune targets against HBV.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| | | | - Xavier Grand
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| | | | - Trang Tran
- BIOASTER, Institut de Recherche Technologique, Lyon, France
| | | | - Jérémie Becker
- BIOASTER, Institut de Recherche Technologique, Lyon, France
| | | | - Ana Delgado
- BIOASTER, Institut de Recherche Technologique, Lyon, France
| | | | - Loïc Peyrot
- BIOASTER, Institut de Recherche Technologique, Lyon, France
| | | | - Adrien Saliou
- BIOASTER, Institut de Recherche Technologique, Lyon, France
| | - Céline Elie
- BIOASTER, Institut de Recherche Technologique, Lyon, France
| | - Chloé Baum
- BIOASTER, Institut de Recherche Technologique, Lyon, France
| | - Bao Quoc Vuong
- Department of Biology, The City College of New York, New York, NY, United States
- The Graduate Center, The City University of New York, New York, NY, United States
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| | - Pierre Roques
- CEA, Institut François Jacob, Fontenay-aux-Roses, France
- Inserm, U1184, Fontenay-aux-Roses and Université Paris-Saclay, Orsay, France
- Institut Pasteur de Guinée, Conakry, Guinea
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Uzma Hasan
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- INSERM U1111, Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| | - Isabelle Chemin
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| |
Collapse
|
6
|
Wu C, Zhang J, Wang H, Zhang W, Liu J, Zhou N, Chen K, Wang Y, Peng S, Fu L. TRAF2 as a key candidate gene in clinical hepatitis B-associated liver fibrosis. Front Mol Biosci 2023; 10:1168250. [PMID: 37091870 PMCID: PMC10113534 DOI: 10.3389/fmolb.2023.1168250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Objectives: Approximately 240 million individuals are infected with chronic hepatitis B virus (HBV) worldwide. HBV infection can develop into liver fibrosis. The mechanism of HBV-related liver fibrosis has not been fully understood, and there are few effective treatment options. The goal of this study was to use transcriptomics in conjunction with experimental validation to identify new targets to treat HBV-related liver fibrosis. Methods: To identify differentially expressed genes (DEGs), five liver tissues were collected from both healthy individuals and patients with chronic hepatitis B. NovoMagic and Java GSEA were used to screen DEGs and key genes, respectively. Immunocell infiltration analysis of RNA-seq data was, and the results were confirmed by Western blotting (WB), real-time quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry. Results: We evaluated 1,105 genes with differential expression, and 462 and 643 genes showed down- and upregulation, respectively. The essential genes, such as tumor necrosis factor (TNF) receptor-associated factor-2 (TRAF2), were screened out of DEGs. TRAF2 expression was abnormally high in hepatic fibrosis in patients with hepatitis B compared with healthy controls. The degree of hepatic fibrosis and serum levels of glutamate transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) were positively linked with TRAF2 expression. TRAF2 may be crucial in controlling T lymphocyte-mediated liver fibrosis. Conclusion: Our findings imply that TRAF2 is essential for HBV-induced liver fibrosis progression, and it may potentially be a promising target for the treatment of hepatic fibrosis in hepatitis B.
Collapse
Affiliation(s)
- Cichun Wu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jingqing Liu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Nianqi Zhou
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Keyu Chen
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital Central South University, Changsha, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Lei Fu, ; Shifang Peng,
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Lei Fu, ; Shifang Peng,
| |
Collapse
|
7
|
Fang Z, Zhang Y, Zhu Z, Wang C, Hu Y, Peng X, Zhang D, Zhao J, Shi B, Shen Z, Wu M, Xu C, Chen J, Zhou X, Xie Y, Yu H, Zhang X, Li J, Hu Y, Kozlowski M, Bertoletti A, Yuan Z. Monocytic MDSCs homing to thymus contribute to age-related CD8+ T cell tolerance of HBV. J Exp Med 2022; 219:213051. [PMID: 35254403 PMCID: PMC8906470 DOI: 10.1084/jem.20211838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus exposure in children usually develops into chronic hepatitis B (CHB). Although hepatitis B surface antigen (HBsAg)–specific CD8+ T cells contribute to resolve HBV infection, they are preferentially undetected in CHB patients. Moreover, the mechanism for this rarely detected HBsAg-specific CD8+ T cells remains unexplored. We herein found that the frequency of HBsAg-specific CD8+ T cells was inversely correlated with expansion of monocytic myeloid-derived suppressor cells (mMDSCs) in young rather than in adult CHB patients, and CCR9 was upregulated by HBsAg on mMDSCs via activation of ERK1/2 and IL-6. Sequentially, the interaction between CCL25 and CCR9 mediated thymic homing of mMDSCs, which caused the cross-presentation, transferring of peripheral HBsAg into the thymic medulla, and then promoted death of HBsAg-specific CD8+ thymocytes. In mice, adoptive transfer of mMDSCs selectively obliterated HBsAg-specific CD8+ T cells and facilitated persistence of HBV in a CCR9-dependent manner. Taken together, our results uncovered a novel mechanism for establishing specific CD8+ tolerance to HBsAg in chronic HBV infection.
Collapse
Affiliation(s)
- Zhong Fang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Liver Cancer Institute of Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yi Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Hu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xiuhua Peng
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dandan Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jun Zhao
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bisheng Shi
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhongliang Shen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chunhua Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hui Yu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yunwen Hu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Maya Kozlowski
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | | | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China.,Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai, China
| |
Collapse
|
8
|
van Bömmel F, Berg T. Risks and Benefits of Discontinuation of Nucleos(t)ide Analogue Treatment: A Treatment Concept for Patients With HBeAg-Negative Chronic Hepatitis B. Hepatol Commun 2021; 5:1632-1648. [PMID: 34558833 PMCID: PMC8485892 DOI: 10.1002/hep4.1708] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Systematic discontinuation of long-term treatment with nucleos(t)ide analogues (NAs) is one strategy to increase functional cure rates in patients with chronic hepatitis B e antigen (HBeAg)-negative hepatitis B. Currently, available study results are heterogeneous; however, long-term hepatitis B surface antigen (HBsAg) loss rates of up to 20% have been reported in prospective trials. This review proposes criteria that can be used when considering NA discontinuation in patients with chronic hepatitis B virus (HBV). Discontinuing NA treatment frequently results in a virologic and biochemical relapse that runs through different phases: the lag phase, reactivation phase, and consolidation phase. The HBV-DNA flares observed during the reactivation phase are often transient and most likely represent a trigger for inducing a long-term immune control by specific CD8+ T cells, and therefore do not need immediate interventions but close follow-up evaluation. Low HBsAg levels at the time of treatment cessation predict a positive long-term response to NA discontinuation associated with a higher likelihood of HBsAg clearance. Other host and viral biomarkers are currently under evaluation that may prove to be helpful to further characterize the population that may benefit most from the finite NA treatment concept. Potential harmful biochemical flares during the reactivation phase need to be identified early and can be effectively terminated by reintroducing NA treatment. Hepatic decompensation represents a risk to patients with cirrhosis undergoing NA discontinuation. Therefore, the finite NA approach should only be considered after excluding advanced fibrosis and cirrhosis and if a close follow-up of the patient and supervision by an experienced physician can be guaranteed. Conclusion: For selected patients, NA discontinuation has become a powerful tool to achieve control over HBeAg-negative HBV infections. Its significant effect represents a challenge to novel treatment approaches, but it may also serve as their enhancer.
Collapse
Affiliation(s)
- Florian van Bömmel
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzigGermany
| | | |
Collapse
|
9
|
Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 2021; 54:1825-1840.e7. [DOI: 10.1016/j.immuni.2021.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
|
10
|
Chua C, Salimzadeh L, Gehring AJ. Immunopathogenesis of Hepatitis B Virus Infection. HEPATITIS B VIRUS AND LIVER DISEASE 2021:73-97. [DOI: 10.1007/978-981-16-3615-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Heim K, Binder B, Sagar, Wieland D, Hensel N, Llewellyn-Lacey S, Gostick E, Price DA, Emmerich F, Vingerhoet H, Kraft ARM, Cornberg M, Boettler T, Neumann-Haefelin C, Zehn D, Bengsch B, Hofmann M, Thimme R. TOX defines the degree of CD8+ T cell dysfunction in distinct phases of chronic HBV infection. Gut 2020; 70:gutjnl-2020-322404. [PMID: 33097558 PMCID: PMC8292571 DOI: 10.1136/gutjnl-2020-322404] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Chronic hepatitis B virus (HBV) infection is characterised by HBV-specific CD8+ T cell dysfunction that has been linked to Tcell exhaustion, a distinct differentiation programme associated with persisting antigen recognition. Recently, Thymocyte Selection-Associated High Mobility Group Box (TOX) was identified as master regulator of CD8+ T cell exhaustion. Here, we addressed the role of TOX in HBV-specific CD8+ T cell dysfunction associated with different clinical phases of infection. DESIGN We investigated TOX expression in HBV-specific CD8+ T cells from 53 HLA-A*01:01, HLA-A*11:01 and HLA-A*02:01 positive patients from different HBV infection phases and compared it to hepatitis C virus (HCV)-specific, cytomegalovirus (CMV)-specific, Epstein-Barr virus (EBV)-specific and influenza virus (FLU)-specific CD8+ T cells. Phenotypic and functional analyses of virus-specific CD8+ T cells were performed after peptide-loaded tetramer-enrichment and peptide-specific expansion. RESULTS Our results show that TOX expression in HBV-specific CD8+ T cells is linked to chronic antigen stimulation, correlates with viral load and is associated with phenotypic and functional characteristics of T-cell exhaustion. In contrast, similar TOX expression in EBV-specific and CMV-specific CD8+ T cells is not linked to T-cell dysfunction suggesting different underlying programmes. TOX expression in HBV-specific CD8+ T cells is also affected by targeted antigens, for example, core versus polymerase. In HBV-specific CD8+ T cells, TOX expression is maintained after spontaneous or therapy-mediated viral control in chronic but not self-limiting acute HBV infection indicating a permanent molecular imprint after chronic but not temporary stimulation. CONCLUSION Our data highlight TOX as biomarker specific for dysfunctional virus-specific CD8+ T cells in the context of an actively persisting infection.
Collapse
Affiliation(s)
- Kathrin Heim
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Benedikt Binder
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
| | - Sagar
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
| | - Dominik Wieland
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
| | - Nina Hensel
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Factulty of Medicine, Freiburg University Hospital, Freiburg, Germany
| | | | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Niedersachsen, Germany
- German Centre for Infection Research Association, Braunschweig, Germany
| | - Markus Cornberg
- German Centre for Infection Research Association, Braunschweig, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Centre for individualised Infection Medicine (CiiM), Hannover Medical School, Hannover, Germany
| | - Tobias Boettler
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
| | | | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Bertram Bengsch
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
| | - Robert Thimme
- Internal Medicine II, Faculty of Medicine, Freiburg University Hospital, Freiburg, Germany
| |
Collapse
|
12
|
Fang Z, Yu X, Tong S, Lu C, Huang Y, Chen L, Yuan Z, Zhang Y. Serum ERK1/2 proteins fluctuating with HBV infection report frequency of viral-specific CD8 + T cells and predict IFNα therapeutic effect in chronic hepatitis B patients. Clin Immunol 2020; 219:108570. [PMID: 32791312 DOI: 10.1016/j.clim.2020.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/01/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B (CHB) is a life-threatening disease caused by HBV infection. Our previous work proved that activation of ERK1/2 and STAT3 signaling was involved in HBV tolerance. We herein investigated clinical significances of serum ERK1/2 and STAT3 proteins in CHB. Results showed that ERK1/2 and STAT3 were fluctuated with natural history of CHB. In addition, STAT3 was found to be positively correlated to the elevation of ALT, AST and GGT, while ERK1 was negatively correlated to decreases of TP and ALB. Also, there was a positive correlation between the anti-HBc antibody and ERK1, ERK2 or STAT3 in HBeAg-negative patients. Strikingly, serum ERK1 and ERK2 could reflect level of HBsAg-specific CD8+ T cells. A model composed with baseline ERK1 and ERK2 levels had a high accuracy to predict the effect of IFNα treatment. In conclusion, serum ERK1, ERK2 and STAT3 could serve as novel biomarkers in chronic HBV infections.
Collapse
Affiliation(s)
- Zhong Fang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaoyu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuangmei Tong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan Lu
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yuxian Huang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Liang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Yi Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Optimized ex vivo stimulation identifies multi-functional HBV-specific T cells in a majority of chronic hepatitis B patients. Sci Rep 2020; 10:11344. [PMID: 32647116 PMCID: PMC7347526 DOI: 10.1038/s41598-020-68226-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
High antigen burden during chronic hepatitis B (CHB) results in a low frequency HBV-specific T cell response with restricted functionality. However, this observation is based on limited data because low T cell frequencies have hindered effective ex vivo analysis. We adapted the ELISpot assay to overcome this obstacle to measure ex vivo T cell responses in CHB patients. We modified the key variables of cell number and the peptide pulsing method to improve ex vivo detection of HBV-specific T cells. We detected IFN-γ responses in 10/15 vaccinated controls and 20/30 CHB patients, averaging 195 and 84 SFUs/2 × 106 PBMCs respectively. Multi-analyte FluoroSpots improved functional characterization of T cells. We detected IFN-γ responses in all tested vaccinated controls (n = 10) and CHB patients (n = 13). IL-2 responses were detectable in 9/10 controls and 10/13 patients. TNF-α displayed less sensitivity, detectable in only 7/10 controls and 7/13 patients. Antigen-specific analysis demonstrated that IFN-γ responses were dominated by polymerase and core, with weak responses to envelope and X. IL-2 responses were found in 3/5 patients and equally directed towards polymerase and core. While their ex vivo frequency is extremely low, a fraction of HBV-specific T cells are detectable and display multi-functionality ex vivo.
Collapse
|
14
|
Discovery and Selection of Hepatitis B Virus-Derived T Cell Epitopes for Global Immunotherapy Based on Viral Indispensability, Conservation, and HLA-Binding Strength. J Virol 2020; 94:JVI.01663-19. [PMID: 31852786 PMCID: PMC7081907 DOI: 10.1128/jvi.01663-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Multiple HBV-derived T cell epitopes have been reported, which can be useful in a therapeutic vaccination strategy. However, these epitopes are largely restricted to HLA-A*02, which is not dominantly expressed in populations with high HBV prevalence. Thus, current epitopes are falling short in the development of a global immunotherapeutic approach. Therefore, we aimed to identify novel epitopes for 6 HLA supertypes most prevalent in the infected population. Moreover, established epitopes might not all be equally effective as they can be subject to different levels of immune escape. It is therefore important to identify targets that are crucial in viral replication and conserved in the majority of the infected population. Here, we applied a stringent selection procedure to compose a combined overview of existing and novel HBV-derived T cell epitopes most promising for viral eradication. This set of T cell epitopes now lays the basis for the development of globally effective HBV antigen-specific immunotherapies. Immunotherapy represents an attractive option for the treatment of chronic hepatitis B virus (HBV) infection. The HBV proteins polymerase (Pol) and HBx are of special interest for antigen-specific immunotherapy because they are essential for viral replication and have been associated with viral control (Pol) or are still expressed upon viral DNA integration (HBx). Here, we scored all currently described HBx- and Pol-derived epitope sequences for viral indispensability and conservation across all HBV genotypes. This yielded 7 HBx-derived and 26 Pol-derived reported epitopes with functional association and high conservation. We subsequently predicted novel HLA-binding peptides for 6 HLA supertypes prevalent in HBV-infected patients. Potential epitopes expected to be the least prone to immune escape were subjected to a state-of-the-art in vitro assay to validate their HLA-binding capacity. Using this method, a total of 13 HLA binders derived from HBx and 33 binders from Pol were identified across HLA types. Subsequently, we demonstrated interferon gamma (IFN-γ) production in response to 5 of the novel HBx-derived binders and 17 of the novel Pol-derived binders. In addition, we validated several infrequently described epitopes. Collectively, these results specify a set of highly potent T cell epitopes that represent a valuable resource for future HBV immunotherapy design. IMPORTANCE Multiple HBV-derived T cell epitopes have been reported, which can be useful in a therapeutic vaccination strategy. However, these epitopes are largely restricted to HLA-A*02, which is not dominantly expressed in populations with high HBV prevalence. Thus, current epitopes are falling short in the development of a global immunotherapeutic approach. Therefore, we aimed to identify novel epitopes for 6 HLA supertypes most prevalent in the infected population. Moreover, established epitopes might not all be equally effective as they can be subject to different levels of immune escape. It is therefore important to identify targets that are crucial in viral replication and conserved in the majority of the infected population. Here, we applied a stringent selection procedure to compose a combined overview of existing and novel HBV-derived T cell epitopes most promising for viral eradication. This set of T cell epitopes now lays the basis for the development of globally effective HBV antigen-specific immunotherapies.
Collapse
|
15
|
Gill US, Battisti A, Kennedy PTF. Emerging tools in the changing landscape of chronic hepatitis B management. Expert Rev Anti Infect Ther 2019; 17:943-955. [PMID: 31738607 DOI: 10.1080/14787210.2019.1694906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The availability of a preventative vaccine, interferon, and nucleos(t)ide analogs have provided progress in the control of chronic hepatitis B (CHB). Despite this, it remains a major contributor to global morbidity and mortality. Developments in our understanding of the pathogenesis of CHB and the emergence of new therapies are paving the way, as we move toward HBV cure.Areas covered: We performed bibliographical searches of online databases to review the literature regarding conventional disease phases of CHB. We provide the latest evidence challenging the perception of the natural history of CHB, noting that previously considered quiescent disease phases may not represent benign disease states devoid of progression. We explore the use of potential novel immunological and viral tools which should enhance disease stratification and management decisions in the coming years. Finally, we discuss the timing of treatment and how this could be initiated earlier to improve treatment outcomes, preventing sequelae of chronic infection.Expert opinion: The treatment paradigm in CHB is set to change with multiple novel agents in early phase clinical trials with the aim of a functional cure. An improved understanding of disease pathogenesis and the timing of treatment will be critical to the success of new therapies.
Collapse
Affiliation(s)
- Upkar S Gill
- Barts Liver Centre, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Arianna Battisti
- Barts Liver Centre, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Patrick T F Kennedy
- Barts Liver Centre, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Ning Q, Wu D, Wang GQ, Ren H, Gao ZL, Hu P, Han MF, Wang Y, Zhang WH, Lu FM, Wang FS. Roadmap to functional cure of chronic hepatitis B: An expert consensus. J Viral Hepat 2019; 26:1146-1155. [PMID: 31087479 DOI: 10.1111/jvh.13126] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection continues to be a major public health issue worldwide. HBsAg loss is associated with functional remission and improved long-term outcome, and is considered to be a 'functional cure' (also referred to as clinical or immunologic cure) for chronic hepatitis B. This ideal goal of therapy can be achieved using optimized combination regimens with direct-acting antivirals [eg nucleos(t)ide analogues (NAs)] and immunomodulators [eg pegylated interferon alpha2a (Peg-IFN)] in selected patients with chronic hepatitis B. Among different combination therapies currently available, those with NA lead-in followed by Peg-IFN in virally suppressed patients has been demonstrated to be effective. This review provides an updated overview of the evidence supporting the use of combination therapies and summarizes expert consensus on the roadmap to attain functional cure for chronic hepatitis B patients.
Collapse
Affiliation(s)
- Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gui-Qiang Wang
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Beijing, China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Liang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei-Fang Han
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Beijing, China
| | - Wen-Hong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Min Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of the General Hospital of PLA, Beijing, China
| |
Collapse
|
17
|
Ganesan M, Krutik VM, Makarov E, Mathews S, Kharbanda KK, Poluektova LY, Casey CA, Osna NA. Acetaldehyde suppresses the display of HBV-MHC class I complexes on HBV-expressing hepatocytes. Am J Physiol Gastrointest Liver Physiol 2019; 317:G127-G140. [PMID: 31141391 PMCID: PMC6734374 DOI: 10.1152/ajpgi.00064.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) infection and alcoholism are major public health problems worldwide, contributing to the development of end-stage liver disease. Alcohol intake affects HBV infection pathogenesis and treatment outcomes. HBV-specific cytotoxic T lymphocytes (CTLs) play an important role in HBV clearance. Many previous studies have focused on alcohol-induced impairments of the immune response. However, it is not clear whether alcohol alters the presentation of HBV peptide-major histocompatibility complex (MHC) class I complexes on infected hepatocytes resulting in escape of its recognition by CTLs. Hence, the focus of this study was to investigate the mechanisms by which ethanol metabolism affects the presentation of CTL epitope on HBV-infected hepatocytes. As demonstrated here, although continuous cell exposure to acetaldehyde-generating system (AGS) increased HBV load in HepG2.2.15 cells, it decreased the expression of HBV core peptide 18-27-human leukocyte antigen-A2complex (CTL epitope) on the cell surface. Moreover, we observed AGS-induced suppression of chymotrypsin- and trypsin-like proteasome activities necessary for peptide processing by proteasome as well as a decline in IFNγ-stimulated immunoproteasome (IPR) function and expression of PA28 activator and immunoproteasome subunits LMP7 and LMP2. Furthermore, IFNγ-induced activation of peptide-loading complex (PLC) components, such as transporter associated with antigen processing (TAP1) and tapasin, were suppressed by AGS. The attenuation of IPR and PLC activation was attributed to AGS-triggered impairment of IFNγ signaling in HepG2.2.15 cells. Collectively, all these downstream events reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, which may suppress CTL activation and the recognition of CTL epitopes on HBV-expressing hepatocytes by immune cells, thereby leading to persistence of liver inflammation.NEW & NOTEWORTHY Our study shows that in HBV-expressing HepG2.2.15 cells, acetaldehyde alters HBV peptide processing by suppressing chymotrypsin- and trypsin-like proteasome activities and decreases IFNγ-stimulated immunoproteasome function and expression of PA28 activator and immunoproteasome subunits. It also suppresses IFNγ-induced activation of peptide-loading complex (PLC) components due to impairment of IFNγ signaling via the JAK-STAT1 pathway. These acetaldehyde-induced dysfunctions reduced the display of HBV peptide-MHC class I complexes on the hepatocyte surface, thereby leading to persistence of HBV infection.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Vjaceslav M Krutik
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Carol A Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
18
|
Sung PS, Park DJ, Kim JH, Han JW, Lee EB, Lee GW, Nam HC, Jang JW, Bae SH, Choi JY, Shin EC, Park SH, Yoon SK. Ex vivo Detection and Characterization of Hepatitis B Virus-Specific CD8 + T Cells in Patients Considered Immune Tolerant. Front Immunol 2019; 10:1319. [PMID: 31244857 PMCID: PMC6563765 DOI: 10.3389/fimmu.2019.01319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, we aimed to detect and characterize ex vivo virus-specific CD8+ T cells in patients with immune-tolerant hepatitis B virus (HBV) infection. We investigated a Korean chronic hepatitis B cohort composed of 15 patients in the immune-tolerant phase, 17 in the immune-active phase, and 13 under antiviral treatment. We performed enzyme-linked immunospot (ELISpot) assays ex vivo and intracellular cytokine staining after in vitro culture. We also performed ex vivo multimer staining assays and examined the expression of programmed death-1 (PD-1) and CD127 in pentamer-positive cells. Ex vivo ELISpot revealed that HBV-specific T cell function was weaker in immune-tolerant patients than in those under antiviral treatment. In vitro culture of peripheral blood mononuclear cells for 10 days revealed that HBV-specific CD8+ T cells produced interferon-γ in some immune-tolerant patients. We detected HBV-specific CD8+ T cells ex vivo (using the HBV core18-27 pentamer) in patients from all three groups. The PD-1+ subset of pentamer+ CD8+ T cells was smaller ex vivo in the immune-tolerant phase than in the immune-active phase or under antiviral treatment. Interestingly, the proportion of PD-1+ CD8+ T cells in HBV-specific CD8+ T cells correlated with patient age when all enrolled patients were analyzed. Overall, HBV-specific CD8+ T cells are present in patients considered as immune-tolerant, although their ex vivo functionality is significantly weaker than that in patients under antiviral treatment (P < 0.05). Despite the high viral load, the proportion of PD-1 expression in HBV-specific CD8+ T cells is lower in the immune-tolerant phase than in other phases. Our results indicate appropriate stimulation may enhance the effector function of HBV-specific CD8+ T cells in patients considered as being in the immune-tolerant phase.
Collapse
Affiliation(s)
- Pil Soo Sung
- Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung-Hee Kim
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea
| | - Eun Byul Lee
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gil Won Lee
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hee Chul Nam
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Jang
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Si Hyun Bae
- Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea
| | - Seung Kew Yoon
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|