1
|
Tao Z, Zou P, Yang Z, Xiong T, Deng Z, Chen Q. Single-cell multi-omics elucidates the role of RPS27-RPS24 fusion gene in osteosarcoma chemoresistance and metabolic regulation. Cell Death Discov 2025; 11:197. [PMID: 40280903 PMCID: PMC12032165 DOI: 10.1038/s41420-025-02487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Osteosarcoma (OS) presents significant treatment challenges due to chemoresistance. This study explores the molecular mechanisms underlying chemoresistance in OS, focusing on the novel fusion gene RPS27-RPS24. Using single-cell multi-omics techniques, we identified a significant upregulation of RPS27-RPS24 in chemoresistant OS cells. Our analyses revealed that RPS27-RPS24 enhances glutaminase (GLS)-mediated glutamine metabolism and inhibits copper-induced cell death, thereby promoting chemoresistance. In vitro experiments with adriamycin-resistant (ADMR) OS cells confirmed that overexpression of RPS27-RPS24 leads to increased cell viability and proliferation under chemotherapy. In vivo studies further validated these findings, demonstrating that targeting glutamine metabolism can reverse chemoresistance. Our results suggest that the RPS27-RPS24 fusion gene plays a critical role in OS chemoresistance through metabolic reprogramming, providing a potential therapeutic target for improving OS treatment outcomes. The application of multiple analytical techniques in this study (as shown in the upper image) and the hypothesized mechanism (as shown in the lower image).
Collapse
Affiliation(s)
- Zhiwei Tao
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, 330029, Nanchang, P.R. China.
| | - Pingan Zou
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, 330029, Nanchang, P.R. China
| | - Zhengxu Yang
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, 330029, Nanchang, P.R. China
| | - Tao Xiong
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, 330029, Nanchang, P.R. China
| | - Zhi Deng
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, 330029, Nanchang, P.R. China
| | - Qincan Chen
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, 330029, Nanchang, P.R. China
| |
Collapse
|
2
|
Huang B, Yang Y, Liu J, Zhang B, Lin N. Ubiquitination regulation of mitochondrial homeostasis: a new sight for the treatment of gastrointestinal tumors. Front Immunol 2025; 16:1533007. [PMID: 40134432 PMCID: PMC11933043 DOI: 10.3389/fimmu.2025.1533007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Mitochondrial homeostasis (MH) refers to the dynamic balance of mitochondrial number, function, and quality within cells. Maintaining MH is significant in the occurrence, development, and clinical treatment of Gastrointestinal (GI) tumors. Ubiquitination, as an important post-translational modification mechanism of proteins, plays a central role in the regulation of MH. Over the past decade, research on the regulation of MH by ubiquitination has focused on mitochondrial biogenesis, mitochondrial dynamics, Mitophagy, and mitochondrial metabolism during these processes. This review summarizes the mechanism and potential therapeutic targets of ubiquitin (Ub)-regulated MH intervention in GI tumors.
Collapse
Affiliation(s)
- Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yulin Yang
- School of Clinical Chinese Medicine, Gansu University of Chinese Medicine, Gansu, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
3
|
Shen R, Jiang Z, Wang H, Zheng Z, Jiang X. Molecular mechanisms of m6A modifications regulating tumor radioresistance. Mol Med 2025; 31:64. [PMID: 39972266 PMCID: PMC11837317 DOI: 10.1186/s10020-025-01121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Radiotherapy is one of the most effective treatments for malignant tumors. Radioresistance is a major factor that contributes to radiotherapy failure and poor prognosis. Recent studies have elucidated the pivotal role of aberrant N6-methyladenosine (m6A) modification, the predominant internal mRNA modification in eukaryotic cells, influences cancer progression by disrupting gene expression and other critical cellular processes. Furthermore, aberrant m6A methylation provides a substrate for tumor therapy; however, whether it regulates tumor radioresistance remains unclear. Methylated transferase (writer), demethylated transferase (eraser), and methylated recognition protein (reader) are the three essential proteins that regulate m6A modification via different mechanisms in different tumors. This review summarizes the latest research advances in m6A methylation and aims to provide novel perspectives on the advancement of regimens to overcome radioresistance and tumor invasion.
Collapse
Affiliation(s)
- Ruolin Shen
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhenyang Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Shen X, Chen Y, Tang Y, Lu P, Liu M, Mao T, Weng Y, Yu F, Liu Y, Tang Y, Wang L, Niu N, Xue J. Targeting pancreatic cancer glutamine dependency confers vulnerability to GPX4-dependent ferroptosis. Cell Rep Med 2025; 6:101928. [PMID: 39879992 PMCID: PMC11866519 DOI: 10.1016/j.xcrm.2025.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/17/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) relies heavily on glutamine (Gln) utilization to meet its metabolic and biosynthetic needs. How epigenetic regulators contribute to the metabolic flexibility and PDAC's response and adaptation to Gln scarcity in the tumor milieu remains largely unknown. Here, we elucidate that prolonged Gln restriction or treatment with the Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), leads to growth inhibition and ferroptosis program activation in PDAC. A CRISPR-Cas9 screen identifies an epigenetic regulator, Paxip1, which promotes H3K4me3 upregulation and Hmox1 transcription upon DON treatment. Additionally, ferroptosis-related repressors (e.g., Slc7a11 and Gpx4) are increased as an adaptive response, thereby predisposing PDAC cells to ferroptosis upon Gln deprivation. Moreover, DON sensitizes PDAC cells to GPX4 inhibitor-induced ferroptosis, both in vitro and in patient-derived xenografts (PDXs). Taken together, our findings reveal that targeting Gln dependency confers susceptibility to GPX4-dependent ferroptosis via epigenetic remodeling and provides a combination strategy for PDAC therapy.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueyue Chen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiebo Mao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feier Yu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China.
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Zhang X, Hu J, Zheng H, Ren J, Mu S, Chen Y, Song G, Chen YA, Zhang G. Development and validation of a prognostic model based on m6A-related lncRNAs to predict prognosis for papillary renal cell cancer patients. Sci Rep 2024; 14:31460. [PMID: 39732963 PMCID: PMC11682231 DOI: 10.1038/s41598-024-83263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
To evaluate the predictive utility of N6-methyladenosine (m6A)-associated long non-coding RNAs (lncRNAs) for the prognosis and immunotherapy response in papillary renal cell carcinoma (pRCC). Transcriptomic data of pRCC samples were extracted from the TCGA database. The m6A-related lncRNAs were identified by Pearson correlation analysis. Univariate and LASSO regression analyses were used to develop a risk model. The discrimination and predictive ability were evaluated through survival analysis, ROC analysis and consensus clustering. Tumor mutation burden (TMB) and immune infiltration of the risk groups were compared. A prognostic nomogram was constructed using six m6A-related lncRNAs, and validated through calibration and decision curve analysis (DCA). The lncRNAs HCG25 and NOP14-AS1 were knocked down in a human pRCC cell line using specific siRNA constructs, and the proliferation and migration rates were assessed by the CCK-8 and transwell assays. We identified a total of 153 m6A-related lncRNAs in pRCC datasets, of which six were selected for constructing a m6A-related lncRNA pRCC prognostic model. Mutations in the SETD2 gene correlated with worse prognosis. Significant differences were observed in immune cell infiltration between the two risk groups. A clinical prognostic nomogram for pRCC was further established based on clinical variables. In vitro assays further showed that HCG25 and NOP14-AS1 regulate the proliferation and migration of pRCC cells. The results validated the discrimination ability of both the m6A-related lncRNA pRCC prognostic model and the pRCC clinical prognostic nomogram. We developed a clinical prognostic nomogram for pRCC using pRCC prognostic-associated m6A-related lncRNAs, which can be utilized for predicting the prognosis and immune landscape of pRCC patients.
Collapse
Affiliation(s)
- Xianlu Zhang
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Jiyuan Hu
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Haoyuan Zheng
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Jiayi Ren
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
| | - Siyu Mu
- Department of Neurology, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, 110000, China
| | - Yiming Chen
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Guoli Song
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institute for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ya-Ang Chen
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China
| | - Gejun Zhang
- Department of Urology Surgery, The First Affiliation Hospital of China Medical University, Shenyang, 110000, Liaoning, China.
- Institute of Urology, China Medical University, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
6
|
Chen S, Liu D, Chen B, Li Z, Chang B, Xu C, Li N, Feng C, Hu X, Wang W, Zhang Y, Xie Y, Huang Q, Wang Y, Nimer SD, Chen S, Chen Z, Wang L, Sun X. Catalytic activity of Setd2 is essential for embryonic development in mice: establishment of a mouse model harboring patient-derived Setd2 mutation. Front Med 2024; 18:831-849. [PMID: 39115793 DOI: 10.1007/s11684-024-1095-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/08/2024] [Indexed: 11/01/2024]
Abstract
SETD2 is the only enzyme responsible for transcription-coupled histone H3 lysine 36 trimethylation (H3K36me3). Mutations in SETD2 cause human diseases including cancer and developmental defects. In mice, Setd2 is essential for embryonic vascular remodeling. Given that many epigenetic modifiers have recently been found to possess noncatalytic functions, it is unknown whether the major function(s) of Setd2 is dependent on its catalytic activity or not. Here, we established a site-specific knockin mouse model harboring a cancer patient-derived catalytically dead Setd2 (Setd2-CD). We found that the essentiality of Setd2 in mouse development is dependent on its methyltransferase activity, as the Setd2CD/CD and Setd2-/- mice showed similar embryonic lethal phenotypes and largely comparable gene expression patterns. However, compared with Setd2-/-, the Setd2CD/CD mice showed less severe defects in allantois development, and single-cell RNA-seq analysis revealed differentially regulated allantois-specific 5' Hoxa cluster genes in these two models. Collectively, this study clarifies the importance of Setd2 catalytic activity in mouse development and provides a new model for comparative study of previously unrecognized Setd2 functions.
Collapse
Affiliation(s)
- Shubei Chen
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Dianjia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Bingyi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zijuan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Binhe Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chunhui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ningzhe Li
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Changzhou Feng
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222000, China
| | - Xibo Hu
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Weiying Wang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yingcai Wang
- Sylvester Comprehensive Cancer Center and Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center and Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Omics and Diseases, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
7
|
Feng W, Niu N, Lu P, Chen Z, Rao H, Zhang W, Ma C, Liu C, Xu Y, Gao W, Xue J, Li L. Multilevel Regulation of NF-κB Signaling by NSD2 Suppresses Kras-Driven Pancreatic Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309387. [PMID: 38889281 PMCID: PMC11321637 DOI: 10.1002/advs.202309387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/27/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer with a dismal overall prognosis. NSD2 is an H3K36-specific di-methyltransferase that has been reported to play a crucial role in promoting tumorigenesis. Here, the study demonstrates that NSD2 acts as a putative tumor suppressor in Kras-driven pancreatic tumorigenesis. NSD2 restrains the mice from inflammation and Kras-induced ductal metaplasia, while NSD2 loss facilitates pancreatic tumorigenesis. Mechanistically, NSD2-mediated H3K36me2 promotes the expression of IκBα, which inhibits the phosphorylation of p65 and NF-κB nuclear translocation. More importantly, NSD2 interacts with the DNA binding domain of p65, attenuating NF-κB transcriptional activity. Furthermore, inhibition of NF-κB signaling relieves the symptoms of Nsd2-deficient mice and sensitizes Nsd2-null PDAC to gemcitabine. Clinically, NSD2 expression decreased in PDAC patients and negatively correlated to nuclear p65 expression. Together, the study reveals the important tumor suppressor role of NSD2 and multiple mechanisms by which NSD2 suppresses both p65 phosphorylation and downstream transcriptional activity during pancreatic tumorigenesis. This study opens therapeutic opportunities for PDAC patients with NSD2 low/loss by combined treatment with gemcitabine and NF-κBi.
Collapse
Affiliation(s)
- Wenxin Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Zhuo Chen
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
8
|
Xiong J, Zhu L, Fu Y, Ye Z, Deng C, Wang X, Chen Y. Prognostic and therapeutic roles of SETD2 in cutaneous melanoma. Aging (Albany NY) 2024; 16:9692-9708. [PMID: 38843391 PMCID: PMC11210245 DOI: 10.18632/aging.205894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/16/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) is an aggressive form of skin cancer with limited treatment options for advanced stages. Prognostic markers that accurately predict patients' outcomes and guide therapeutic strategies are crucial for improving melanoma management. SETD2 (SET Domain-Containing Protein 2), a histone methyltransferase involved in chromatin remodeling and gene regulation, has recently emerged as a tumor suppressor. Its dysfunction is involved in oncogenesis in some cancers, but little is known about its functions in progression and therapeutic response of melanoma. METHODS RNA-seq and clinical data from public database were used to evaluate the survival analysis, gene set enrichment, IC50 of therapeutics and immunotherapy response. SETD2 knock-out A375 cell line (A375SETD2ko) was developed by Crispr/cas9 and CCK-8 analysis and nude mice used to evaluate the proliferation and invasion of melanoma cells in vitro and in vivo, while Western blotting tested the MMR-related protein. RESULTS SETD2 was commonly down-regulated in melanoma samples which demonstrated an unfavorable survival. Cells without SETD2 expression tend to have a more progressive and invasive behavior, with resistance to chemotherapy. However, they are more sensitive to tyrosine kinase inhibitors (TKIs). They also exhibit inflamed features with lower TIDE (Tumor Immune Dysfunction and Exclusion) score and higher tumor mutation burden (TMB), showing that these patients may benefit from immunotherapy. CONCLUSIONS This study revealed that SETD2 dysfunction in melanoma implied a poor prognosis and chemotherapy resistance, but highly sensitive to TKIs and immunotherapy, highlighting the prognostic and therapeutic value of SETD2 in cutaneous melanoma.
Collapse
Affiliation(s)
- Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Liping Zhu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Yunrong Fu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Cuimin Deng
- Department of Pharmacology, QuanZhou Women’s and Children’s Hospital, Quanzhou, Fujian, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
9
|
Tang P, Zheng G, Xu C, Yu N, Du J, Hu L, Zhou Z, Zheng Y. Function of NEK2 in clear cell renal cell carcinoma and its effect on the tumor microenvironment. Medicine (Baltimore) 2024; 103:e37939. [PMID: 38758909 PMCID: PMC11098263 DOI: 10.1097/md.0000000000037939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/29/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Previous studies have revealed the critical functions of NEK2 in controlling the cell cycle which is linked to poor prognosis in multiple tumor types, but less research has been devoted to clear cell renal cell carcinoma (ccRCC). METHODS We downloaded clinical data from the gene expression omnibus (GEO) and TCGA databases together with transcriptional and mutational datasets. Strongly coexpressed genes with NEK2 were extracted from TCGA-KIRC cohort, and were submitted to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analyses. According to NEK2 levels, the survival status, mutational characteristics, response to immunotherapy and sensitivity to drugs of the patients were studied. The potential correlations between NEK2 levels and immune cell state as well as immune cell infiltration were examined using the GEPIA, TIMER and TISIDB databases. Double immunofluorescence (IF) was performed to identify the NEK2 overexpression and relationship with CD8 in ccRCC. RESULTS The NEK2 gene was overexpressed and would enhance the nuclear division and cell cycle activities in ccRCC. ccRCC patients with high NEK2 expression had worse clinical outcomes, higher mutation burden and better therapeutic response. Moreover, NEK2 gene overexpression was positively related to various immune cell marker sets, which was also proved by validation cohort, and more infiltration of various immune cells. CONCLUSION ccRCC patients with NEK2 high expression have a poorer prognosis than those with NEK2 low expression, resulting from its function of promoting proliferation, accompanied by increased infiltration of CD8 + T cells and Tregs and T-cell exhaustion and will respond better to proper treatments.
Collapse
Affiliation(s)
- Peng Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Department of Urology, The First People’s Hospital of Linping District of Hangzhou, Hangzhou, China
| | - Gangfu Zheng
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Congcong Xu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nengfeng Yu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jiaqi Du
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Liqian Hu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhan Zhou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of An-ti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yichun Zheng
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Niu N, Shen X, Wang Z, Chen Y, Weng Y, Yu F, Tang Y, Lu P, Liu M, Wang L, Sun Y, Yang M, Shen B, Jin J, Lu Z, Jiang K, Shi Y, Xue J. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell 2024; 42:869-884.e9. [PMID: 38579725 DOI: 10.1016/j.ccell.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of cancer-associated fibroblasts (CAFs) as part of the host response to tumor cells. The origins and functions of transcriptionally diverse CAF populations in PDAC remain poorly understood. Tumor cell-intrinsic genetic mutations and epigenetic dysregulation may reshape the TME; however, their impacts on CAF heterogeneity remain elusive. SETD2, a histone H3K36 trimethyl-transferase, functions as a tumor suppressor. Through single-cell RNA sequencing, we identify a lipid-laden CAF subpopulation marked by ABCA8a in Setd2-deficient pancreatic tumors. Our findings reveal that tumor-intrinsic SETD2 loss unleashes BMP2 signaling via ectopic gain of H3K27Ac, leading to CAFs differentiation toward lipid-rich phenotype. Lipid-laden CAFs then enhance tumor progression by providing lipids for mitochondrial oxidative phosphorylation via ABCA8a transporter. Together, our study links CAF heterogeneity to epigenetic dysregulation in tumor cells, highlighting a previously unappreciated metabolic interaction between CAFs and pancreatic tumor cells.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yueyue Chen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feier Yu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yufeng Shi
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Watanabe T, Honma Y, Yonemori K, Sunami K, Yoshimoto S, Mori T. High-grade intraductal carcinoma of the parotid gland harboring CTNNA1::ALK rearrangement: Changes in genetic status using genetic testing during treatment with an ALK inhibitor. Head Neck 2024; 46:E26-E31. [PMID: 38018800 DOI: 10.1002/hed.27587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Salivary gland carcinomas harboring anaplastic lymphoma kinase (ALK) rearrangements are rare. Here, we present the pathological characteristics, clinical course, and changes in the genetic status of a salivary gland carcinoma harboring a catenin alpha 1 (CTNNA1)::ALK rearrangement during treatment with an ALK tyrosine kinase inhibitor (TKI). METHODS A 59-year-old man with a parotid tumor and cervical lymph node metastases underwent total parotidectomy and radical neck dissection. One month after completion of postoperative radiotherapy, the patient experienced multiple recurrences. RESULTS Subsequent treatment with the ALK-TKI alectinib was initially effective against the intraductal carcinoma harboring CTNNA1::ALK rearrangement and TP53 mutation. However, 10 months later the patients' condition deteriorated, and an additional phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutation was detected. The patient ultimately succumbed to multiple organ failure. CONCLUSION The clinical course suggested the concurrent emergence of TP53 and PIK3CA mutations and ALK-TKI drug-selective growth of non-ALK rearrangement gene tumor cells.
Collapse
Affiliation(s)
- Takane Watanabe
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Honma
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Lu P, Xu J, Shen X, Sun J, Liu M, Niu N, Wang Q, Xue J. Spatiotemporal role of SETD2-H3K36me3 in murine pancreatic organogenesis. Cell Rep 2024; 43:113703. [PMID: 38265933 DOI: 10.1016/j.celrep.2024.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Pancreas development is tightly controlled by multilayer mechanisms. Despite years of effort, large gaps remain in understanding how histone modifications coordinate pancreas development. SETD2, a predominant histone methyltransferase of H3K36me3, plays a key role in embryonic stem cell differentiation, whose role in organogenesis remains elusive. Here, by combination of cleavage under targets and tagmentation (CUT&Tag), assay for transposase-accessible chromatin using sequencing (ATAC-seq), and bulk RNA sequencing, we show a dramatic increase in the H3K36me3 level from the secondary transition phase and decipher the related transcriptional alteration. Using single-cell RNA sequencing, we define that pancreatic deletion of Setd2 results in abnormalities in both exocrine and endocrine lineages: hyperproliferative tip progenitor cells lead to abnormal differentiation; Ngn3+ endocrine progenitors decline due to the downregulation of Nkx2.2, leading to insufficient endocrine development. Thus, these data identify SETD2 as a crucial player in embryonic pancreas development, providing a clue to understanding the dysregulation of histone modifications in pancreatic disorders.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junyi Xu
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqing Shen
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningning Niu
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Wang T, Wagner RT, Hlady RA, Pan X, Zhao X, Kim S, Wang L, Lee J, Luo H, Castle EP, Lake DF, Ho TH, Robertson KD. SETD2 loss in renal epithelial cells drives epithelial-to-mesenchymal transition in a TGF-β-independent manner. Mol Oncol 2024; 18:44-61. [PMID: 37418588 PMCID: PMC10766198 DOI: 10.1002/1878-0261.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023] Open
Abstract
Histone-lysine N-methyltransferase SETD2 (SETD2), the sole histone methyltransferase that catalyzes trimethylation of lysine 36 on histone H3 (H3K36me3), is often mutated in clear cell renal cell carcinoma (ccRCC). SETD2 mutation and/or loss of H3K36me3 is linked to metastasis and poor outcome in ccRCC patients. Epithelial-to-mesenchymal transition (EMT) is a major pathway that drives invasion and metastasis in various cancer types. Here, using novel kidney epithelial cell lines isogenic for SETD2, we discovered that SETD2 inactivation drives EMT and promotes migration, invasion, and stemness in a transforming growth factor-beta-independent manner. This newly identified EMT program is triggered in part through secreted factors, including cytokines and growth factors, and through transcriptional reprogramming. RNA-seq and assay for transposase-accessible chromatin sequencing uncovered key transcription factors upregulated upon SETD2 loss, including SOX2, POU2F2 (OCT2), and PRRX1, that could individually drive EMT and stemness phenotypes in SETD2 wild-type (WT) cells. Public expression data from SETD2 WT/mutant ccRCC support the EMT transcriptional signatures derived from cell line models. In summary, our studies reveal that SETD2 is a key regulator of EMT phenotypes through cell-intrinsic and cell-extrinsic mechanisms that help explain the association between SETD2 loss and ccRCC metastasis.
Collapse
Affiliation(s)
- Tianchu Wang
- Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMNUSA
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Ryan T. Wagner
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Ryan A. Hlady
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Xiaoyu Pan
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Xia Zhao
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Sungho Kim
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Science ResearchMayo ClinicRochesterMNUSA
| | - Jeong‐Heon Lee
- Epigenomics Development LaboratoryMayo ClinicRochesterMNUSA
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Huijun Luo
- Division of Hematology and OncologyMayo Clinic ArizonaPhoenixAZUSA
| | | | | | - Thai H. Ho
- Division of Hematology and OncologyMayo Clinic ArizonaPhoenixAZUSA
| | - Keith D. Robertson
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| |
Collapse
|
14
|
Jo JH, Kim YT, Choi HS, Kim HG, Lee HS, Choi YW, Kim DU, Lee KH, Kim EJ, Han JH, Lee SO, Park CH, Choi EK, Kim JW, Cho JY, Lee WJ, Moon HR, Park MS, Kim S, Song SY. Efficacy of GV1001 with gemcitabine/capecitabine in previously untreated patients with advanced pancreatic ductal adenocarcinoma having high serum eotaxin levels (KG4/2015): an open-label, randomised, Phase 3 trial. Br J Cancer 2024; 130:43-52. [PMID: 37903909 PMCID: PMC10781743 DOI: 10.1038/s41416-023-02474-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The TeloVac study indicated GV1001 did not improve the survival of advanced pancreatic ductal adenocarcinoma (PDAC). However, the cytokine examinations suggested that high serum eotaxin levels may predict responses to GV1001. This Phase III trial assessed the efficacy of GV1001 with gemcitabine/capecitabine for eotaxin-high patients with untreated advanced PDAC. METHODS Patients recruited from 16 hospitals received gemcitabine (1000 mg/m2, D 1, 8, and 15)/capecitabine (830 mg/m2 BID for 21 days) per month either with (GV1001 group) or without (control group) GV1001 (0.56 mg; D 1, 3, and 5, once on week 2-4, 6, then monthly thereafter) at random in a 1:1 ratio. The primary endpoint was overall survival (OS) and secondary end points included time to progression (TTP), objective response rate, and safety. RESULTS Total 148 patients were randomly assigned to the GV1001 (n = 75) and control groups (n = 73). The GV1001 group showed improved median OS (11.3 vs. 7.5 months, P = 0.021) and TTP (7.3 vs. 4.5 months, P = 0.021) compared to the control group. Grade >3 adverse events were reported in 77.3% and 73.1% in the GV1001 and control groups (P = 0.562), respectively. CONCLUSIONS GV1001 plus gemcitabine/capecitabine improved OS and TTP compared to gemcitabine/capecitabine alone in eotaxin-high patients with advanced PDAC. CLINICAL TRIAL REGISTRATION NCT02854072.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Tae Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Soon Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ho Gak Kim
- Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Hong Sik Lee
- Department of Gastroenterology, Korea University College of Medicine, Seoul, Korea
| | - Young Woo Choi
- Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Dong Uk Kim
- Division of Gastroenterology and Hepatology, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eui Joo Kim
- Division of Gastroenterology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Joung-Ho Han
- Department of Internal Medicine, Chungbuk National University College of Medicine & Chungbuk National University Hospital, Cheongju, South Korea
| | - Seung Ok Lee
- Department of Internal Medicine, The Research Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Korea
| | - Chang-Hwan Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Kwang Choi
- Division of Gastroenterology, Department of Internal Medicine, Jeju National University College of Medicine, Jeju, Korea
| | - Jae Woo Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Hyungsik Roger Moon
- Department of Economics, University of Southern California, Los Angeles, CA, USA
- Department of Economics, Yonsei University, Seoul, Korea
| | - Mi-Suk Park
- Department of Radiology, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Sangjae Kim
- GemVax & KAEL Co., Ltd. 58, Techno 11-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Zheng X, Luo Y, Xiong Y, Liu X, Zeng C, Lu X, Wang X, Cheng Y, Wang S, Lan H, Wang K, Weng Z, Bi W, Gan X, Jia X, Wang L, Wang Y. Tumor cell-intrinsic SETD2 inactivation sensitizes cancer cells to immune checkpoint blockade through the NR2F1-STAT1 pathway. J Immunother Cancer 2023; 11:e007678. [PMID: 38056895 PMCID: PMC10711831 DOI: 10.1136/jitc-2023-007678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Cancer immunotherapies can induce durable tumor regression, but most patients do not respond. SETD2 mutation has been linked to the efficacy of immune checkpoint inhibitors (ICIs) immunotherapy. The functional importance of the SETD2 inactivation and how to modulate immunotherapy response remains unclear. METHODS To explore the function of SETD2 in immunotherapy, knockout and subsequent functional experiments were conducted. Bulk RNA-seq, ATAC-seq, Chip-seq and single-cell RNA-seq were performed to dissect the mechanism and explore the immune microenvironment of mouse tumor. Flow cytometry was used to assess cell surface antigen and intratumoral T cell levels. RESULTS We comprehensively determine the effect of SETD2 inactivation in ICIs therapy and elucidate the mechanistic impact on tumor immunity. Murine syngeneic tumors harboring Setd2 inactivation are sensitive to ICIs. By bulk and single-cell RNA-seq, we further reveal that SETD2 inactivation reprograms intratumoral immune cells and inflames the tumor microenvironment, which is characterized by high infiltration of T cells and enhanced antigen presentation to activate CD8+ T cell-mediated killing. Mechanistically, via an integrated multiomics analysis using ATAC-seq, ChIP-seq and RNA-seq, we demonstrate that SETD2 inactivation reduces NR2F1 transcription by impairing H3K36me3 deposition and chromatin accessibility, which activates the STAT1 signaling pathway to promote chemokines and programmed cell death protein-1 (PD-1) expression and enhance antigen presentation. All these regulatory mechanisms synergistically promote the effects of anti-programmed cell death ligand 1 immunotherapy in Setd2-knockout syngeneic mouse models. The SETD2-NR2F1-STAT1 regulatory axis is conserved in human and murine cancers. Finally, cancer patients harboring SETD2 mutations who received ICIs show increased durable clinical benefits and survival. CONCLUSIONS These findings provide novel insights into the biology of SETD2 inactivation regulation and reveal a new potential therapeutic biomarker for ICIs immunotherapy in various refractory cancers.
Collapse
Affiliation(s)
- Xufen Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxiang Luo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangjie Xiong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunling Zeng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaofang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yumei Cheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Simin Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haoqi Lan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhonghui Weng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenbo Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinxin Gan
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaona Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Estabrooks T, Gurinovich A, Pietruska J, Lewis B, Harvey G, Post G, Lambert L, Miller A, Rodrigues L, White ME, Lopes C, London CA, Megquier K. Identification of genomic alterations with clinical impact in canine splenic hemangiosarcoma. Vet Comp Oncol 2023; 21:623-633. [PMID: 37734854 DOI: 10.1111/vco.12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/23/2023]
Abstract
Canine hemangiosarcoma (HSA) is an aggressive cancer of endothelial cells with short survival times. Understanding the genomic landscape of HSA may aid in developing therapeutic strategies for dogs and may also inform therapies for the rare and aggressive human cancer angiosarcoma. The objectives of this study were to build a framework for leveraging real-world genomic and clinical data that could provide the foundation for precision medicine in veterinary oncology, and to determine the relationships between genomic and clinical features in canine splenic HSA. One hundred and nine dogs with primary splenic HSA treated by splenectomy that had tumour sequencing via the FidoCure® Precision Medicine Platform targeted sequencing panel were enrolled. Patient signalment, weight, metastasis at diagnosis and overall survival time were retrospectively evaluated. The incidence of genomic alterations in individual genes and their relationship to patient variables including outcome were assessed. Somatic mutations in TP53 (n = 44), NRAS (n = 20) and PIK3CA (n = 19) were most common. Survival was associated with presence of metastases at diagnosis and germline variants in SETD2 and NOTCH1. Age at diagnosis was associated with somatic NRAS mutations and breed. TP53 and PIK3CA somatic mutations were found in larger dogs, while germline SETD2 variants were found in smaller dogs. We identified both somatic mutations and germline variants associated with clinical variables including age, breed and overall survival. These genetic changes may be useful prognostic factors and provide insight into the genomic landscape of hemangiosarcoma.
Collapse
Affiliation(s)
- Timothy Estabrooks
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | | | - Jodie Pietruska
- MassBio, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | | | - Gerald Post
- One Health Company, Palo Alto, California, USA
| | | | | | | | | | | | - Cheryl A London
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Shen X, Niu N, Xue J. Oncogenic KRAS triggers metabolic reprogramming in pancreatic ductal adenocarcinoma. J Transl Int Med 2023; 11:322-329. [PMID: 38130635 PMCID: PMC10732496 DOI: 10.2478/jtim-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an extremely high lethality rate. Oncogenic KRAS activation has been proven to be a key driver of PDAC initiation and progression. There is increasing evidence that PDAC cells undergo extensive metabolic reprogramming to adapt to their extreme energy and biomass demands. Cell-intrinsic factors, such as KRAS mutations, are able to trigger metabolic rewriting. Here, we update recent advances in KRAS-driven metabolic reprogramming and the associated metabolic therapeutic potential in PDAC.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| |
Collapse
|
18
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
19
|
Jing T, Xu X, Wu C, Wei D, Yuan L, Huang Y, Liu Y, Wang B. POH1 facilitates pancreatic carcinogenesis through MYC-driven acinar-to-ductal metaplasia and is a potential therapeutic target. Cancer Lett 2023; 577:216444. [PMID: 37844756 DOI: 10.1016/j.canlet.2023.216444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), a necessary process for pancreatic ductal adenocarcinoma (PDAC) initiation. However, the regulatory role of POH1, a deubiquitinase linked to several types of cancer, in ADM and PDAC is unclear. In this study, we investigated the role of POH1 in ADM and PDAC using murine models. Our findings suggest that pancreatic-specific deletion of Poh1 alleles attenuates ADM and impairs pancreatic carcinogenesis, improving murine survival. Mechanistically, POH1 deubiquitinates and stabilizes the MYC protein, which potentiates ADM and PDAC. Furthermore, POH1 is highly expressed in PDAC samples, and clinical evidence establishes a positive correlation between aberrantly expressed POH1 and poor prognosis in PDAC patients. Targeting POH1 with a specific small-molecule inhibitor significantly reduces pancreatic tumor formation, highlighting POH1 as a promising therapeutic target for PDAC treatment. Overall, POH1-mediated MYC deubiquitination is crucial for ADM and PDAC onset, and targeting POH1 could be an effective strategy for PDAC treatment, offering new avenues for PDAC targeted therapy.
Collapse
Affiliation(s)
- Tiantian Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chengsi Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Dianhui Wei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Yuan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yiwen Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
20
|
Feng W, Ma C, Rao H, Zhang W, Liu C, Xu Y, Aji R, Wang Z, Xu J, Gao WQ, Li L. Setd2 deficiency promotes gastric tumorigenesis through inhibiting the SIRT1/FOXO pathway. Cancer Lett 2023; 579:216470. [PMID: 37914019 DOI: 10.1016/j.canlet.2023.216470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Gastric cancer (GC) is the fifth most common cancer and the second leading cause of cancer death globally. SETD2 is a histone methyltransferase catalyzing tri-methylation of H3K36 (H3K36me3) and has been shown to participate in diverse biological processes and human tumors. However, the mechanism of SETD2 in GC remains unclear. Here, we reported that Setd2 deficiency predicts poor prognosis of gastric cancer. SETD2 loss facilitated H. felis/MNU and c-Myc-induced gastric tumorigenesis, respectively. The mouse model of stomach-specific Setd2 depletion together with c-MYC overexpression (AMS) developed high-grade epithelial defects, intestinal metaplasia and dysplasia at only 10-12 weeks of age. Mechanistically, Setd2 depletion resulted in impaired epigenetic regulation of Sirt1, thus inhibiting the SIRT1/FOXO pathway. Moreover, the agonists of FOXO signaling or overexpression of SIRT1 significantly rescued the enhanced cell proliferation and migration caused by Setd2 deficiency in SGC7901 cells. Together, our findings highlight an epigenetic mechanism by which SETD2 regulates gastric tumorigenesis through SIRT1/FOXO pathway. It may also pave the way for the development of targeted, patient-tailored therapies for GC patients with Setd2 deficiency.
Collapse
Affiliation(s)
- Wenxin Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Rebiguli Aji
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Jin KZ, Wu Y, Zheng XX, Li TJ, Liao ZY, Fei QL, Zhang HR, Shi SM, Sha X, Yu XJ, Chen W, Ye LY, Wu WD. Inhibition of epithelial-to-mesenchymal transition augments antitumor efficacy of nanotherapeutics in pancreatic ductal adenocarcinoma. FEBS J 2023; 290:4577-4590. [PMID: 37245155 DOI: 10.1111/febs.16879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023]
Abstract
Intrinsic drug resistance mechanisms of tumor cells often reduce intracellular drug concentration to suboptimal levels. Epithelial-to-mesenchymal transition (EMT) is a pivotal process in tumor progression and metastasis that confers an aggressive phenotype as well as resistance to chemotherapeutics. Therefore, it is imperative to develop novel strategies and identify new targets to improve the overall efficacy of cancer treatment. We developed SN38 (active metabolite of irinotecan)-assembled glycol chitosan nanoparticles (cSN38) for the treatment of pancreatic ductal adenocarcinoma (PDAC). Furthermore, cSN38 and the TGF-β1 inhibitor LY364947 formed composite nanoparticles upon self-assembly (cSN38 + LY), which obviated the poor aqueous solubility of LY364947 and enhanced drug sensitivity. The therapeutic efficacy of cSN38 + LY nanotherapeutics was studied in vitro and in vivo using suitable models. The cSN38 nanoparticles exhibited an antitumor effect that was significantly attenuated by TGF-β-induced EMT. The cellular uptake of SN38 was impeded during EMT, which affected the therapeutic efficacy. The combination of LY364947 and cSN38 markedly enhanced the cellular uptake of SN38, increased cytotoxic effects, and inhibited EMT in PDAC cells in vitro. Furthermore, cSN38 + LY significantly inhibited PDAC xenograft growth in vivo. The cSN38 + LY nanoparticles increased the therapeutic efficacy of cSN38 via repressing the EMT of PDAC cells. Our findings provide a rationale for designing nanoscale therapeutics to combat PDAC.
Collapse
Affiliation(s)
- Kai-Zhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ying Wu
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, China
| | - Xiao-Xiao Zheng
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhen-Yu Liao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Lin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hui-Ru Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Sai-Meng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Sha
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei-Ding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Xue W, Jian W, Meng Y, Wang T, Cai L, Yu Y, Yu Y, Xia Z, Zhang C. Knockdown of SETD2 promotes erastin-induced ferroptosis in ccRCC. Cell Death Dis 2023; 14:539. [PMID: 37604811 PMCID: PMC10442429 DOI: 10.1038/s41419-023-06057-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/15/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is associated with poor prognosis. The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be expressed at low levels and frequently mutated in ccRCC. Ferroptosis, a form of death distinct from apoptosis and necrosis, has been reported in recent years in renal cancer. However, the relationship between SETD2 and ferroptosis in renal cancer is not clear. Here, we demonstrated that SETD2 was expressed at low levels in ccRCC and was associated with poor prognosis. Moreover, we found that knockdown of SETD2 increased lipid peroxidation and Fe2+ levels in tumor cells, thereby increasing the sensitivity of erastin, a ferroptosis inducer. Mechanistically, histone H3 lysine 36 trimethylation (H3K36me3) which was catalyzed by SETD2, interacted with the promoter of ferrochelatase (FECH) to regulate its transcription and ferroptosis-related signaling pathways. In conclusion, the presesnt study revealed that knockdown of the epigenetic molecule, SETD2, significantly increases the sensitivity of ferroptosis inducers which promotes tumor cell death, thereby indicating that SETD2 may be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Wei Xue
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Wengang Jian
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuyang Meng
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Tengda Wang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Licheng Cai
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yongchun Yu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yipeng Yu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhinan Xia
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Cheng Zhang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Department of Urology, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
23
|
He J, Xu T, Zhao F, Guo J, Hu Q. SETD2-H3K36ME3: an important bridge between the environment and tumors. Front Genet 2023; 14:1204463. [PMID: 37359376 PMCID: PMC10288198 DOI: 10.3389/fgene.2023.1204463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Epigenetic regulation plays an important role in the occurrence, development and treatment of tumors. The histone methyltransferase SET-domain-containing 2 (SETD2) plays a key role in mammalian epigenetic regulation by catalyzing histone methylation and interacting with RNA polymerase II to mediate transcription elongation and mismatch repair. As an important bridge between the environment and tumors, SETD2-H3K36me3 plays an important role in the occurrence and development of tumors. Many tumors, including renal cancer, gastric cancer, lung cancer, are closely related to SETD2 gene mutations. As a key component of common tumor suppressor mechanisms, SETD2-H3K36me3is an important target for clinical disease diagnosis and treatment. Here, we reviewed the structure and function of the SETD2 and how SETD2-H3K36me3 functions as a bridge between the environment and tumors to provide an in-depth understanding of its role in the occurrence and development of various tumors, which is of great significance for future disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jiahui He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tangpeng Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
24
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
25
|
Chen S, Lin J, Zhao J, Lin Q, Liu J, Wang Q, Mui R, Ma L. FBXW7 attenuates tumor drug resistance and enhances the efficacy of immunotherapy. Front Oncol 2023; 13:1147239. [PMID: 36998461 PMCID: PMC10043335 DOI: 10.3389/fonc.2023.1147239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
FBXW7 (F-box and WD repeat domain containing 7) is a critical subunit of the Skp1-Cullin1-F-box protein (SCF), acting as an E3 ubiquitin ligase by ubiquitinating targeted protein. Through degradation of its substrates, FBXW7 plays a pivotal role in drug resistance in tumor cells and shows the potential to rescue the sensitivity of cancer cells to drug treatment. This explains why patients with higher FBXW7 levels exhibit higher survival times and more favorable prognosis. Furthermore, FBXW7 has been demonstrated to enhance the efficacy of immunotherapy by targeting the degradation of specific proteins, as compared to the inactivated form of FBXW7. Additionally, other F-box proteins have also shown the ability to conquer drug resistance in certain cancers. Overall, this review aims to explore the function of FBXW7 and its specific effects on drug resistance in cancer cells.
Collapse
Affiliation(s)
- Shimin Chen
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jichun Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaojiao Zhao
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Ryan Mui
- Department of Gastroenterology, Sparrow Hospital, Lansing, MI, United States
| | - Leina Ma
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Leina Ma,
| |
Collapse
|
26
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
27
|
Zhang Y, Zhang Q, Zhang Y, Han J. The Role of Histone Modification in DNA Replication-Coupled Nucleosome Assembly and Cancer. Int J Mol Sci 2023; 24:ijms24054939. [PMID: 36902370 PMCID: PMC10003558 DOI: 10.3390/ijms24054939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/08/2023] Open
Abstract
Histone modification regulates replication-coupled nucleosome assembly, DNA damage repair, and gene transcription. Changes or mutations in factors involved in nucleosome assembly are closely related to the development and pathogenesis of cancer and other human diseases and are essential for maintaining genomic stability and epigenetic information transmission. In this review, we discuss the role of different types of histone posttranslational modifications in DNA replication-coupled nucleosome assembly and disease. In recent years, histone modification has been found to affect the deposition of newly synthesized histones and the repair of DNA damage, further affecting the assembly process of DNA replication-coupled nucleosomes. We summarize the role of histone modification in the nucleosome assembly process. At the same time, we review the mechanism of histone modification in cancer development and briefly describe the application of histone modification small molecule inhibitors in cancer therapy.
Collapse
|
28
|
Histone Modifications Represent a Key Epigenetic Feature of Epithelial-to-Mesenchyme Transition in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24054820. [PMID: 36902253 PMCID: PMC10003015 DOI: 10.3390/ijms24054820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant diseases due to its high invasiveness, early metastatic properties, rapid disease progression, and typically late diagnosis. Notably, the capacity for pancreatic cancer cells to undergo epithelial-mesenchymal transition (EMT) is key to their tumorigenic and metastatic potential, and is a feature that can explain the therapeutic resistance of such cancers to treatment. Epigenetic modifications are a central molecular feature of EMT, for which histone modifications are most prevalent. The modification of histones is a dynamic process typically carried out by pairs of reverse catalytic enzymes, and the functions of these enzymes are increasingly relevant to our improved understanding of cancer. In this review, we discuss the mechanisms through which histone-modifying enzymes regulate EMT in pancreatic cancer.
Collapse
|
29
|
Tian H, Wang Y, Yang Z, Chen P, Xu J, Tian Y, Fan T, Xiao C, Bai G, Li L, Zheng B, Li C, He J. Genetic trajectory and clonal evolution of multiple primary lung cancer with lymph node metastasis. Cancer Gene Ther 2023; 30:507-520. [PMID: 36653483 PMCID: PMC10014582 DOI: 10.1038/s41417-022-00572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 01/20/2023]
Abstract
Multiple primary lung cancer (MPLC) with lymph node metastasis (LNM) is a rare phenomenon of multifocal lung cancer. The genomic landscapes of MPLC and the clonal evolution pattern between primary lung lesions and lymph node metastasis haven't been fully illustrated. We performed whole-exome sequencing (WES) on 52 FFPE (Formalin-fixed Paraffin-Embedded) samples from 11 patients diagnosed with MPLC with LNM. Genomic profiling and phylogenetic analysis were conducted to infer the evolutional trajectory within each patient. The top 5 most frequently mutated genes in our study were TTN (76.74%), MUC16 (62.79%), MUC19 (55.81%), FRG1 (46.51%), and NBPF20 (46.51%). For most patients in our study, a substantial of genetic alterations were mutually exclusive among the multiple pulmonary tumors of the same patient, suggesting their heterogenous origins. Individually, the genetic profile of lymph node metastatic lesions overlapped with that of multiple lung cancers in different degrees but are more genetically related to specific pulmonary lesions. SETD2 was a potential metastasis biomarker of MPLC. The mean putative neo-antigen number of the primary tumor (646.5) is higher than that of lymph node metastases (300, p = 0.2416). Primary lung tumors and lymph node metastases are highly heterogenous in immune repertoires. Our findings portrayed the comprehensive genomic landscape of MPLC with LNM. We characterized the genomic heterogeneity among different tumors. We offered novel clues to the clonal evolution between MPLC and their lymphatic metastases, thus advancing the treatment strategies and preventions of MPLC with LNM.
Collapse
Affiliation(s)
- He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Yalong Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Ping Chen
- Department of Medical Oncology, Yancheng No. 1 People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Guangdong Provincial People's Hospital/Guangdong Provincial Academy of Medical Sciences, Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, China
| | - Yanhua Tian
- Department of Thoracic Surgery/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
30
|
Xie Y, Sahin M, Wakamatsu T, Inoue-Yamauchi A, Zhao W, Han S, Nargund AM, Yang S, Lyu Y, Hsieh JJ, Leslie CS, Cheng EH. SETD2 regulates chromatin accessibility and transcription to suppress lung tumorigenesis. JCI Insight 2023; 8:e154120. [PMID: 36810256 PMCID: PMC9977508 DOI: 10.1172/jci.insight.154120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
SETD2, a H3K36 trimethyltransferase, is the most frequently mutated epigenetic modifier in lung adenocarcinoma, with a mutation frequency of approximately 9%. However, how SETD2 loss of function promotes tumorigenesis remains unclear. Using conditional Setd2-KO mice, we demonstrated that Setd2 deficiency accelerated the initiation of KrasG12D-driven lung tumorigenesis, increased tumor burden, and significantly reduced mouse survival. An integrated chromatin accessibility and transcriptome analysis revealed a potentially novel tumor suppressor model of SETD2 in which SETD2 loss activates intronic enhancers to drive oncogenic transcriptional output, including the KRAS transcriptional signature and PRC2-repressed targets, through regulation of chromatin accessibility and histone chaperone recruitment. Importantly, SETD2 loss sensitized KRAS-mutant lung cancer to inhibition of histone chaperones, the FACT complex, or transcriptional elongation both in vitro and in vivo. Overall, our studies not only provide insight into how SETD2 loss shapes the epigenetic and transcriptional landscape to promote tumorigenesis, but they also identify potential therapeutic strategies for SETD2 mutant cancers.
Collapse
Affiliation(s)
- Yuchen Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Merve Sahin
- Computational and Systems Biology Program, MSKCC, New York, New York, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, USA
| | - Toru Wakamatsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Akane Inoue-Yamauchi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Wanming Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Song Han
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Amrita M. Nargund
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Shaoyuan Yang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Yang Lyu
- Molecular Oncology, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - James J. Hsieh
- Molecular Oncology, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | | | - Emily H. Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, MSKCC, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
31
|
Niu N, Shen X, Zhang L, Chen Y, Lu P, Yang W, Liu M, Shi J, Xu D, Tang Y, Yang X, Weng Y, Zhao X, Wu L, Sun Y, Xue J. Tumor Cell-Intrinsic SETD2 Deficiency Reprograms Neutrophils to Foster Immune Escape in Pancreatic Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202937. [PMID: 36453584 PMCID: PMC9839845 DOI: 10.1002/advs.202202937] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Indexed: 06/07/2023]
Abstract
Genetic and epigenetic alterations play central roles in shaping the immunosuppressive tumor microenvironment (TME) to evade immune surveillance. The previous study shows that SETD2-H3K36me3 loss promotes KRAS-induced pancreatic tumorigenesis. However, little is known about its role in remodeling the TME and immune evasion. Here, it is shown that SETD2 deficiency can reprogram neutrophils to an immunosuppressive phenotype, thereby promoting immune escape during pancreatic tumor progression. By comprehensive profiling of the intratumoral immune cells, neutrophils are identified as the subset with the most significant changes upon Setd2 loss. Setd2-deficient pancreatic tumor cells directly enhance neutrophil recruitment and reprogramming, thereby inhibiting the cytotoxicity of CD8+ T cells to foster tumor progression. Mechanistically, it is revealed that Setd2-H3K36me3 loss leads to ectopic gain of H3K27me3 to downregulate Cxadr expression, which boosts the PI3K-AKT pathway and excessive expression of CXCL1 and GM-CSF, thereby promoting neutrophil recruitment and reprogramming toward an immunosuppressive phenotype. The study provides mechanistic insights into how tumor cell-intrinsic Setd2 deficiency strengthens the immune escape during pancreatic tumorigenesis, which may offer potential therapeutic implications for pancreatic cancer patients with SETD2 deficiency.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xuqing Shen
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yueyue Chen
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Wenjuan Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Dapeng Xu
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yingying Tang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yawen Weng
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xinxin Zhao
- Department of RadiologyRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Lian‐Ming Wu
- Department of RadiologyRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yongwei Sun
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| |
Collapse
|
32
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
33
|
Yang Y, Cao L, Guo Z, Gu H, Zhang K, Qiu Z. Deubiquitinase UCHL5 stabilizes ELK3 to potentiate cancer stemness and tumor progression in pancreatic adenocarcinoma (PAAD). Exp Cell Res 2022; 421:113402. [PMID: 36328194 DOI: 10.1016/j.yexcr.2022.113402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/29/2022]
Abstract
Aberrant ubiquitin-proteasome system (UPS) contributes to tumorigeneisis or drug resistance of Pancreatic Adenocarcinoma (PAAD). Previous studies have implicated the deubiquitinase UCHL5 was abnormally expressed in multiple malignancies. However, little was reported about the specific roles of UCHL5 in PAAD. We aimed to identify the biological roles of UCHL5 in PAAD and demonstrate its prognostic significance. Differential analysis revealed that UCHL5 expressed highly in tumors versus normal tissues, like TCGA-PAAD, GSE28735, GSE15471 and collected samples. Patients with high UCHL5 expressions had worse survival outcomes relative to those with low UCHL5 levels. Experimental assays showed that UCHL5 overexpression could significantly enhance cell proliferation, colony formation and self-renewal capacities. UCHL5 could also promote PAAD migration in vitro and in vivo. Mechanistically, UCHL5 could directly deubiquitinate and stabilize ELK3 proteins. UCHL5 relied on accumulated ELK3 proteins to drive cell growth, stem-like properties and migration abilities. In addition, enrichment analysis based on RNA-seq data implicated that ELK3 mainly correlated with Notch1 signaling and ELK3 could notably elevate ELK3 mRNA levels. UCHL5 could thus promote self-renewal abilities of PAAD and targeting ELK3 could inhibit the stemness features. In contrast, UCHL5 deficiency could suppress PAAD stemness features, and ectopic expression of ELK3 could rescue this effect. Last of all, we utilized the UCHL5 inhibitor, b-AP15, to treat PAAD cells and found that b-AP15 could inhibit the growth of PAAD cells in a dose-dependent manner. Collectively, our study uncovered the underlying mechanisms of UCHL5/ELK3/Notch1 axis in PAAD progression and stemness maintaince, shedding light on individualized treatment and risk stratification for PAAD patients.
Collapse
Affiliation(s)
- Yuhan Yang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lei Cao
- Department of Oncology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, China
| | - Zengya Guo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Haitao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
34
|
Shen X, Chen Y, Liu M, Shi J, Tang Y, Yang X, Xu D, Yao H, Lu P, Sun Y, Xue J, Niu N. Glycolysis addiction compensating for a defective pentose phosphate pathway confers gemcitabine sensitivity in SETD2-deficient pancreatic cancer. Biochem Biophys Res Commun 2022; 615:9-16. [PMID: 35679751 DOI: 10.1016/j.bbrc.2022.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy driven by genetic mutations and/or epigenetic dysregulation. Gemcitabine chemotherapy is the first-line regimen for pancreatic cancer but has limited efficacy. Our previous study revealed the role of SETD2-H3K36me3 loss in the initiation and metastasis of PDAC, but little is known about its role in tumor metabolism. Here, we found that SETD2-deficient PDAC enhanced glycolysis addiction via upregulation of glucose transporter 1 (GLUT1) to meet its large demand for glucose in progression. Moreover, SETD2 deficiency impaired nucleoside synthesis by directly downregulating the transcriptional level of transketolase (TKT) in the pentose phosphate pathway. The metabolic changes confer SETD2-deficient PDAC cells with increased sensitivity to gemcitabine under glycolysis restriction conditions. Collectively, our study provides mechanistic insights into how SETD2 deficiency reprograms glycolytic metabolism to compensate for insufficient nucleoside synthesis, suggesting that glycolysis restriction combined with gemcitabine might be a potential therapeutic strategy for PDAC patients with SETD2 deficiency.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueyue Chen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dapeng Xu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongfei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
36
|
Song H, Shen R, Liu X, Yang X, Xie K, Guo Z, Wang D. Histone post-translational modification and the DNA damage response. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
37
|
SULF2 enhances GDF15-SMAD axis to facilitate the initiation and progression of pancreatic cancer. Cancer Lett 2022; 538:215693. [DOI: 10.1016/j.canlet.2022.215693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 12/22/2022]
|
38
|
Shan L, Hao C, Jun Z, Qinghe C. Histone methyltransferase Dot1L inhibits pancreatic cancer cell apoptosis by promoting NUPR1 expression. J Int Med Res 2022; 50:3000605221088431. [PMID: 35350907 PMCID: PMC8973069 DOI: 10.1177/03000605221088431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective To explore functions of the histone H3 lysine 79 (K79) methyltransferase Dot1L in the development of pancreatic cancer and evaluate the possibility of targeting Dot1L to inhibit pancreatic cancer progression. Methods Patient samples were used to detect differences in Dot1L expression between tumor and adjacent tissues and to determine correlations between Dot1L expression in patients with different stages of pancreatic cancer. Lentiviral-mediated knockdown of Dot1L expression and flow cytometry were used to detect apoptosis in pancreatic cancer lacking Dot1L expression; chromatin immunoprecipitation and quantitative PCR were used to detect downstream target genes of Dot1L. Results We show that Dot1L is highly expressed in pancreatic cancer, and that its expression is related to pancreatic cancer stage. Knocking down Dot1L significantly promoted apoptosis in pancreatic cancer cells, while overexpressing Dot1L inhibited apoptosis. Mechanistically, Dot1L regulated apoptosis in pancreatic cancer cells by promoting NUPR1 expression. The enriched H3K79 trimethylation in the transcription initiation region of NUPR1 promoted its expression. Overexpressing NUPR1 inhibited the pancreatic cancer cell apoptosis caused by Dot1L knockdown. Conclusions Dot1L inhibits pancreatic cancer cell apoptosis by targeting NUPR1; thus, Dot1L is a promising target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Lin Shan
- Affiliated Hospital of Putian University
| | - Chen Hao
- Affiliated Hospital of Putian University
| | - Zheng Jun
- Affiliated Hospital of Putian University
| | - Cai Qinghe
- Affiliated Hospital of Putian University
| |
Collapse
|
39
|
Yang X, Chen R, Chen Y, Zhou Y, Wu C, Li Q, Wu J, Hu W, Zhao W, Wei W, Shi J, Ji M. Methyltransferase SETD2 Inhibits Tumor Growth and Metastasis via STAT1‐IL‐8 signaling mediated EMT in lung adenocarcinoma. Cancer Sci 2022; 113:1195-1207. [PMID: 35152527 PMCID: PMC8990294 DOI: 10.1111/cas.15299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a major subtype of non–small‐cell lung cancer, which is the leading cause of cancer death worldwide. The histone H3K36 methyltransferase SETD2 has been reported to be frequently mutated or deleted in types of human cancer. However, the functions of SETD2 in tumor growth and metastasis in LUAD has not been well illustrated. Here, we found that SETD2 was significantly downregulated in human lung cancer and greatly impaired proliferation, migration, and invasion in vitro and in vivo. Furthermore, we found that SETD2 overexpression significantly attenuated the epithelial–mesenchymal transition (EMT) of LUAD cells. RNA‐seq analysis identified differentially expressed transcripts that showed an elevated level of interleukin 8 (IL‐8) in STED2‐knockdown LUAD cells, which was further verified using qPCR, western blot, and promoter luciferase report assay. Mechanically, SETD2‐mediated H3K36me3 prevented assembly of Stat1 on the IL‐8 promoter and contributed to the inhibition of tumorigenesis in LUAD. Our findings highlight the suppressive role of SETD2/H3K36me3 in cell proliferation, migration, invasion, and EMT during LUAD carcinogenesis, via regulation of the STAT1–IL‐8 signaling pathway. Therefore, our studies on the molecular mechanism of SETD2 will advance our understanding of epigenetic dysregulation at LUAD progression.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
- Jiangsu Engineering Research Center for Tumor Immunotherapy Changzhou 213003 P.R. China
- Institute of Cell Therapy Soochow University Changzhou 213003 P.R. China
| | - Rui Chen
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Yan Chen
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - You Zhou
- Jiangsu Engineering Research Center for Tumor Immunotherapy Changzhou 213003 P.R. China
- Institute of Cell Therapy Soochow University Changzhou 213003 P.R. China
- Department of Tumor Biological Treatment The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Chen Wu
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Qing Li
- Department of Pathology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Jun Wu
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Wen‐wei Hu
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Wei‐qing Zhao
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Wei Wei
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Jun‐tao Shi
- Department of Cardiothoracic Surgery The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Mei Ji
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| |
Collapse
|
40
|
Liu W, Ren D, Xiong W, Jin X, Zhu L. A novel FBW7/NFAT1 axis regulates cancer immunity in sunitinib-resistant renal cancer by inducing PD-L1 expression. J Exp Clin Cancer Res 2022; 41:38. [PMID: 35081978 PMCID: PMC8790872 DOI: 10.1186/s13046-022-02253-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) alone and in combination with immune checkpoint inhibitors (ICIs) have been shown to be beneficial for the survival of metastatic renal cell carcinoma (mRCC) patients, but resistance to targeted therapy and ICIs is common in the clinic. Understanding the underlying mechanism is critical for further prolonging the survival of renal cancer patients. Nuclear factor of activated T cell 1 (NFAT1) is expressed in immune and nonimmune cells, and the dysregulation of NFAT1 contributes to the progression of various type of malignant tumors. However, the specific role of NFAT1 in RCC is elusive. As a regulator of the immune response, we would like to systemically study the role of NFAT1 in RCC. Methods TCGA-KIRC dataset analysis, Western blot analysis and RT-qPCR analysis was used to determine the clinic-pathological characteristic of NFAT1 in RCC. CCK-8 assays, colony formation assays and xenograft assays were performed to examine the biological role of NFAT1 in renal cancer cells. RNA-seq analysis was used to examine the pathways changed after NFAT1 silencing. ChIP-qPCR, coimmunoprecipitation analysis, Western blot analysis and RT-qPCR analysis were applied to explore the mechanism by NAFT1 was regulated in the renal cancer cells. Results In our study, we found that NFAT1 was abnormally overexpressed in RCC and that NFAT1 overexpression was associated with an unfavorable prognosis. Then, we showed that NFAT1 enhanced tumor growth and regulated the immune response by increasing PD-L1 expression in RCC. In addition, we demonstrated that NFAT1 was stabilized in sunitinib-resistant RCC via hyperactivation of the PI3K/AKT/GSK-3β signaling pathway. Furthermore, our study indicated that downregulation of the expression of FBW7, which promotes NFAT1 degradation, was induced by FOXA1 and SETD2 in sunitinib-resistant RCC. Finally, FBW7 was found to contribute to modulating the immune response in RCC. Conclusions Our data reveal a novel role for the FBW7/NFAT1 axis in the RCC response to TKIs and ICIs. NFAT1 and its associated signaling pathway might be therapeutic targets for RCC treatment, especially when combined with ICIs and/or TKIs. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02253-0.
Collapse
|
41
|
Liu M, Yang Y, Kang W, Liu Y, Tao X, Li X, Pan Y. Berberine inhibits pancreatic intraepithelial neoplasia by inhibiting glycolysis via the adenosine monophosphate -activated protein kinase pathway. Eur J Pharmacol 2022; 915:174680. [PMID: 34890544 DOI: 10.1016/j.ejphar.2021.174680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022]
Abstract
Most cases of pancreatic cancer develop in patients with chronic pancreatitis (CP). Berberine is natural product that exhibits anti-tumor effects in various types of cancer and is used in traditional Chinese medicine. In this study, we demonstrated that berberine inhibited the development of pancreatic intraepithelial neoplasia (PanIN) in an in vivo CP model and an in vitro acinar-to-ductal metaplasia model. As berberine may inhibit glycolysis during the development of PanIN, we measured indicators of glycolysis. Quantitative reverse transcription polymerase chain reaction and western blotting assays revealed that berberine activated the adenosine monophosphate-activated protein kinase (AMPK) pathway. This demonstrated that berberine suppressed glycolysis by targeting AMPK, a key metabolic sensor. Furthermore, berberine acted via the AMPK-hypoxia-inducible factor 1 alpha pathway to achieve suppression of PanIN. These findings show that berberine is a potential therapeutic candidate for preventing the progression of CP to PanIN.
Collapse
Affiliation(s)
- Mengmeng Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yongjie Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wenli Kang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yingjie Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xufeng Tao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xiaona Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China; Ningbo Institute of Dalian University of Technology, Ningbo, China.
| |
Collapse
|
42
|
Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. H3K36 trimethylation-mediated biological functions in cancer. Clin Epigenetics 2021; 13:199. [PMID: 34715919 PMCID: PMC8555273 DOI: 10.1186/s13148-021-01187-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Histone modification is an important form of epigenetic regulation. Thereinto, histone methylation is a critical determination of chromatin states, participating in multiple cellular processes. As a conserved histone methylation mark, histone 3 lysine 36 trimethylation (H3K36me3) can mediate multiple transcriptional-related events, such as the regulation of transcriptional activity, transcription elongation, pre-mRNA alternative splicing, and RNA m6A methylation. Additionally, H3K36me3 also contributes to DNA damage repair. Given the crucial function of H3K36me3 in genome regulation, the roles of H3K36me3 and its sole methyltransferase SETD2 in pathogenesis, especially malignancies, have been emphasized in many studies, and it is conceivable that disruption of histone methylation regulatory network composed of "writer", "eraser", "reader", and the mutation of H3K36me3 codes have the capacity of powerfully modulating cancer initiation and development. Here we review H3K36me3-mediated biological processes and summarize the latest findings regarding its role in cancers. We highlight the significance of epigenetic combination therapies in cancers.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
43
|
Liu H, Sun Y, Zhang Q, Jin W, Gordon RE, Zhang Y, Wang J, Sun C, Wang ZJ, Qi X, Zhang J, Huang B, Gui Q, Yuan H, Chen L, Ma X, Fang C, Liu YQ, Yu X, Feng S. Pro-inflammatory and proliferative microglia drive progression of glioblastoma. Cell Rep 2021; 36:109718. [PMID: 34525361 DOI: 10.1016/j.celrep.2021.109718] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 04/01/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Scant understanding of the glioblastoma microenvironment and molecular bases hampers development of efficient treatment strategies. Analyses of gene signatures of human gliomas demonstrate that the SETD2 mutation is correlated with poor prognosis of IDH1/2 wild-type (IDH-WT) adult glioblastoma patients. To better understand the crosstalk between SETD2 mutant (SETD2-mut) glioblastoma cells and the tumor microenvironment, we leverage single-cell transcriptomics to comprehensively map cellular populations in glioblastoma. In this study, we identify a specific subtype of high-grade glioma-associated microglia (HGG-AM). Further analysis shows that transforming growth factor (TGF)-β1 derived from SETD2-mut/IDH-WT tumor cells activates HGG-AM, exhibiting pro-inflammation and proliferation signatures. Particularly, HGG-AM secretes interleukin (IL)-1β via the apolipoprotein E (ApoE)-mediated NLRP1 inflammasome, thereby promoting tumor progression. HGG-AM present extensive proliferation and infiltration to supplement the activated microglia pool. Notably, TGF-β1/TβRI depletion dramatically reduces HGG-AM density and suppresses tumor growth. Altogether, our studies identify a specific microglia subpopulation and establish the cellular basis of interactions between HGG-AM and glioblastoma cells.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China; Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, P.R. China
| | - Youliang Sun
- School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| | - Qian Zhang
- Medical Laboratory Center, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, P.R. China; Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, P.R. China
| | - Wei Jin
- Department of Pathology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | | | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jian Wang
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Caihong Sun
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zeyuan John Wang
- School of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, USA
| | - Xueling Qi
- Department of Neuro-Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Junping Zhang
- Department of Neuro-Oncology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Boyuan Huang
- Department of Neurosurgery, Beijing Electric Power Hospital, Beijing 100073, P.R. China
| | - Qiuping Gui
- Department of Pathology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Science Cancer Hospital/National Cancer Center, Beijing 100021, P.R. China
| | - Ling Chen
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xiaodong Ma
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Chuan Fang
- Department of Neurosurgery, The Affiliated Hospital of Hebei University, Baoding 122311, P.R. China
| | - Yong-Qiang Liu
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China.
| | - Shiyu Feng
- Department of Neurosurgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China.
| |
Collapse
|
44
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
45
|
Urrutia G, de Assuncao TM, Mathison AJ, Salmonson A, Kerketta R, Zeighami A, Stodola TJ, Adsay V, Pehlivanoglu B, Dwinell MB, Zimmermann MT, Iovanna JL, Urrutia R, Lomberk G. Inactivation of the Euchromatic Histone-Lysine N-Methyltransferase 2 Pathway in Pancreatic Epithelial Cells Antagonizes Cancer Initiation and Pancreatitis-Associated Promotion by Altering Growth and Immune Gene Expression Networks. Front Cell Dev Biol 2021; 9:681153. [PMID: 34249932 PMCID: PMC8261250 DOI: 10.3389/fcell.2021.681153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, painful disease with a 5-year survival rate of only 9%. Recent evidence indicates that distinct epigenomic landscapes underlie PDAC progression, identifying the H3K9me pathway as important to its pathobiology. Here, we delineate the role of Euchromatic Histone-lysine N-Methyltransferase 2 (EHMT2), the enzyme that generates H3K9me, as a downstream effector of oncogenic KRAS during PDAC initiation and pancreatitis-associated promotion. EHMT2 inactivation in pancreatic cells reduces H3K9me2 and antagonizes Kras G12D -mediated acinar-to-ductal metaplasia (ADM) and Pancreatic Intraepithelial Neoplasia (PanIN) formation in both the Pdx1-Cre and P48 Cre/+ Kras G12D mouse models. Ex vivo acinar explants also show impaired EGFR-KRAS-MAPK pathway-mediated ADM upon EHMT2 deletion. Notably, Kras G12D increases EHMT2 protein levels and EHMT2-EHMT1-WIZ complex formation. Transcriptome analysis reveals that EHMT2 inactivation upregulates a cell cycle inhibitory gene expression network that converges on the Cdkn1a/p21-Chek2 pathway. Congruently, pancreas tissue from Kras G12D animals with EHMT2 inactivation have increased P21 protein levels and enhanced senescence. Furthermore, loss of EHMT2 reduces inflammatory cell infiltration typically induced during Kras G12D -mediated initiation. The inhibitory effect on Kras G12D -induced growth is maintained in the pancreatitis-accelerated model, while simultaneously modifying immunoregulatory gene networks that also contribute to carcinogenesis. This study outlines the existence of a novel KRAS-EHMT2 pathway that is critical for mediating the growth-promoting and immunoregulatory effects of this oncogene in vivo, extending human observations to support a pathophysiological role for the H3K9me pathway in PDAC.
Collapse
Affiliation(s)
- Guillermo Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Thiago Milech de Assuncao
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Angela J. Mathison
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ann Salmonson
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Romica Kerketta
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Atefeh Zeighami
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy J. Stodola
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Volkan Adsay
- Department of Pathology, Koç University Hospital, Istanbul, Turkey
| | - Burcin Pehlivanoglu
- Department of Pathology, Adiyaman University Training and Research Hospital, Adiyaman, Turkey
| | - Michael B. Dwinell
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael T. Zimmermann
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Raul Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
- LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
- LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
46
|
Li X, Liu C, Zhu Y, Rao H, Liu M, Gui L, Feng W, Tang H, Xu J, Gao WQ, Li L. SETD2 epidermal deficiency promotes cutaneous wound healing via activation of AKT/mTOR Signalling. Cell Prolif 2021; 54:e13045. [PMID: 33949020 PMCID: PMC8168411 DOI: 10.1111/cpr.13045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Cutaneous wound healing is one of the major medical problems worldwide. Epigenetic modifiers have been identified as important players in skin development, homeostasis and wound repair. SET domain–containing 2 (SETD2) is the only known histone H3K36 tri‐methylase; however, its role in skin wound healing remains unclear. Materials and Methods To elucidate the biological role of SETD2 in wound healing, conditional gene targeting was used to generate epidermis‐specific Setd2‐deficient mice. Wound‐healing experiments were performed on the backs of mice, and injured skin tissues were collected and analysed by haematoxylin and eosin (H&E) and immunohistochemical staining. In vitro, CCK8 and scratch wound‐healing assays were performed on Setd2‐knockdown and Setd2‐overexpression human immortalized keratinocyte cell line (HaCaT). In addition, RNA‐seq and H3K36me3 ChIP‐seq analyses were performed to identify the dysregulated genes modulated by SETD2. Finally, the results were validated in functional rescue experiments using AKT and mTOR inhibitors (MK2206 and rapamycin). Results Epidermis‐specific Setd2‐deficient mice were successfully established, and SETD2 deficiency resulted in accelerated re‐epithelialization during cutaneous wound healing by promoting keratinocyte proliferation and migration. Furthermore, the loss of SETD2 enhanced the scratch closure and proliferation of keratinocytes in vitro. Mechanistically, the deletion of Setd2 resulted in the activation of AKT/mTOR signalling pathway, while the pharmacological inhibition of AKT and mTOR with MK2206 and rapamycin, respectively, delayed wound closure. Conclusions Our results showed that SETD2 loss promoted cutaneous wound healing via the activation of AKT/mTOR signalling.
Collapse
Affiliation(s)
- Xiaoxue Li
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanyu Rao
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Gui
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Feng
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huayuan Tang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Rao H, Li X, Liu M, Liu J, Feng W, Tang H, Xu J, Gao WQ, Li L. Multilevel Regulation of β-Catenin Activity by SETD2 Suppresses the Transition from Polycystic Kidney Disease to Clear Cell Renal Cell Carcinoma. Cancer Res 2021; 81:3554-3567. [PMID: 33910928 DOI: 10.1158/0008-5472.can-20-3960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Patients with polycystic kidney disease (PKD) are at a high risk of developing renal cell carcinoma (RCC). However, little is known about genetic alterations or changes in signaling pathways during the transition from PKD to RCC. SET domain-containing 2 (SETD2) is a histone methyltransferase, which catalyzes tri-methylation of H3K36 (H3K36me3) and has been identified as a tumor suppressor in clear cell renal cell carcinoma (ccRCC), but the underlying mechanism remains largely unexplored. Here we report that knockout of SETD2 in a c-MYC-driven PKD mouse model drove the transition to ccRCC. SETD2 inhibited β-catenin activity at transcriptional and posttranscriptional levels by competing with β-catenin for binding promoters of target genes and maintaining transcript levels of members of the β-catenin destruction complex. Thus, SETD2 deficiency enhanced the epithelial-to-mesenchymal transition and tumorigenesis through the hyperactivation of Wnt/β-catenin signaling. Our findings reveal previously unrecognized roles of SETD2-mediated competitive DNA binding and H3K36me3 modification in regulating Wnt/β-catenin signaling during the transition from PKD to ccRCC. The novel autochthonous mouse models of PKD and ccRCC will be useful for preclinical research into disease progression. SIGNIFICANCE: These findings characterize multiple mechanisms by which SETD2 inhibits β-catenin activity during the transition of polycystic kidney disease to renal cell carcinoma, providing a potential therapeutic strategy for high-risk patients. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3554/F1.large.jpg.
Collapse
Affiliation(s)
- Hanyu Rao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxue Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huayuan Tang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. ; .,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. ; .,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Yang Y, Wang C, Wei N, Hong T, Sun Z, Xiao J, Yao J, Li Z, Liu T. Identification of prognostic chromatin-remodeling genes in clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:25614-25642. [PMID: 33232269 PMCID: PMC7803503 DOI: 10.18632/aging.104170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the effects of chromatin-remodeling genes on the prognosis of patients with clear cell renal cell carcinoma (ccRCC). In TCGA-KIRC patients, two subgroups based on 86 chromatin-remodeling genes were established. The random forest algorithm was used for feature selection to identify BPTF, SIN3A and CNOT1 as characterized chromatin remodelers in ccRCC with good prognostic value. YY1 was indicated to be a transcription factor of genes highly related to BPTF, SIN3A and CNOT1. Functional annotations indicated that BPTF, SIN3A, CNOT1 and YY1 are all involved in the ubiquitin-mediated proteolysis process and that high expression of any of the five associated E3 ubiquitin ligases found in the pathway suggests a good prognosis. Protein network analysis indicated that BPTF has a targeted regulatory effect on YY1. Another independent dataset from International Cancer Genome Consortium (ICGC) showed a strong consistency with results in TCGA. In conclusion, we demonstrate that BPTF, SIN3A and CNOT1 are novel prognostic factors that predict good survival in ccRCC. We predicted that the good prognostic value of chromatin-remodeling genes BPTF and SIN3A is related to the regulation of YY1 and that YY1 regulates E3 ubiquitin ligases for further degradation of oncoproteins in ccRCC.
Collapse
Affiliation(s)
- Yujing Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Chengyuan Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ningde Wei
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Ting Hong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zuyu Sun
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Tiexi District, Shenyang 110001, P.R. China
| | - Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| |
Collapse
|
49
|
Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan L, Li L, Song K, Qiu T, Pan Q, Chen Q, Zhang G, Zang Y, Tan M, Zhang J, Li Q, Wang X, Jiang J, Qin J. SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways. Cancer Cell 2020; 38:350-365.e7. [PMID: 32619406 DOI: 10.1016/j.ccell.2020.05.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/01/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
The level of SETD2-mediated H3K36me3 is inversely correlated with that of EZH2-catalyzed H3K27me3. Nevertheless, it remains unclear whether these two enzymatic activities are molecularly intertwined. Here, we report that SETD2 delays prostate cancer (PCa) metastasis via its substrate EZH2. We show that SETD2 methylates EZH2 which promotes EZH2 degradation. SETD2 deficiency induces a Polycomb-repressive chromatin state that enables cells to acquire metastatic traits. Conversely, mice harboring nonmethylated EZH2 mutant or SETD2 mutant defective in binding to EZH2 develop metastatic PCa. Furthermore, we identify that metformin-stimulated AMPK signaling converges at FOXO3 to stimulate SETD2 expression. Together, our results demonstrate that the SETD2-EZH2 axis integrates metabolic and epigenetic signaling to restrict PCa metastasis.
Collapse
Affiliation(s)
- Huairui Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuye Yin
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, NHC Key Laboratory of Antibody Technique, Department of Microbes and Infection, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lulu Pan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200127, China
| | - Kun Song
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Tong Qiu
- Department of Obstetrics, Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 20 Renmin South Road, Chengdu 610041, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qilong Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qintong Li
- Department of Obstetrics, Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 20 Renmin South Road, Chengdu 610041, China
| | - Xiaoming Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, NHC Key Laboratory of Antibody Technique, Department of Microbes and Infection, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
50
|
Yang C, Zhang J, Ma Y, Wu C, Cui W, Wang L. Histone methyltransferase and drug resistance in cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:173. [PMID: 32859239 PMCID: PMC7455899 DOI: 10.1186/s13046-020-01682-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
A number of novel anticancer drugs have been developed in recent years. However, the mortality of cancer patients remains high because of the emergence of drug resistance. It was reported that drug resistance might involved in changes in gene expression without changing genotypes, which is similar to epigenetic modification. Some studies indicated that targeting histone methyltransferase can reverse drug resistance. Hence, the use of histone methyltransferase inhibitors or histone demethylase inhibitors opens new therapeutic approaches for cancer treatment. While the relationship between histone methyltransferase and tumor resistance has been determined, there is a lack of updated review on the association between them. In this review, we summarized the mechanisms of histone methyltransferases in cancer drug resistance and the therapeutic strategies of targeting histone methyltransferase to reverse drug resistance.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, People's Republic of China
| | - Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, People's Republic of China
| | - Yukui Ma
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, People's Republic of China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, People's Republic of China.
| |
Collapse
|