1
|
Dinis-Ribeiro M, Libânio D, Uchima H, Spaander MCW, Bornschein J, Matysiak-Budnik T, Tziatzios G, Santos-Antunes J, Areia M, Chapelle N, Esposito G, Fernandez-Esparrach G, Kunovsky L, Garrido M, Tacheci I, Link A, Marcos P, Marcos-Pinto R, Moreira L, Pereira AC, Pimentel-Nunes P, Romanczyk M, Fontes F, Hassan C, Bisschops R, Feakins R, Schulz C, Triantafyllou K, Carneiro F, Kuipers EJ. Management of epithelial precancerous conditions and early neoplasia of the stomach (MAPS III): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG) and European Society of Pathology (ESP) Guideline update 2025. Endoscopy 2025; 57:504-554. [PMID: 40112834 DOI: 10.1055/a-2529-5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
At a population level, the European Society of Gastrointestinal Endoscopy (ESGE), the European Helicobacter and Microbiota Study Group (EHMSG), and the European Society of Pathology (ESP) suggest endoscopic screening for gastric cancer (and precancerous conditions) in high-risk regions (age-standardized rate [ASR] > 20 per 100 000 person-years) every 2 to 3 years or, if cost-effectiveness has been proven, in intermediate risk regions (ASR 10-20 per 100 000 person-years) every 5 years, but not in low-risk regions (ASR < 10).ESGE/EHMSG/ESP recommend that irrespective of country of origin, individual gastric risk assessment and stratification of precancerous conditions is recommended for first-time gastroscopy. ESGE/EHMSG/ESP suggest that gastric cancer screening or surveillance in asymptomatic individuals over 80 should be discontinued or not started, and that patients' comorbidities should be considered when treatment of superficial lesions is planned.ESGE/EHMSG/ESP recommend that a high quality endoscopy including the use of virtual chromoendoscopy (VCE), after proper training, is performed for screening, diagnosis, and staging of precancerous conditions (atrophy and intestinal metaplasia) and lesions (dysplasia or cancer), as well as after endoscopic therapy. VCE should be used to guide the sampling site for biopsies in the case of suspected neoplastic lesions as well as to guide biopsies for diagnosis and staging of gastric precancerous conditions, with random biopsies to be taken in the absence of endoscopically suspected changes. When there is a suspected early gastric neoplastic lesion, it should be properly described (location, size, Paris classification, vascular and mucosal pattern), photodocumented, and two targeted biopsies taken.ESGE/EHMSG/ESP do not recommend routine performance of endoscopic ultrasonography (EUS), computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET)-CT prior to endoscopic resection unless there are signs of deep submucosal invasion or if the lesion is not considered suitable for endoscopic resection.ESGE/EHMSG/ESP recommend endoscopic submucosal dissection (ESD) for differentiated gastric lesions clinically staged as dysplastic (low grade and high grade) or as intramucosal carcinoma (of any size if not ulcerated or ≤ 30 mm if ulcerated), with EMR being an alternative for Paris 0-IIa lesions of size ≤ 10 mm with low likelihood of malignancy.ESGE/EHMSG/ESP suggest that a decision about ESD can be considered for malignant lesions clinically staged as having minimal submucosal invasion if differentiated and ≤ 30 mm; or for malignant lesions clinically staged as intramucosal, undifferentiated and ≤ 20 mm; and in both cases with no ulcerative findings.ESGE/EHMSG/ESP recommends patient management based on the following histological risk after endoscopic resection: Curative/very low-risk resection (lymph node metastasis [LNM] risk < 0.5 %-1 %): en bloc R0 resection; dysplastic/pT1a, differentiated lesion, no lymphovascular invasion, independent of size if no ulceration and ≤ 30 mm if ulcerated. No further staging procedure or treatment is recommended.Curative/low-risk resection (LNM risk < 3 %): en bloc R0 resection; lesion with no lymphovascular invasion and: a) pT1b, invasion ≤ 500 µm, differentiated, size ≤ 30 mm; or b) pT1a, undifferentiated, size ≤ 20 mm and no ulceration. Staging should be completed, and further treatment is generally not necessary, but a multidisciplinary discussion is required. Local-risk resection (very low risk of LNM but increased risk of local persistence/recurrence): Piecemeal resection or tumor-positive horizontal margin of a lesion otherwise meeting curative/very low-risk criteria (or meeting low-risk criteria provided that there is no submucosal invasive tumor at the resection margin in the case of piecemeal resection or tumor-positive horizontal margin for pT1b lesions [invasion ≤ 500 µm; well-differentiated; size ≤ 30 mm, and VM0]). Endoscopic surveillance/re-treatment is recommended rather than other additional treatment. High-risk resection (noncurative): Any lesion with any of the following: (a) a positive vertical margin (if carcinoma) or lymphovascular invasion or deep submucosal invasion (> 500 µm from the muscularis mucosae); (b) poorly differentiated lesions if ulceration or size > 20 mm; (c) pT1b differentiated lesions with submucosal invasion ≤ 500 µm with size > 30 mm; or (d) intramucosal ulcerative lesion with size > 30 mm. Complete staging and strong consideration for additional treatments (surgery) in multidisciplinary discussion.ESGE/EHMSG/ESP suggest the use of validated endoscopic classifications of atrophy (e. g. Kimura-Takemoto) or intestinal metaplasia (e. g. endoscopic grading of gastric intestinal metaplasia [EGGIM]) to endoscopically stage precancerous conditions and stratify the risk for gastric cancer.ESGE/EHMSG/ESP recommend that biopsies should be taken from at least two topographic sites (2 biopsies from the antrum/incisura and 2 from the corpus, guided by VCE) in two separate, clearly labeled vials. Additional biopsy from the incisura is optional.ESGE/EHMSG/ESP recommend that patients with extensive endoscopic changes (Kimura C3 + or EGGIM 5 +) or advanced histological stages of atrophic gastritis (severe atrophic changes or intestinal metaplasia, or changes in both antrum and corpus, operative link on gastritis assessment/operative link on gastric intestinal metaplasia [OLGA/OLGIM] III/IV) should be followed up with high quality endoscopy every 3 years, irrespective of the individual's country of origin.ESGE/EHMSG/ESP recommend that no surveillance is proposed for patients with mild to moderate atrophy or intestinal metaplasia restricted to the antrum, in the absence of endoscopic signs of extensive lesions or other risk factors (family history, incomplete intestinal metaplasia, persistent H. pylori infection). This group constitutes most individuals found in clinical practice.ESGE/EHMSG/ESP recommend H. pylori eradication for patients with precancerous conditions and after endoscopic or surgical therapy.ESGE/EHMSG/ESP recommend that patients should be advised to stop smoking and low-dose daily aspirin use may be considered for the prevention of gastric cancer in selected individuals with high risk for cardiovascular events.
Collapse
Affiliation(s)
- Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Diogo Libânio
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Hugo Uchima
- Endoscopy Unit Gastroenterology Department Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Endoscopy Unit, Teknon Medical Center, Barcelona, Spain
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Bornschein
- Medical Research Council Translational Immune Discovery Unit (MRC TIDU), Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tamara Matysiak-Budnik
- Department of Hepato-Gastroenterology & Digestive Oncology, Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire de Nantes Nantes, France
- INSERM, Center for Research in Transplantation and Translational Immunology, University of Nantes, Nantes, France
| | - Georgios Tziatzios
- Agia Olga General Hospital of Nea Ionia Konstantopouleio, Athens, Greece
| | - João Santos-Antunes
- Gastroenterology Department, Centro Hospitalar S. João, Porto, Portugal
- Faculty of Medicine, University of Porto, Portugal
- University of Porto, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Instituto de Investigação e Inovação na Saúde (I3S), Porto, Portugal
| | - Miguel Areia
- Gastroenterology Department, Portuguese Oncology Institute of Coimbra (IPO Coimbra), Coimbra, Portugal
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
| | - Nicolas Chapelle
- Department of Hepato-Gastroenterology & Digestive Oncology, Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire de Nantes Nantes, France
- INSERM, Center for Research in Transplantation and Translational Immunology, University of Nantes, Nantes, France
| | - Gianluca Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Gloria Fernandez-Esparrach
- Gastroenterology Department, ICMDM, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Lumir Kunovsky
- 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mónica Garrido
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Ilja Tacheci
- Gastroenterology, Second Department of Internal Medicine, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University of Prague, Czech Republic
| | | | - Pedro Marcos
- Department of Gastroenterology, Pêro da Covilhã Hospital, Covilhã, Portugal
- Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ricardo Marcos-Pinto
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
- Gastroenterology Department, Centro Hospitalar do Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Leticia Moreira
- Gastroenterology Department, ICMDM, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Ana Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto (FMUP), Portugal
- Gastroenterology and Clinical Research, Unilabs Portugal
| | - Marcin Romanczyk
- Department of Gastroenterology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
- Endoterapia, H-T. Centrum Medyczne, Tychy, Poland
| | - Filipa Fontes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Public Health and Forensic Sciences, and Medical Education Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Department of Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven, Leuven, Belgium
| | - Roger Feakins
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
- University College London, London, United Kingdom
| | - Christian Schulz
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Fatima Carneiro
- Institute of Molecular Pathology and Immunology at the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Pathology Department, Centro Hospitalar de São João and Faculty of Medicine, Porto, Portugal
| | - Ernst J Kuipers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
2
|
Smiley A, Villarreal-Zegarra D, Reategui-Rivera CM, Escobar-Agreda S, Finkelstein J. Methodological and reporting quality of machine learning studies on cancer diagnosis, treatment, and prognosis. Front Oncol 2025; 15:1555247. [PMID: 40297817 PMCID: PMC12034563 DOI: 10.3389/fonc.2025.1555247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
This study aimed to evaluate the quality and transparency of reporting in studies using machine learning (ML) in oncology, focusing on adherence to the Consolidated Reporting Guidelines for Prognostic and Diagnostic Machine Learning Models (CREMLS), TRIPOD-AI (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis), and PROBAST (Prediction Model Risk of Bias Assessment Tool). The literature search included primary studies published between February 1, 2024, and January 31, 2025, that developed or tested ML models for cancer diagnosis, treatment, or prognosis. To reflect the current state of the rapidly evolving landscape of ML applications in oncology, fifteen most recent articles in each category were selected for evaluation. Two independent reviewers screened studies and extracted data on study characteristics, reporting quality (CREMLS and TRIPOD+AI), risk of bias (PROBAST), and ML performance metrics. The most frequently studied cancer types were breast cancer (n=7/45; 15.6%), lung cancer (n=7/45; 15.6%), and liver cancer (n=5/45; 11.1%). The findings indicate several deficiencies in reporting quality, as assessed by CREMLS and TRIPOD+AI. These deficiencies primarily relate to sample size calculation, reporting on data quality, strategies for handling outliers, documentation of ML model predictors, access to training or validation data, and reporting on model performance heterogeneity. The methodological quality assessment using PROBAST revealed that 89% of the included studies exhibited a low overall risk of bias, and all studies have shown a low risk of bias in terms of applicability. Regarding the specific AI models identified as the best-performing, Random Forest (RF) and XGBoost were the most frequently reported, each used in 17.8% of the studies (n = 8). Additionally, our study outlines the specific areas where reporting is deficient, providing researchers with guidance to improve reporting quality in these sections and, consequently, reduce the risk of bias in their studies.
Collapse
Affiliation(s)
- Aref Smiley
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
| | | | | | | | - Joseph Finkelstein
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Huang C, Song Y, Dong J, Yang F, Guo J, Sun S. Diagnostic performance of AI-assisted endoscopy diagnosis of digestive system tumors: an umbrella review. Front Oncol 2025; 15:1519144. [PMID: 40248201 PMCID: PMC12003149 DOI: 10.3389/fonc.2025.1519144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
The diagnostic performance of artificial intelligence (AI)-assisted endoscopy for digestive tumors remains controversial. The objective of this umbrella review was to summarize the comprehensive evidence for the AI-assisted endoscopic diagnosis of digestive system tumors. We grouped the evidence according to the location of each digestive system tumor and performed separate subgroup analyses on the basis of the method of data collection and form of the data. We also compared the diagnostic performance of AI with that of experts and nonexperts. For early digestive system cancer and precancerous lesions, AI showed a high diagnostic performance in capsule endoscopy and esophageal squamous cell carcinoma. Additionally, AI-assisted endoscopic ultrasonography (EUS) had good diagnostic accuracy for pancreatic cancer. In the subgroup analysis, AI had a better diagnostic performance than experts for most digestive system tumors. However, the diagnostic performance of AI using video data requires improvement.
Collapse
Affiliation(s)
- Changwei Huang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shenyang, Liaoning, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Holt NM, Byrne MF. The Role of Artificial Intelligence and Big Data for Gastrointestinal Disease. Gastrointest Endosc Clin N Am 2025; 35:291-308. [PMID: 40021230 DOI: 10.1016/j.giec.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Artificial intelligence (AI) is a rapidly evolving presence in all fields and industries, with the ability to both improve quality and reduce the burden of human effort. Gastroenterology is a field with a focus on diagnostic techniques and procedures, and AI and big data have established and growing roles to play. Alongside these opportunities are challenges, which will evolve in parallel.
Collapse
Affiliation(s)
- Nicholas Mathew Holt
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Yamba Drive, Garran, ACT 2605, Australia.
| | - Michael Francis Byrne
- Division of Gastroenterology, Vancouver General Hospital, University of British Columbia, UBC Division of Gastroenterology, 5153 - 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
5
|
Xu HL, Gong TT, Song XJ, Chen Q, Bao Q, Yao W, Xie MM, Li C, Grzegorzek M, Shi Y, Sun HZ, Li XH, Zhao YH, Gao S, Wu QJ. Artificial Intelligence Performance in Image-Based Cancer Identification: Umbrella Review of Systematic Reviews. J Med Internet Res 2025; 27:e53567. [PMID: 40167239 PMCID: PMC12000792 DOI: 10.2196/53567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) has the potential to transform cancer diagnosis, ultimately leading to better patient outcomes. OBJECTIVE We performed an umbrella review to summarize and critically evaluate the evidence for the AI-based imaging diagnosis of cancers. METHODS PubMed, Embase, Web of Science, Cochrane, and IEEE databases were searched for relevant systematic reviews from inception to June 19, 2024. Two independent investigators abstracted data and assessed the quality of evidence, using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Systematic Reviews and Research Syntheses. We further assessed the quality of evidence in each meta-analysis by applying the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Diagnostic performance data were synthesized narratively. RESULTS In a comprehensive analysis of 158 included studies evaluating the performance of AI algorithms in noninvasive imaging diagnosis across 8 major human system cancers, the accuracy of the classifiers for central nervous system cancers varied widely (ranging from 48% to 100%). Similarities were observed in the diagnostic performance for cancers of the head and neck, respiratory system, digestive system, urinary system, female-related systems, skin, and other sites. Most meta-analyses demonstrated positive summary performance. For instance, 9 reviews meta-analyzed sensitivity and specificity for esophageal cancer, showing ranges of 90%-95% and 80%-93.8%, respectively. In the case of breast cancer detection, 8 reviews calculated the pooled sensitivity and specificity within the ranges of 75.4%-92% and 83%-90.6%, respectively. Four meta-analyses reported the ranges of sensitivity and specificity in ovarian cancer, and both were 75%-94%. Notably, in lung cancer, the pooled specificity was relatively low, primarily distributed between 65% and 80%. Furthermore, 80.4% (127/158) of the included studies were of high quality according to the JBI Critical Appraisal Checklist, with the remaining studies classified as medium quality. The GRADE assessment indicated that the overall quality of the evidence was moderate to low. CONCLUSIONS Although AI shows great potential for achieving accelerated, accurate, and more objective diagnoses of multiple cancers, there are still hurdles to overcome before its implementation in clinical settings. The present findings highlight that a concerted effort from the research community, clinicians, and policymakers is required to overcome existing hurdles and translate this potential into improved patient outcomes and health care delivery. TRIAL REGISTRATION PROSPERO CRD42022364278; https://www.crd.york.ac.uk/PROSPERO/view/CRD42022364278.
Collapse
Affiliation(s)
- He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Jian Song
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Bao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wei Yao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meng-Meng Xie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Marcin Grzegorzek
- Institute for Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Han Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| |
Collapse
|
6
|
Nathani P, Sharma P. Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach. Gastrointest Endosc Clin N Am 2025; 35:319-353. [PMID: 40021232 DOI: 10.1016/j.giec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of lesions. This review describes the available artificial intelligence (AI) technology and the current data on AI tools for screening esophageal squamous cell cancer, Barret's esophagus-related neoplasia, and gastric cancer. These tools outperformed endoscopists in many situations. Recent randomized controlled trials have demonstrated the successful application of AI tools in clinical practice with improved outcomes.
Collapse
Affiliation(s)
- Piyush Nathani
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Prateek Sharma
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA; Kansas City Veteran Affairs Medical Center, Kansas City, MO, USA
| |
Collapse
|
7
|
Huang X, Qin M, Fang M, Wang Z, Hu C, Zhao T, Qin Z, Zhu H, Wu L, Yu G, De Cobelli F, Xie X, Palumbo D, Tian J, Dong D. The application of artificial intelligence in upper gastrointestinal cancers. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:113-131. [PMID: 40265096 PMCID: PMC12010392 DOI: 10.1016/j.jncc.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/17/2024] [Accepted: 12/20/2024] [Indexed: 04/24/2025] Open
Abstract
Upper gastrointestinal cancers, mainly comprising esophageal and gastric cancers, are among the most prevalent cancers worldwide. There are many new cases of upper gastrointestinal cancers annually, and the survival rate tends to be low. Therefore, timely screening, precise diagnosis, appropriate treatment strategies, and effective prognosis are crucial for patients with upper gastrointestinal cancers. In recent years, an increasing number of studies suggest that artificial intelligence (AI) technology can effectively address clinical tasks related to upper gastrointestinal cancers. These studies mainly focus on four aspects: screening, diagnosis, treatment, and prognosis. In this review, we focus on the application of AI technology in clinical tasks related to upper gastrointestinal cancers. Firstly, the basic application pipelines of radiomics and deep learning in medical image analysis were introduced. Furthermore, we separately reviewed the application of AI technology in the aforementioned aspects for both esophageal and gastric cancers. Finally, the current limitations and challenges faced in the field of upper gastrointestinal cancers were summarized, and explorations were conducted on the selection of AI algorithms in various scenarios, the popularization of early screening, the clinical applications of AI, and large multimodal models.
Collapse
Affiliation(s)
- Xiaoying Huang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Minghao Qin
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- University of Science and Technology Beijing, Beijing, China
| | - Mengjie Fang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Zipei Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Chaoen Hu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Tongyu Zhao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China, Hefei, China
| | - Zhuyuan Qin
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Ling Wu
- KiangWu Hospital, Macau, China
| | | | | | | | - Diego Palumbo
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Hassan C, Antonelli G, Chiu PWY, Emura F, Goda K, Prasad I, Al Awadhi S, Al Lehibi A, Arantes V, Cerisoli CL, Draganov P, Fleischer D, Fluxá F, Gonzalez N, Inoue H, John S, Kashin S, Khashab M, Kim GH, Kothari S, Ngamruengphong S, Remes-Troche JM, Sharara AI, Shimamura Y, Villa-Gomez G, Wang KK, Wang WL, Yip HC, Sharma P. Position statement of the World Endoscopy Organization: Role of endoscopy in screening, diagnosis, and treatment of esophageal superficial squamous neoplasia. Dig Endosc 2024. [PMID: 39722219 DOI: 10.1111/den.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/10/2024] [Indexed: 12/28/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a significant global health challenge, being the sixth leading cause of cancer mortality with pronounced geographic variability. The incidence rates range from 125 per 100,000 in northern China to 1-1.5 per 100,000 in the United States, driven by environmental and lifestyle factors such as tobacco and alcohol use, dietary habits, and pollution. Major modifiable risk factors include tobacco and alcohol consumption, with a synergistic risk increase when combined. Nonmodifiable risk factors include previous diagnoses of head and neck squamous cell carcinoma (H&N SCC), achalasia, and prior radiotherapy. Prevention strategies must be tailored to specific regional burdens to efficiently allocate medical and financial resources. Gastrointestinal endoscopy is crucial in reducing ESCC burden through early detection and characterization of neoplastic changes, such as high-grade dysplasia. Early diagnosis significantly improves survival rates, while endoscopic resection of noninvasive dysplasia can prevent ESCC onset, reducing treatment burden for advanced disease. Postresection surveillance can detect high-risk metachronous lesions. Despite these benefits, endoscopic prevention faces challenges, including the lack of high-level evidence supporting its efficacy, opportunity costs, the need for specialized training and techniques, and the requirement for advanced technology investments. This Position Statement from the World Endoscopy Organization (WEO) aims to address these challenges, supplying recommendations for the exploitation of endoscopic resources regarding the possible role of screening, quality, and training for the detection, characterization, resection, and surveillance of ESCC.
Collapse
Affiliation(s)
- Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli Hospital, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Philip Wai-Yan Chiu
- Division of Upper Gastrointestinal and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Fabian Emura
- Digestive Health and Liver Diseases, University of Miami, Miami, USA
- Interventional Endoscopy Center, Jackson Memorial Hospital, Miami, USA
| | - Kenichi Goda
- Gastrointestinal Endoscopy Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Iyer Prasad
- Esophageal Interest Group, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA
| | - Sameer Al Awadhi
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Abed Al Lehibi
- Gastroenterology and Hepatology Department, King Fahad Medical City, Riyad, Saudi Arabia
| | - Vitor Arantes
- Endoscopy Unit, Alfa Institute of Gastroenterology, School of Medicine, Federal University of Minas Gerais, Hospital Mater Dei Contorno, Belo Horizonte, Brazil
| | - Cecilio L Cerisoli
- Therapeutic and Diagnostic Gastroenterology (GEDYT) Center, Buenos Aires, Argentina
| | | | - David Fleischer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, USA
| | - Fernando Fluxá
- Gastroenterology Department Clinica Meds, Santiago, Chile
| | | | - Haruhiro Inoue
- Digestive Diseases Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Sneha John
- Endoscopy Unit, Gold Coast University Hospital, Southport, Australia
| | - Sergey Kashin
- Endoscopy Department, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Mouen Khashab
- Therapeutic Endoscopy, Johns Hopkins Hospital, Baltimore, USA
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University College of Medicine, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Shivangi Kothari
- Division of Gastroenterology and Hepatology, University of Rochester Medical Center, Rochester, USA
| | | | | | - Ala I Sharara
- Division of Gastroenterology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Guido Villa-Gomez
- Gastroenterology and Digestive Endoscopy Unit, WGO La Paz Training Center, La Paz, Bolivia
| | - Kenneth K Wang
- Russ and Kathy Van Cleve Professor of Gastroenterology, Mayo Clinic, Rochester, USA
| | - Wen-Lun Wang
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Hon-Chi Yip
- Division of Upper Gastrointestinal and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical Center, Kansas City, USA
| |
Collapse
|
9
|
Antonelli G, Libanio D, De Groof AJ, van der Sommen F, Mascagni P, Sinonquel P, Abdelrahim M, Ahmad O, Berzin T, Bhandari P, Bretthauer M, Coimbra M, Dekker E, Ebigbo A, Eelbode T, Frazzoni L, Gross SA, Ishihara R, Kaminski MF, Messmann H, Mori Y, Padoy N, Parasa S, Pilonis ND, Renna F, Repici A, Simsek C, Spadaccini M, Bisschops R, Bergman JJGHM, Hassan C, Dinis Ribeiro M. QUAIDE - Quality assessment of AI preclinical studies in diagnostic endoscopy. Gut 2024; 74:153-161. [PMID: 39406471 DOI: 10.1136/gutjnl-2024-332820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy.The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted.Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1-14), present results (2. Results, statements 15-16) and integrate and interpret the obtained results (3. Discussion, statements 17-18).The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.
Collapse
Affiliation(s)
- Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli, Ariccia, Rome, Italy
| | - Diogo Libanio
- MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Albert Jeroen De Groof
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, VCA group, University of Technology, Eindhoven, The Netherlands
| | - Pietro Mascagni
- IHU Strasbourg, Strasbourg, France
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pieter Sinonquel
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Department of Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | | | | | - Tyler Berzin
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Pradeep Bhandari
- Endoscopy Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | | | - Miguel Coimbra
- INESC TEC, Faculdade de Ciências, University of Porto, Porto, Portugal
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Alanna Ebigbo
- III Medizinische Klinik, UniversitatsKlinikum Augsburg, Augsburg, Germany
| | - Tom Eelbode
- Department of Electrical Engineering (ESAT/PSI), Medical Imaging Research Center, KU Leuven, Leuven, Belgium
| | - Leonardo Frazzoni
- Gastroenterology and Endoscopy Unit, Forlì-Cesena Hospitals, AUSL Romagna, Forlì, Italy
| | - Seth A Gross
- Division of Gastroenterology and Hepatology, New York University Langone Health, New York, New York, USA
| | - Ryu Ishihara
- Osaka International Cancer Institute, Osaka, Japan
| | - Michal Filip Kaminski
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Department of Gastroenterological Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- Medical Center for Postgraduate Education, Warsaw, Poland
| | - Helmut Messmann
- III Medizinische Klinik, UniversitatsKlinikum Augsburg, Augsburg, Germany
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | | | | | - Nastazja Dagny Pilonis
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Department of Gastroenterological Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
- Medical Center for Postgraduate Education, Warsaw, Poland
| | - Francesco Renna
- INESC TEC, Faculdade de Ciências, University of Porto, Porto, Portugal
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Endoscopy Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Cem Simsek
- Department of Gastroenterology, Hacettepe University, Ankara, Turkey
| | - Marco Spadaccini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Endoscopy Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Department of Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jacques J G H M Bergman
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Endoscopy Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Mario Dinis Ribeiro
- MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| |
Collapse
|
10
|
Bou Jaoude J, Al Bacha R, Abboud B. Will artificial intelligence reach any limit in gastroenterology? Artif Intell Gastroenterol 2024; 5:91336. [DOI: 10.35712/aig.v5.i2.91336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 08/08/2024] Open
Abstract
Endoscopy is the cornerstone in the management of digestive diseases. Over the last few decades, technology has played an important role in the development of this field, helping endoscopists in better detecting and characterizing luminal lesions. However, despite ongoing advancements in endoscopic technology, the incidence of missed pre-neoplastic and neoplastic lesions remains high due to the operator-dependent nature of endoscopy and the challenging learning curve associated with new technologies. Artificial intelligence (AI), an operator-independent field, could be an invaluable solution. AI can serve as a “second observer”, enhancing the performance of endoscopists in detecting and characterizing luminal lesions. By utilizing deep learning (DL), an innovation within machine learning, AI automatically extracts input features from targeted endoscopic images. DL encompasses both computer-aided detection and computer-aided diagnosis, assisting endoscopists in reducing missed detection rates and predicting the histology of luminal digestive lesions. AI applications in clinical gastrointestinal diseases are continuously expanding and evolving the entire digestive tract. In all published studies, real-time AI assists endoscopists in improving the performance of non-expert gastroenterologists, bringing it to a level comparable to that of experts. The development of DL may be affected by selection biases. Studies have utilized different AI-assisted models, which are heterogeneous. In the future, algorithms need validation through large, randomized trials. Theoretically, AI has no limit to assist endoscopists in increasing the accuracy and the quality of endoscopic exams. However, practically, we still have a long way to go before standardizing our AI models to be accepted and applied by all gastroenterologists.
Collapse
Affiliation(s)
- Joseph Bou Jaoude
- Department of Gastroenterology, Levant Hospital, Beirut 166830, Lebanon
| | - Rose Al Bacha
- Department of Gastroenterology, Levant Hospital, Beirut 166830, Lebanon
| | - Bassam Abboud
- Department of General Surgery, Geitaoui Hospital, Faculty of Medicine, Lebanese University, Lebanon, Beirut 166830, Lebanon
| |
Collapse
|
11
|
Ligato I, De Magistris G, Dilaghi E, Cozza G, Ciardiello A, Panzuto F, Giagu S, Annibale B, Napoli C, Esposito G. Convolutional Neural Network Model for Intestinal Metaplasia Recognition in Gastric Corpus Using Endoscopic Image Patches. Diagnostics (Basel) 2024; 14:1376. [PMID: 39001267 PMCID: PMC11241412 DOI: 10.3390/diagnostics14131376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gastric cancer (GC) is a significant healthcare concern, and the identification of high-risk patients is crucial. Indeed, gastric precancerous conditions present significant diagnostic challenges, particularly early intestinal metaplasia (IM) detection. This study developed a deep learning system to assist in IM detection using image patches from gastric corpus examined using virtual chromoendoscopy in a Western country. Utilizing a retrospective dataset of endoscopic images from Sant'Andrea University Hospital of Rome, collected between January 2020 and December 2023, the system extracted 200 × 200 pixel patches, classifying them with a voting scheme. The specificity and sensitivity on the patch test set were 76% and 72%, respectively. The optimization of a learnable voting scheme on a validation set achieved a specificity of 70% and sensitivity of 100% for entire images. Despite data limitations and the absence of pre-trained models, the system shows promising results for preliminary screening in gastric precancerous condition diagnostics, providing an explainable and robust Artificial Intelligence approach.
Collapse
Affiliation(s)
- Irene Ligato
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Roma, Italy; (I.L.); (E.D.); (G.C.); (F.P.); (B.A.)
| | - Giorgio De Magistris
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy; (G.D.M.); (C.N.)
| | - Emanuele Dilaghi
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Roma, Italy; (I.L.); (E.D.); (G.C.); (F.P.); (B.A.)
| | - Giulio Cozza
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Roma, Italy; (I.L.); (E.D.); (G.C.); (F.P.); (B.A.)
| | - Andrea Ciardiello
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (A.C.); (S.G.)
| | - Francesco Panzuto
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Roma, Italy; (I.L.); (E.D.); (G.C.); (F.P.); (B.A.)
| | - Stefano Giagu
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (A.C.); (S.G.)
| | - Bruno Annibale
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Roma, Italy; (I.L.); (E.D.); (G.C.); (F.P.); (B.A.)
| | - Christian Napoli
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy; (G.D.M.); (C.N.)
| | - Gianluca Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Roma, Italy; (I.L.); (E.D.); (G.C.); (F.P.); (B.A.)
| |
Collapse
|
12
|
Libanio D, Antonelli G, Marijnissen F, Spaander MC, Hassan C, Dinis-Ribeiro M, Areia M. Combined gastric and colorectal cancer endoscopic screening may be cost-effective in Europe with the implementation of artificial intelligence: an economic evaluation. Eur J Gastroenterol Hepatol 2024; 36:155-161. [PMID: 38131423 DOI: 10.1097/meg.0000000000002680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
BACKGROUND/AIMS Endoscopic screening for gastric cancer (GC) is not recommended in low-intermediate incidence countries. Artificial intelligence (AI) has high accuracy in GC detection and might increase the cost-effectiveness of screening strategies. We aimed to assess the cost-effectiveness of AI for GC detection in settings with different GC incidence and different accuracies of AI systems. METHODS Cost-effectiveness analysis (using Markov model) comparing different screening strategies (no screening versus single esophagogastroduodenoscopy (EGD) at 50 years versus stand-alone EGD every 5/10 years versus combined EGD and screening colonoscopy once or twice per decade in Netherlands, Italy and Portugal) with variable AI accuracy settings. The primary outcome was the incremental cost-effectiveness ratio of the different strategies versus no screening. Deterministic and probabilistic sensitivity analyses were conducted. RESULTS Without AI, one single EGD at 50 years (Netherlands, Italy, Portugal), EGD combined with screening colonoscopy once per decade (Italy and Portugal) and EGD combined with screening colonoscopy twice per decade (Portugal) are cost-effective when compared with no screening. If AI increases the accuracy of EGD by at least 1% in comparison to the accuracy of white-light endoscopy accuracy (89%), combined screening twice per decade also becomes cost-effective in Italy. If AI accuracy reaches at least 96%, combined screening once per decade is also cost-effective in the Netherlands. DISCUSSION In European countries, AI-assisted EGD may improve the cost-effectiveness of GC screening with combined EGD and screening colonoscopy. The actual effect of AI on cost-effectiveness may vary dependent on the accuracy and costs of the AI system.
Collapse
Affiliation(s)
- Diogo Libanio
- Department of Gastroenterology, Porto Comprehensive Cancer Center/ RISE@CI-IPOP (Health Research Network)
- MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli Hospital, Ariccia
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Fleur Marijnissen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maanon Cw Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mario Dinis-Ribeiro
- Department of Gastroenterology, Porto Comprehensive Cancer Center/ RISE@CI-IPOP (Health Research Network)
- MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Miguel Areia
- Gastroenterology Department, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Weusten BLAM, Bisschops R, Dinis-Ribeiro M, di Pietro M, Pech O, Spaander MCW, Baldaque-Silva F, Barret M, Coron E, Fernández-Esparrach G, Fitzgerald RC, Jansen M, Jovani M, Marques-de-Sa I, Rattan A, Tan WK, Verheij EPD, Zellenrath PA, Triantafyllou K, Pouw RE. Diagnosis and management of Barrett esophagus: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2023; 55:1124-1146. [PMID: 37813356 DOI: 10.1055/a-2176-2440] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
MR1 : ESGE recommends the following standards for Barrett esophagus (BE) surveillance:- a minimum of 1-minute inspection time per cm of BE length during a surveillance endoscopy- photodocumentation of landmarks, the BE segment including one picture per cm of BE length, and the esophagogastric junction in retroflexed position, and any visible lesions- use of the Prague and (for visible lesions) Paris classification- collection of biopsies from all visible abnormalities (if present), followed by random four-quadrant biopsies for every 2-cm BE length.Strong recommendation, weak quality of evidence. MR2: ESGE suggests varying surveillance intervals for different BE lengths. For BE with a maximum extent of ≥ 1 cm and < 3 cm, BE surveillance should be repeated every 5 years. For BE with a maximum extent of ≥ 3 cm and < 10 cm, the interval for endoscopic surveillance should be 3 years. Patients with BE with a maximum extent of ≥ 10 cm should be referred to a BE expert center for surveillance endoscopies. For patients with an irregular Z-line/columnar-lined esophagus of < 1 cm, no routine biopsies or endoscopic surveillance are advised.Weak recommendation, low quality of evidence. MR3: ESGE suggests that, if a patient has reached 75 years of age at the time of the last surveillance endoscopy and/or the patient's life expectancy is less than 5 years, the discontinuation of further surveillance endoscopies can be considered. Weak recommendation, very low quality of evidence. MR4: ESGE recommends offering endoscopic eradication therapy using ablation to patients with BE and low grade dysplasia (LGD) on at least two separate endoscopies, both confirmed by a second experienced pathologist.Strong recommendation, high level of evidence. MR5: ESGE recommends endoscopic ablation treatment for BE with confirmed high grade dysplasia (HGD) without visible lesions, to prevent progression to invasive cancer.Strong recommendation, high level of evidence. MR6: ESGE recommends offering complete eradication of all remaining Barrett epithelium by ablation after endoscopic resection of visible abnormalities containing any degree of dysplasia or esophageal adenocarcinoma (EAC).Strong recommendation, moderate quality of evidence. MR7: ESGE recommends endoscopic resection as curative treatment for T1a Barrett's cancer with well/moderate differentiation and no signs of lymphovascular invasion.Strong recommendation, high level of evidence. MR8: ESGE suggests that low risk submucosal (T1b) EAC (i. e. submucosal invasion depth ≤ 500 µm AND no [lympho]vascular invasion AND no poor tumor differentiation) can be treated by endoscopic resection, provided that adequate follow-up with gastroscopy, endoscopic ultrasound (EUS), and computed tomography (CT)/positrion emission tomography-computed tomography (PET-CT) is performed in expert centers.Weak recommendation, low quality of evidence. MR9: ESGE suggests that submucosal (T1b) esophageal adenocarcinoma with deep submucosal invasion (tumor invasion > 500 µm into the submucosa), and/or (lympho)vascular invasion, and/or a poor tumor differentiation should be considered high risk. Complete staging and consideration of additional treatments (chemotherapy and/or radiotherapy and/or surgery) or strict endoscopic follow-up should be undertaken on an individual basis in a multidisciplinary discussion.Strong recommendation, low quality of evidence. MR10 A: ESGE recommends that the first endoscopic follow-up after successful endoscopic eradication therapy (EET) of BE is performed in an expert center.Strong recommendation, very low quality of evidence. B: ESGE recommends careful inspection of the neo-squamocolumnar junction and neo-squamous epithelium with high definition white-light endoscopy and virtual chromoendoscopy during post-EET surveillance, to detect recurrent dysplasia.Strong recommendation, very low level of evidence. C: ESGE recommends against routine four-quadrant biopsies of neo-squamous epithelium after successful EET of BE.Strong recommendation, low level of evidence. D: ESGE suggests, after successful EET, obtaining four-quadrant random biopsies just distal to a normal-appearing neo-squamocolumnar junction to detect dysplasia in the absence of visible lesions.Weak recommendation, low level of evidence. E: ESGE recommends targeted biopsies are obtained where there is a suspicion of recurrent BE in the tubular esophagus, or where there are visible lesions suspicious for dysplasia.Strong recommendation, very low level of evidence. MR11: After successful EET, ESGE recommends the following surveillance intervals:- For patients with a baseline diagnosis of HGD or EAC:at 1, 2, 3, 4, 5, 7, and 10 years after last treatment, after which surveillance may be stopped.- For patients with a baseline diagnosis of LGD:at 1, 3, and 5 years after last treatment, after which surveillance may be stopped.Strong recommendation, low quality of evidence.
Collapse
Affiliation(s)
- Bas L A M Weusten
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, TARGID, Leuven, Belgium
| | - Mario Dinis-Ribeiro
- Department of Gastroenterology, Porto Comprehensive Cancer Center, and RISE@CI-IPOP (Health Research Network), Porto Portugal
| | - Massimiliano di Pietro
- Early Cancer Institute, University of Cambridge and Department of Gastroenterology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Oliver Pech
- Department of Gastroenterology and Interventional Endoscopy, St. John of God Hospital, Regensburg, Germany
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Francisco Baldaque-Silva
- Advanced Endoscopy Center Carlos Moreira da Silva, Department of Gastroenterology, Pedro Hispano Hospital, Matosinhos, Portugal
- Division of Medicine, Department of Upper Gastrointestinal Diseases, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Maximilien Barret
- Department of Gastroenterology and Digestive Oncology, Cochin Hospital and University of Paris, Paris, France
| | - Emmanuel Coron
- Institut des Maladies de l'Appareil Digestif, IMAD, Centre hospitalier universitaire Hôtel-Dieu, Nantes, Nantes, France
- Department of Gastroenterology and Hepatology, University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Glòria Fernández-Esparrach
- Endoscopy Unit, Department of Gastroenterology, Hospital Clínic of Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Rebecca C Fitzgerald
- Early Cancer Institute, University of Cambridge and Department of Gastroenterology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Marnix Jansen
- Department of Histopathology, University College London Hospital NHS Trust, London, UK
| | - Manol Jovani
- Division of Gastroenterology, Maimonides Medical Center, New York, New York, USA
| | - Ines Marques-de-Sa
- Department of Gastroenterology, Porto Comprehensive Cancer Center, and RISE@CI-IPOP (Health Research Network), Porto Portugal
| | - Arti Rattan
- Department of Gastroenterology, Wollongong Hospital, Wollongong, New South Wales, Australia
| | - W Keith Tan
- Early Cancer Institute, University of Cambridge and Department of Gastroenterology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Eva P D Verheij
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Pauline A Zellenrath
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Roos E Pouw
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Pedroso M, Martins ML, Libânio D, Dinis-Ribeiro M, Coimbra M, Renna F. Fractal Bilinear Deep Neural Network Models for Gastric Intestinal Metaplasia Detection. 2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) 2023:1-5. [DOI: 10.1109/bhi58575.2023.10313503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Maria Pedroso
- University of Porto,INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Science
| | - Miguel L. Martins
- University of Porto,INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Science
| | - Diogo Libânio
- University of Porto,CIDES/CINTESIS, Faculty of Medicine
| | | | - Miguel Coimbra
- University of Porto,INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Science
| | - Francesco Renna
- University of Porto,INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Faculty of Science
| |
Collapse
|
15
|
Hassan C, Mori Y, Sharma P. The Pros and Cons of Artificial Intelligence in Endoscopy. Am J Gastroenterol 2023; 118:1720-1722. [PMID: 37052360 DOI: 10.14309/ajg.0000000000002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
16
|
Tee CHN, Ravi R, Ang TL, Li JW. Role of artificial intelligence in Barrett’s esophagus. Artif Intell Gastroenterol 2023; 4:28-35. [DOI: 10.35712/aig.v4.i2.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 09/07/2023] Open
Abstract
The application of artificial intelligence (AI) in gastrointestinal endoscopy has gained significant traction over the last decade. One of the more recent applications of AI in this field includes the detection of dysplasia and cancer in Barrett’s esophagus (BE). AI using deep learning methods has shown promise as an adjunct to the endoscopist in detecting dysplasia and cancer. Apart from visual detection and diagnosis, AI may also aid in reducing the considerable interobserver variability in identifying and distinguishing dysplasia on whole slide images from digitized BE histology slides. This review aims to provide a comprehensive summary of the key studies thus far as well as providing an insight into the future role of AI in Barrett’s esophagus.
Collapse
Affiliation(s)
- Chin Hock Nicholas Tee
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| | - Rajesh Ravi
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| | - James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore 529889, Singapore
| |
Collapse
|
17
|
Bai J, Liu K, Gao L, Zhao X, Zhu S, Han Y, Liu Z. Computer-aided diagnosis in predicting the invasion depth of early colorectal cancer: a systematic review and meta-analysis of diagnostic test accuracy. Surg Endosc 2023; 37:6627-6639. [PMID: 37430125 DOI: 10.1007/s00464-023-10223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Endoscopic resection (ER) is widely applied to treat early colorectal cancer (CRC). Predicting the invasion depth of early CRC is critical in determining treatment strategies. The use of computer-aided diagnosis (CAD) algorithms could theoretically make accurate and objective predictions regarding the suitability of lesions for ER indication based on invasion depth. This study aimed to assess diagnostic test accuracy of CAD algorithms in predicting the invasion depth of early CRC and to compare the performance between the CAD algorithms and endoscopists. METHODS Multiple databases were searched until June 30, 2022 for studies that evaluated the diagnostic performance of CAD algorithms for invasion depth of CRC. Meta-analysis of diagnostic test accuracy using a bivariate mixed-effects model was performed. RESULTS Ten studies consisting of 13 arms (13,918 images from 1472 lesions) were included. Due to significant heterogeneity, studies were stratified into Japan/Korea-based or China-based studies. For the former, the area under the curve (AUC), sensitivity, and specificity of the CAD algorithms were 0.89 (95% CI 0.86-0.91), 62% (95% CI 50-72%), and 96% (95% CI 93-98%), respectively. For the latter, AUC, sensitivity, and specificity were 0.94 (95% CI 0.92-0.96), 88% (95% CI 78-94%), and 88% (95% CI 80-93%), respectively. The performance of the CAD algorithms in Japan/Korea-based studies was not significantly different from that of all endoscopists (0.88 vs. 0.91, P = 0.10) but was inferior to that of expert endoscopists (0.88 vs. 0.92, P = 0.03). The performance of the CAD algorithms in China-based studies was better than that of all endoscopists (0.94 vs. 0.90, P = 0.01). CONCLUSION The CAD algorithms showed comparable accuracy for prediction of invasion depth of early CRC compared to all endoscopists, which was still lower than expert endoscopists in diagnostic accuracy; more improvements should be achieved before it can be extensively applied to clinical practice.
Collapse
Affiliation(s)
- Jiawei Bai
- Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), 127 Changle West Road, Xi'an, 710032, Shaanxi, China
- School of Medicine, Yan'an University, Yan'an, China
| | - Kai Liu
- Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Li Gao
- Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Xin Zhao
- Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Shaohua Zhu
- Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Ying Han
- Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Zhiguo Liu
- Xijing Hospital of Digestive Diseases, Air Force Medical University (Fourth Military Medical University), 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
18
|
Martins ML, Pedroso M, Libanio D, Dinis-Ribeiro M, Coimbra M, Renna F. Diagnostic Performance of Deep Learning Models for Gastric Intestinal Metaplasia Detection in Narrow-band Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083501 DOI: 10.1109/embc40787.2023.10340055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Gastric Intestinal Metaplasia (GIM) is one of the precancerous conditions in the gastric carcinogenesis cascade and its optical diagnosis during endoscopic screening is challenging even for seasoned endoscopists. Several solutions leveraging pre-trained deep neural networks (DNNs) have been recently proposed in order to assist human diagnosis. In this paper, we present a comparative study of these architectures in a new dataset containing GIM and non-GIM Narrow-band imaging still frames. We find that the surveyed DNNs perform remarkably well on average, but still measure sizeable inter-fold variability during cross-validation. An additional ad-hoc analysis suggests that these baseline architectures may not perform equally well at all scales when diagnosing GIM.Clinical relevance- Enhanching a clinician's ability to detect and localize intestinal metaplasia can be a crucial tool for gastric cancer management policies.
Collapse
|
19
|
Guan X, Lu N, Zhang J. Computed Tomography-Based Deep Learning Nomogram Can Accurately Predict Lymph Node Metastasis in Gastric Cancer. Dig Dis Sci 2023; 68:1473-1481. [PMID: 35909203 PMCID: PMC10102043 DOI: 10.1007/s10620-022-07640-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Computed tomography is the most commonly used imaging modality for preoperative assessment of lymph node status, but the reported accuracy is unsatisfactory. AIMS To evaluate and verify the predictive performance of computed tomography deep learning on the presurgical evaluation of lymph node metastasis in patients with gastric cancer. METHODS 347 patients were retrospectively selected (training cohort: 242, test cohort: 105). The enhanced computed tomography arterial phase images of gastric cancer were used for lesion segmentation, radiomics and deep learning feature extraction. Three methods were used for feature selection. Support vector machine (SVM) or random forest (RF) was used to build models. The classification performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC). We also established a nomogram that included clinical predictors. RESULTS The model based on ResNet50-RF showed favorable classification performance and was verified in the test cohort (AUC = 0.9803). The nomogram based on deep learning feature scores and the lymph node status reported by computed tomography showed excellent discrimination. AUC of 0.9978 was achieved in the training cohort and verified in the test cohort (AUC = 0.9914). Decision analysis curve showed the value of nomogram in clinical application. CONCLUSION The computed tomography-based deep learning nomogram can accurately and effectively evaluate lymph node metastasis in patients with gastric cancer before surgery.
Collapse
Affiliation(s)
- Xiao Guan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing, 210011 Jiangsu China
| | - Na Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing, 210011 Jiangsu China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing, 210011 Jiangsu China
| |
Collapse
|
20
|
Biomarkers for Early Detection, Prognosis, and Therapeutics of Esophageal Cancers. Int J Mol Sci 2023; 24:ijms24043316. [PMID: 36834728 PMCID: PMC9968115 DOI: 10.3390/ijms24043316] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Esophageal cancer (EC) is the deadliest cancer worldwide, with a 92% annual mortality rate per incidence. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are the two major types of ECs, with EAC having one of the worst prognoses in oncology. Limited screening techniques and a lack of molecular analysis of diseased tissues have led to late-stage presentation and very low survival durations. The five-year survival rate of EC is less than 20%. Thus, early diagnosis of EC may prolong survival and improve clinical outcomes. Cellular and molecular biomarkers are used for diagnosis. At present, esophageal biopsy during upper endoscopy and histopathological analysis is the standard screening modality for both ESCC and EAC. However, this is an invasive method that fails to yield a molecular profile of the diseased compartment. To decrease the invasiveness of the procedures for diagnosis, researchers are proposing non-invasive biomarkers for early diagnosis and point-of-care screening options. Liquid biopsy involves the collection of body fluids (blood, urine, and saliva) non-invasively or with minimal invasiveness. In this review, we have critically discussed various biomarkers and specimen retrieval techniques for ESCC and EAC.
Collapse
|
21
|
Goenka MK, Afzalpurkar S, Jejurikar S, Rodge GA, Tiwari A. Role of artificial intelligence-guided esophagogastroduodenoscopy in assessing the procedural completeness and quality. Indian J Gastroenterol 2023; 42:128-135. [PMID: 36715841 DOI: 10.1007/s12664-022-01294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/12/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS The quality of esophagogastroduodenoscopy (EGD) can have great impact on the detection of esophageal and gastric lesions, including malignancies. The aim of the study is to investigate the use of artificial intelligence (AI) during EGD by the endoscopists-in-training so that a real-time feedback can be provided, ensuring compliance to a pre-decided protocol for examination. METHODS This is an observational pilot study. The videos of the EGD procedure performed between August 1, 2021, and September 30, 2021, were prospectively analyzed using AI system. The assessment of completeness of the procedure was done based on the visualizsation of pre-defined 29 locations. Endoscopists were divided into two categories - whether they are in the training period (category A) or have competed their endoscopy training (category B). RESULTS A total of 277 procedures, which included 114 category-A and 163 category-B endoscopists, respectively, were included. Most commonly covered areas by the endoscopists were greater curvature of antrum (97.47%), second part of duodenum (96.75%), other parts of antrum such as the anterior, lesser curvature and the posterior aspect (96.75%, 94.95%, and 94.22%, respectively). Commonly missed or inadequately seen areas were vocal cords (99.28%), epiglottis (93.14%) and posterior, anterior, and lateral aspect of incisura (78.70%, 73.65%, and 73.53%, respectively). The good quality procedures were done predominantly by categoryB endoscopists (88.68% vs. 11.32%, p < 0.00001). CONCLUSION AI can play an important role in assessing the quality and completeness of EGD and can be a part of training of endoscopy in future.
Collapse
Affiliation(s)
- Mahesh Kumar Goenka
- Institute of Gastrosciences and Liver, Apollo Multispeciality Hospitals, Kolkata, Day Care Building, 4th Floor, AMHL, EM Bypass Road, Kolkata, 700 054, India.
| | - Shivaraj Afzalpurkar
- Institute of Gastrosciences and Liver, Apollo Multispeciality Hospitals, Kolkata, Day Care Building, 4th Floor, AMHL, EM Bypass Road, Kolkata, 700 054, India
| | | | - Gajanan Ashokrao Rodge
- Institute of Gastrosciences and Liver, Apollo Multispeciality Hospitals, Kolkata, Day Care Building, 4th Floor, AMHL, EM Bypass Road, Kolkata, 700 054, India
| | - Awanish Tiwari
- Institute of Gastrosciences and Liver, Apollo Multispeciality Hospitals, Kolkata, Day Care Building, 4th Floor, AMHL, EM Bypass Road, Kolkata, 700 054, India
| |
Collapse
|
22
|
Liu L, Dong Z, Cheng J, Bu X, Qiu K, Yang C, Wang J, Niu W, Wu X, Xu J, Mao T, Lu L, Wan X, Zhou H. Diagnosis and segmentation effect of the ME-NBI-based deep learning model on gastric neoplasms in patients with suspected superficial lesions - a multicenter study. Front Oncol 2023; 12:1075578. [PMID: 36727062 PMCID: PMC9885211 DOI: 10.3389/fonc.2022.1075578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background Endoscopically visible gastric neoplastic lesions (GNLs), including early gastric cancer and intraepithelial neoplasia, should be accurately diagnosed and promptly treated. However, a high rate of missed diagnosis of GNLs contributes to the potential risk of the progression of gastric cancer. The aim of this study was to develop a deep learning-based computer-aided diagnosis (CAD) system for the diagnosis and segmentation of GNLs under magnifying endoscopy with narrow-band imaging (ME-NBI) in patients with suspected superficial lesions. Methods ME-NBI images of patients with GNLs in two centers were retrospectively analysed. Two convolutional neural network (CNN) modules were developed and trained on these images. CNN1 was trained to diagnose GNLs, and CNN2 was trained for segmentation. An additional internal test set and an external test set from another center were used to evaluate the diagnosis and segmentation performance. Results CNN1 showed a diagnostic performance with an accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 90.8%, 92.5%, 89.0%, 89.4% and 92.2%, respectively, and an area under the curve (AUC) of 0.928 in the internal test set. With CNN1 assistance, all endoscopists had a higher accuracy than for an independent diagnosis. The average intersection over union (IOU) between CNN2 and the ground truth was 0.5837, with a precision, recall and the Dice coefficient of 0.776, 0.983 and 0.867, respectively. Conclusions This CAD system can be used as an auxiliary tool to diagnose and segment GNLs, assisting endoscopists in more accurately diagnosing GNLs and delineating their extent to improve the positive rate of lesion biopsy and ensure the integrity of endoscopic resection.
Collapse
Affiliation(s)
- Leheng Liu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixia Dong
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinnian Cheng
- Department of Gastroenterology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongzhu Bu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kaili Qiu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chuan Yang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Wang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenlu Niu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowan Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxian Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiancheng Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjian Wan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China,*Correspondence: Hui Zhou, ; Xinjian Wan,
| | - Hui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Hui Zhou, ; Xinjian Wan,
| |
Collapse
|
23
|
Neto A, Ferreira S, Libânio D, Dinis-Ribeiro M, Coimbra M, Cunha A. Preliminary Study of Deep Learning Algorithms for Metaplasia Detection in Upper Gastrointestinal Endoscopy. LECTURE NOTES OF THE INSTITUTE FOR COMPUTER SCIENCES, SOCIAL INFORMATICS AND TELECOMMUNICATIONS ENGINEERING 2023:34-50. [DOI: 10.1007/978-3-031-32029-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Messmann H, Bisschops R, Antonelli G, Libânio D, Sinonquel P, Abdelrahim M, Ahmad OF, Areia M, Bergman JJGHM, Bhandari P, Boskoski I, Dekker E, Domagk D, Ebigbo A, Eelbode T, Eliakim R, Häfner M, Haidry RJ, Jover R, Kaminski MF, Kuvaev R, Mori Y, Palazzo M, Repici A, Rondonotti E, Rutter MD, Saito Y, Sharma P, Spada C, Spadaccini M, Veitch A, Gralnek IM, Hassan C, Dinis-Ribeiro M. Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022; 54:1211-1231. [PMID: 36270318 DOI: 10.1055/a-1950-5694] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This ESGE Position Statement defines the expected value of artificial intelligence (AI) for the diagnosis and management of gastrointestinal neoplasia within the framework of the performance measures already defined by ESGE. This is based on the clinical relevance of the expected task and the preliminary evidence regarding artificial intelligence in artificial or clinical settings. MAIN RECOMMENDATIONS:: (1) For acceptance of AI in assessment of completeness of upper GI endoscopy, the adequate level of mucosal inspection with AI should be comparable to that assessed by experienced endoscopists. (2) For acceptance of AI in assessment of completeness of upper GI endoscopy, automated recognition and photodocumentation of relevant anatomical landmarks should be obtained in ≥90% of the procedures. (3) For acceptance of AI in the detection of Barrett's high grade intraepithelial neoplasia or cancer, the AI-assisted detection rate for suspicious lesions for targeted biopsies should be comparable to that of experienced endoscopists with or without advanced imaging techniques. (4) For acceptance of AI in the management of Barrett's neoplasia, AI-assisted selection of lesions amenable to endoscopic resection should be comparable to that of experienced endoscopists. (5) For acceptance of AI in the diagnosis of gastric precancerous conditions, AI-assisted diagnosis of atrophy and intestinal metaplasia should be comparable to that provided by the established biopsy protocol, including the estimation of extent, and consequent allocation to the correct endoscopic surveillance interval. (6) For acceptance of artificial intelligence for automated lesion detection in small-bowel capsule endoscopy (SBCE), the performance of AI-assisted reading should be comparable to that of experienced endoscopists for lesion detection, without increasing but possibly reducing the reading time of the operator. (7) For acceptance of AI in the detection of colorectal polyps, the AI-assisted adenoma detection rate should be comparable to that of experienced endoscopists. (8) For acceptance of AI optical diagnosis (computer-aided diagnosis [CADx]) of diminutive polyps (≤5 mm), AI-assisted characterization should match performance standards for implementing resect-and-discard and diagnose-and-leave strategies. (9) For acceptance of AI in the management of polyps ≥ 6 mm, AI-assisted characterization should be comparable to that of experienced endoscopists in selecting lesions amenable to endoscopic resection.
Collapse
Affiliation(s)
- Helmut Messmann
- III Medizinische Klinik, Universitatsklinikum Augsburg, Augsburg, Germany
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, Catholic University of Leuven (KUL), TARGID, University Hospital Leuven, Leuven, Belgium
| | - Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli Hospital, Ariccia, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Italy
| | - Diogo Libânio
- Department of Gastroenterology, Porto Comprehensive Cancer Center, and RISE@CI-IPOP (Health Research Network), Porto, Portugal
- MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pieter Sinonquel
- Department of Gastroenterology and Hepatology, Catholic University of Leuven (KUL), TARGID, University Hospital Leuven, Leuven, Belgium
| | - Mohamed Abdelrahim
- Endoscopy Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Omer F Ahmad
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London Hospital, London, UK
- Division of Surgery and Interventional Sciences, University College London Hospital, London, UK
- Gastrointestinal Services, University College London Hospital, London, UK
| | - Miguel Areia
- Gastroenterology Department, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| | | | - Pradeep Bhandari
- Endoscopy Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Ivo Boskoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Dirk Domagk
- Department of Medicine I, Josephs-Hospital Warendorf, Academic Teaching Hospital, University of Muenster, Warendorf, Germany
| | - Alanna Ebigbo
- III Medizinische Klinik, Universitatsklinikum Augsburg, Augsburg, Germany
| | - Tom Eelbode
- Department of Electrical Engineering (ESAT/PSI), Medical Imaging Research Center, KU Leuven, Leuven, Belgium
| | - Rami Eliakim
- Department of Gastroenterology, Sheba Medical Center Tel Hashomer & Sackler School of Medicine, Tel-Aviv University, Ramat Gan, Israel
| | - Michael Häfner
- 2nd Medical Department, Barmherzige Schwestern Krankenhaus, Vienna, Austria
| | - Rehan J Haidry
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London Hospital, London, UK
- Division of Surgery and Interventional Sciences, University College London Hospital, London, UK
| | - Rodrigo Jover
- Servicio de Gastroenterología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Biomédica de Alicante ISABIAL, Departamento de Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
| | - Michal F Kaminski
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Oncological Gastroenterology and Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Roman Kuvaev
- Endoscopy Department, Yaroslavl Regional Cancer Hospital, Yaroslavl, Russian Federation
- Department of Gastroenterology, Faculty of Additional Professional Education, N.A. Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | | | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Matthew D Rutter
- North Tees and Hartlepool NHS Foundation Trust, Stockton-on-Tees, UK
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Prateek Sharma
- Gastroenterology and Hepatology Division, University of Kansas School of Medicine, Kansas, USA
- Kansas City VA Medical Center, Kansas City, USA
| | - Cristiano Spada
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Digestive Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Marco Spadaccini
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrew Veitch
- Department of Gastroenterology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | - Ian M Gralnek
- Ellen and Pinchas Mamber Institute of Gastroenterology and Hepatology, Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mario Dinis-Ribeiro
- Department of Gastroenterology, Porto Comprehensive Cancer Center, and RISE@CI-IPOP (Health Research Network), Porto, Portugal
| |
Collapse
|
25
|
Jin T, Jiang Y, Mao B, Wang X, Lu B, Qian J, Zhou H, Ma T, Zhang Y, Li S, Shi Y, Yao Z. Multi-center verification of the influence of data ratio of training sets on test results of an AI system for detecting early gastric cancer based on the YOLO-v4 algorithm. Front Oncol 2022; 12:953090. [PMID: 36052264 PMCID: PMC9425091 DOI: 10.3389/fonc.2022.953090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Convolutional Neural Network(CNN) is increasingly being applied in the diagnosis of gastric cancer. However, the impact of proportion of internal data in the training set on test results has not been sufficiently studied. Here, we constructed an artificial intelligence (AI) system called EGC-YOLOV4 using the YOLO-v4 algorithm to explore the optimal ratio of training set with the power to diagnose early gastric cancer. Design A total of 22,0918 gastroscopic images from Yixing People’s Hospital were collected. 7 training set models were established to identify 4 test sets. Respective sensitivity, specificity, Youden index, accuracy, and corresponding thresholds were tested, and ROC curves were plotted. Results 1. The EGC-YOLOV4 system completes all tests at an average reading speed of about 15 ms/sheet; 2. The AUC values in training set 1 model were 0.8325, 0.8307, 0.8706, and 0.8279, in training set 2 model were 0.8674, 0.8635, 0.9056, and 0.9249, in training set 3 model were 0.8544, 0.8881, 0.9072, and 0.9237, in training set 4 model were 0.8271, 0.9020, 0.9102, and 0.9316, in training set 5 model were 0.8249, 0.8484, 0.8796, and 0.8931, in training set 6 model were 0.8235, 0.8539, 0.9002, and 0.9051, in training set 7 model were 0.7581, 0.8082, 0.8803, and 0.8763. Conclusion EGC-YOLOV4 can quickly and accurately identify the early gastric cancer lesions in gastroscopic images, and has good generalization.The proportion of positive and negative samples in the training set will affect the overall diagnostic performance of AI.In this study, the optimal ratio of positive samples to negative samples in the training set is 1:1~ 1:2.
Collapse
Affiliation(s)
- Tao Jin
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yancai Jiang
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Boneng Mao
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Xing Wang
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Bo Lu
- Microsoft Ltd Co., Suzhou, China
| | - Ji Qian
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Hutao Zhou
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Tieliang Ma
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yefei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sisi Li
- Department of Gastroenterology, Civil Aviation Hospital of Shanghai, A Branch of Ruijin Hospital, Shanghai, China
| | - Yun Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Internal Medicine, Yixing Maternity and Child Health Care Hospital, Yixing, China
- *Correspondence: Zhendong Yao, ; Yun Shi,
| | - Zhendong Yao
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
- *Correspondence: Zhendong Yao, ; Yun Shi,
| |
Collapse
|
26
|
An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis. Sci Rep 2022; 12:11115. [PMID: 35778456 PMCID: PMC9249895 DOI: 10.1038/s41598-022-14605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoE-EREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.
Collapse
|
27
|
Wallace MB, Sharma P, Bhandari P, East J, Antonelli G, Lorenzetti R, Vieth M, Speranza I, Spadaccini M, Desai M, Lukens FJ, Babameto G, Batista D, Singh D, Palmer W, Ramirez F, Palmer R, Lunsford T, Ruff K, Bird-Liebermann E, Ciofoaia V, Arndtz S, Cangemi D, Puddick K, Derfus G, Johal AS, Barawi M, Longo L, Moro L, Repici A, Hassan C. Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia. Gastroenterology 2022; 163:295-304.e5. [PMID: 35304117 DOI: 10.1053/j.gastro.2022.03.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Artificial intelligence (AI) may detect colorectal polyps that have been missed due to perceptual pitfalls. By reducing such miss rate, AI may increase the detection of colorectal neoplasia leading to a higher degree of colorectal cancer (CRC) prevention. METHODS Patients undergoing CRC screening or surveillance were enrolled in 8 centers (Italy, UK, US), and randomized (1:1) to undergo 2 same-day, back-to-back colonoscopies with or without AI (deep learning computer aided diagnosis endoscopy) in 2 different arms, namely AI followed by colonoscopy without AI or vice-versa. Adenoma miss rate (AMR) was calculated as the number of histologically verified lesions detected at second colonoscopy divided by the total number of lesions detected at first and second colonoscopy. Mean number of lesions detected in the second colonoscopy and proportion of false negative subjects (no lesion at first colonoscopy and at least 1 at second) were calculated. Odds ratios (ORs) and 95% confidence intervals (CIs) were adjusted by endoscopist, age, sex, and indication for colonoscopy. Adverse events were also measured. RESULTS A total of 230 subjects (116 AI first, 114 standard colonoscopy first) were included in the study analysis. AMR was 15.5% (38 of 246) and 32.4% (80 of 247) in the arm with AI and non-AI colonoscopy first, respectively (adjusted OR, 0.38; 95% CI, 0.23-0.62). In detail, AMR was lower for AI first for the ≤5 mm (15.9% vs 35.8%; OR, 0.34; 95% CI, 0.21-0.55) and nonpolypoid lesions (16.8% vs 45.8%; OR, 0.24; 95% CI, 0.13-0.43), and it was lower both in the proximal (18.3% vs 32.5%; OR, 0.46; 95% CI, 0.26-0.78) and distal colon (10.8% vs 32.1%; OR, 0.25; 95% CI, 0.11-0.57). Mean number of adenomas at second colonoscopy was lower in the AI-first group as compared with non-AI colonoscopy first (0.33 ± 0.63 vs 0.70 ± 0.97, P < .001). False negative rates were 6.8% (3 of 44 patients) and 29.6% (13 of 44) in the AI and non-AI first arms, respectively (OR, 0.17; 95% CI, 0.05-0.67). No difference in the rate of adverse events was found between the 2 groups. CONCLUSIONS AI resulted in an approximately 2-fold reduction in miss rate of colorectal neoplasia, supporting AI-benefit in reducing perceptual errors for small and subtle lesions at standard colonoscopy. CLINICALTRIALS gov, Number: NCT03954548.
Collapse
Affiliation(s)
- Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic Jacksonville, Florida; Division of Gastroenterology, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi, UAE.
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, University of Kansas Medical Center, Kansas City, Kansas
| | - Pradeep Bhandari
- Division of Gastroenterology, Queen Alexandra Hospital, Portsmouth, UK
| | - James East
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Giulio Antonelli
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy; Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, "Sapienza" University of Rome, Italy; Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli Hospital, Ariccia, Rome, Italy
| | | | - Micheal Vieth
- Institut für Pathologie Klinikum Bayreuth GmbH, Bayreuth, Germany
| | | | - Marco Spadaccini
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Madhav Desai
- Division of Gastroenterology, Queen Alexandra Hospital, Portsmouth, UK
| | - Frank J Lukens
- Division of Gastroenterology and Hepatology, Mayo Clinic Jacksonville, Florida
| | - Genci Babameto
- Division of Gastroenterology and Hepatology, Mayo Clinic LaCrosse, LaCrosse, Wisconsin
| | - Daisy Batista
- Division of Gastroenterology and Hepatology, Mayo Clinic LaCrosse, LaCrosse, Wisconsin
| | - Davinder Singh
- Division of Gastroenterology and Hepatology, Mayo Clinic LaCrosse, LaCrosse, Wisconsin
| | - William Palmer
- Division of Gastroenterology and Hepatology, Mayo Clinic Jacksonville, Florida
| | - Francisco Ramirez
- Division of Gastroenterology and Hepatology, Mayo Clinic Scottsdale, Scottsdale, Arizona
| | - Rebecca Palmer
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Tisha Lunsford
- Division of Gastroenterology and Hepatology, Mayo Clinic Scottsdale, Scottsdale, Arizona
| | - Kevin Ruff
- Division of Gastroenterology and Hepatology, Mayo Clinic Scottsdale, Scottsdale, Arizona
| | | | - Victor Ciofoaia
- Division of Gastroenterology and Hepatology, Mayo Clinic LaCrosse, LaCrosse, Wisconsin
| | - Sophie Arndtz
- Division of Gastroenterology, Queen Alexandra Hospital, Portsmouth, UK
| | - David Cangemi
- Division of Gastroenterology and Hepatology, Mayo Clinic Jacksonville, Florida
| | - Kirsty Puddick
- Division of Gastroenterology, Queen Alexandra Hospital, Portsmouth, UK
| | - Gregory Derfus
- Division of Gastroenterology and Hepatology, Mayo Clinic Eau Claire, Eau Claire, Wisconsin
| | - Amitpal S Johal
- Division of Gastroenterology, Geisinger Medical Center, Danville, Pennsylvania
| | - Mohammed Barawi
- Gastroenterology & Digestive Health, Ascension St. John Hospital, Detroit, Michigan
| | - Luigi Longo
- Cosmo Artificial Intelligence-AI Ltd, Dublin, Ireland
| | - Luigi Moro
- Cosmo Artificial Intelligence-AI Ltd, Dublin, Ireland
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy; Endoscopy Unit, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy; Endoscopy Unit, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
28
|
Renna F, Martins M, Neto A, Cunha A, Libânio D, Dinis-Ribeiro M, Coimbra M. Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice. Diagnostics (Basel) 2022; 12:1278. [PMID: 35626433 PMCID: PMC9141387 DOI: 10.3390/diagnostics12051278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets.
Collapse
Affiliation(s)
- Francesco Renna
- Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal; (M.M.); (A.N.); (A.C.); (M.C.)
- Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Miguel Martins
- Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal; (M.M.); (A.N.); (A.C.); (M.C.)
- Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Alexandre Neto
- Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal; (M.M.); (A.N.); (A.C.); (M.C.)
- Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - António Cunha
- Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal; (M.M.); (A.N.); (A.C.); (M.C.)
- Escola de Ciências e Tecnologia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Diogo Libânio
- Departamento de Ciências da Informação e da Decisão em Saúde/Centro de Investigação em Tecnologias e Serviços de Saúde (CIDES/CINTESIS), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (D.L.); (M.D.-R.)
| | - Mário Dinis-Ribeiro
- Departamento de Ciências da Informação e da Decisão em Saúde/Centro de Investigação em Tecnologias e Serviços de Saúde (CIDES/CINTESIS), Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (D.L.); (M.D.-R.)
| | - Miguel Coimbra
- Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal; (M.M.); (A.N.); (A.C.); (M.C.)
- Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
29
|
Frazzoni L, Arribas J, Antonelli G, Libanio D, Ebigbo A, van der Sommen F, de Groof AJ, Fukuda H, Ohmori M, Ishihara R, Wu L, Yu H, Mori Y, Repici A, Bergman JJGHM, Sharma P, Messmann H, Hassan C, Fuccio L, Dinis-Ribeiro M. Endoscopists' diagnostic accuracy in detecting upper gastrointestinal neoplasia in the framework of artificial intelligence studies. Endoscopy 2022; 54:403-411. [PMID: 33951743 DOI: 10.1055/a-1500-3730] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Estimates on miss rates for upper gastrointestinal neoplasia (UGIN) rely on registry data or old studies. Quality assurance programs for upper GI endoscopy are not fully established owing to the lack of infrastructure to measure endoscopists' competence. We aimed to assess endoscopists' accuracy for the recognition of UGIN exploiting the framework of artificial intelligence (AI) validation studies. METHODS Literature searches of databases (PubMed/MEDLINE, EMBASE, Scopus) up to August 2020 were performed to identify articles evaluating the accuracy of individual endoscopists for the recognition of UGIN within studies validating AI against a histologically verified expert-annotated ground-truth. The main outcomes were endoscopists' pooled sensitivity, specificity, positive and negative predictive value (PPV/NPV), and area under the curve (AUC) for all UGIN, for esophageal squamous cell neoplasia (ESCN), Barrett esophagus-related neoplasia (BERN), and gastric adenocarcinoma (GAC). RESULTS Seven studies (2 ESCN, 3 BERN, 1 GAC, 1 UGIN overall) with 122 endoscopists were included. The pooled endoscopists' sensitivity and specificity for UGIN were 82 % (95 % confidence interval [CI] 80 %-84 %) and 79 % (95 %CI 76 %-81 %), respectively. Endoscopists' accuracy was higher for GAC detection (AUC 0.95 [95 %CI 0.93-0.98]) than for ESCN (AUC 0.90 [95 %CI 0.88-0.92]) and BERN detection (AUC 0.86 [95 %CI 0.84-0.88]). Sensitivity was higher for Eastern vs. Western endoscopists (87 % [95 %CI 84 %-89 %] vs. 75 % [95 %CI 72 %-78 %]), and for expert vs. non-expert endoscopists (85 % [95 %CI 83 %-87 %] vs. 71 % [95 %CI 67 %-75 %]). CONCLUSION We show suboptimal accuracy of endoscopists for the recognition of UGIN even within a framework that included a higher prevalence and disease awareness. Future AI validation studies represent a framework to assess endoscopist competence.
Collapse
Affiliation(s)
- Leonardo Frazzoni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Julia Arribas
- CIDES/CINTESIS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Giulio Antonelli
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Diogo Libanio
- CIDES/CINTESIS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alanna Ebigbo
- III Medizinische Klinik, Universitatsklinikum Augsburg, Augsburg, Germany
| | - Fons van der Sommen
- Department of Electrical Engineering, VCA group, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Albert Jeroen de Groof
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hiromu Fukuda
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayasu Ohmori
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Ryu Ishihara
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Institute for Gastroenterology and Hepatology, Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Institute for Gastroenterology and Hepatology, Wuhan University, Wuhan, China
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Alessandro Repici
- Digestive Endoscopy Unit, Humanitas Research Hospital - IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Prateek Sharma
- Department of Gastroenterology and Hepatology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Helmut Messmann
- III Medizinische Klinik, Universitatsklinikum Augsburg, Augsburg, Germany
| | - Cesare Hassan
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Lorenzo Fuccio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Mário Dinis-Ribeiro
- Gastroenterology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
| |
Collapse
|
30
|
Sharma P, Hassan C. Artificial Intelligence and Deep Learning for Upper Gastrointestinal Neoplasia. Gastroenterology 2022; 162:1056-1066. [PMID: 34902362 DOI: 10.1053/j.gastro.2021.11.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022]
Abstract
Upper gastrointestinal (GI) neoplasia account for 35% of GI cancers and 1.5 million cancer-related deaths every year. Despite its efficacy in preventing cancer mortality, diagnostic upper GI endoscopy is affected by a substantial miss rate of neoplastic lesions due to failure to recognize a visible lesion or imperfect navigation. This may be offset by the real-time application of artificial intelligence (AI) for detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of upper GI neoplasia. Stand-alone performance of CADe for esophageal squamous cell neoplasia, Barrett's esophagus-related neoplasia, and gastric cancer showed promising accuracy, sensitivity ranging between 83% and 93%. However, incorporation of CADe/CADx in clinical practice depends on several factors, such as possible bias in the training or validation phases of these algorithms, its interaction with human endoscopists, and clinical implications of false-positive results. The aim of this review is to guide the clinician across the multiple steps of AI development in clinical practice.
Collapse
Affiliation(s)
- Prateek Sharma
- University of Kansas School of Medicine, Kansas City, Missouri; Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Cesare Hassan
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center-IRCCS, Endoscopy Unit, Rozzano, Italy.
| |
Collapse
|
31
|
Spadaccini M, Vespa E, Chandrasekar VT, Desai M, Patel HK, Maselli R, Fugazza A, Carrara S, Anderloni A, Franchellucci G, De Marco A, Hassan C, Bhandari P, Sharma P, Repici A. Advanced imaging and artificial intelligence for Barrett's esophagus: What we should and soon will do. World J Gastroenterol 2022; 28:1113-1122. [PMID: 35431503 PMCID: PMC8985480 DOI: 10.3748/wjg.v28.i11.1113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
Barrett's esophagus (BE) is a well-established risk factor for esophageal adenocarcinoma. It is recommended that patients have regular endoscopic surveillance, with the ultimate goal of detecting early-stage neoplastic lesions before they can progress to invasive carcinoma. Detection of both dysplasia or early adenocarcinoma permits curative endoscopic treatments, and with this aim, thorough endoscopic assessment is crucial and improves outcomes. The burden of missed neoplasia in BE is still far from being negligible, likely due to inappropriate endoscopic surveillance. Over the last two decades, advanced imaging techniques, moving from traditional dye-spray chromoendoscopy to more practical virtual chromoendoscopy technologies, have been introduced with the aim to enhance neoplasia detection in BE. As witnessed in other fields, artificial intelligence (AI) has revolutionized the field of diagnostic endoscopy and is set to cover a pivotal role in BE as well. The aim of this commentary is to comprehensively summarize present evidence, recent research advances, and future perspectives regarding advanced imaging technology and AI in BE; the combination of computer-aided diagnosis to a widespread adoption of advanced imaging technologies is eagerly awaited. It will also provide a useful step-by-step approach for performing high-quality endoscopy in BE, in order to increase the diagnostic yield of endoscopy in clinical practice.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | - Edoardo Vespa
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | | | - Madhav Desai
- Department of Gastroenterology and Hepatology, Kansas City VA Medical Center, Kansas City, MO 66045, United States
| | - Harsh K Patel
- Department of Internal Medicine, Ochsner Clinic Foundation, New Orleans, LA 70124, United States
| | - Roberta Maselli
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | - Alessandro Fugazza
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
| | - Silvia Carrara
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
| | - Andrea Anderloni
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
| | - Gianluca Franchellucci
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | - Alessandro De Marco
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| | - Cesare Hassan
- Endoscopy Unit, Nuovo Regina Margherita Hospital, Roma 00153, Italy
| | - Pradeep Bhandari
- Department of Gastroenterology, Portsmouth Hospitals University NHS Trust, Portsmouth PO6 3LY, United Kingdom
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO6 3LY, United Kingdom
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, Kansas City VA Medical Center, Kansas City, MO 66045, United States
| | - Alessandro Repici
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, Rozzano 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano 20089, Italy
| |
Collapse
|
32
|
Hann A, Meining A. Artificial Intelligence in Endoscopy. Visc Med 2022; 37:471-475. [PMID: 35083312 DOI: 10.1159/000519407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Background Owing to their rapid development, artificial intelligence (AI) technologies offer a great promise for gastroenterology practice and research. At present, AI-guided image interpretation has already been used with success for endoscopic detection of early malignant lesions. Nonetheless, there are complex challenges and possible shortcomings that must be considered before full implementation can be realized. Summary In this review, the current status of AI in endoscopy is summarized. Future perspectives and open questions for further studies are stressed. Key Messages The usage of AI algorithms for polyp detection in screening colonoscopy results in a significant increase in the adenoma detection rate, mainly attributed to the identification of diminutive polyps. Computer-aided characterization of colorectal polyps accompanies the detection, but further studies are needed to evaluate the clinical benefit. In contrast to colonoscopy, usage of AI in gastroscopy is currently rather limited. Regarding other fields of endoscopic imaging, capsule endoscopy is the ideal imaging platform for AI, due to the potential of saving time in the video analysis.
Collapse
Affiliation(s)
- Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Meining
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, Gastroenterology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Glissen Brown JR, Waljee AK, Mori Y, Sharma P, Berzin TM. Charting a path forward for clinical research in artificial intelligence and gastroenterology. Dig Endosc 2022; 34:4-12. [PMID: 33715244 DOI: 10.1111/den.13974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Gastroenterology has been an early leader in bridging the gap between artificial intelligence (AI) model development and clinical trial validation, and in recent years we have seen the publication of several randomized clinical trials examining the role of AI in gastroenterology. As AI applications for clinical medicine advance rapidly, there is a clear need for guidance surrounding AI-specific study design, evaluation, comparison, analysis and reporting of results. Several initiatives are in the publication or pre-publication phase including AI-specific amendments to minimum reporting guidelines for clinical trials, society task force initiatives aimed at priority use cases and research priorities, and minimum reporting guidelines that guide the reporting of clinical prediction models. In this paper, we examine applications of AI in clinical trials and discuss elements of newly published AI-specific extensions to the Consolidated Standards of Reporting Trials and Standard Protocol Items: Recommendations for Interventional Trials statements that guide clinical trial reporting and development. We then review AI applications at the pre-trial level in both endoscopy and other subfields of gastroenterology and explore areas where further guidance is needed to supplement the current guidance available at the pre-trial level.
Collapse
Affiliation(s)
- Jeremy R Glissen Brown
- Center for Advanced Endoscopy, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Akbar K Waljee
- Division of Gastroenterology, University of Michigan Health System, University of Michigan, Ann Arbor, USA
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan.,Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Gastroenterology, Kansas City VA Medical Center, Kansas City, USA
| | - Tyler M Berzin
- Center for Advanced Endoscopy, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
34
|
van der Putten J, van der Sommen F. AIM in Barrett’s Esophagus. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
El-Nakeep S, El-Nakeep M. Artificial intelligence for cancer detection in upper gastrointestinal endoscopy, current status, and future aspirations. Artif Intell Gastroenterol 2021; 2:124-132. [DOI: 10.35712/aig.v2.i5.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
|
36
|
Klein S, Duda DG. Machine Learning for Future Subtyping of the Tumor Microenvironment of Gastro-Esophageal Adenocarcinomas. Cancers (Basel) 2021; 13:4919. [PMID: 34638408 PMCID: PMC8507866 DOI: 10.3390/cancers13194919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor progression involves an intricate interplay between malignant cells and their surrounding tumor microenvironment (TME) at specific sites. The TME is dynamic and is composed of stromal, parenchymal, and immune cells, which mediate cancer progression and therapy resistance. Evidence from preclinical and clinical studies revealed that TME targeting and reprogramming can be a promising approach to achieve anti-tumor effects in several cancers, including in GEA. Thus, it is of great interest to use modern technology to understand the relevant components of programming the TME. Here, we discuss the approach of machine learning, which recently gained increasing interest recently because of its ability to measure tumor parameters at the cellular level, reveal global features of relevance, and generate prognostic models. In this review, we discuss the relevant stromal composition of the TME in GEAs and discuss how they could be integrated. We also review the current progress in the application of machine learning in different medical disciplines that are relevant for the management and study of GEA.
Collapse
Affiliation(s)
- Sebastian Klein
- Gerhard-Domagk-Institute for Pathology, University Hospital Münster, 48149 Münster, Germany
- Institute for Pathology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Dan G. Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02478, USA
| |
Collapse
|
37
|
Oka A, Ishimura N, Ishihara S. A New Dawn for the Use of Artificial Intelligence in Gastroenterology, Hepatology and Pancreatology. Diagnostics (Basel) 2021; 11:1719. [PMID: 34574060 PMCID: PMC8468082 DOI: 10.3390/diagnostics11091719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is rapidly becoming an essential tool in the medical field as well as in daily life. Recent developments in deep learning, a subfield of AI, have brought remarkable advances in image recognition, which facilitates improvement in the early detection of cancer by endoscopy, ultrasonography, and computed tomography. In addition, AI-assisted big data analysis represents a great step forward for precision medicine. This review provides an overview of AI technology, particularly for gastroenterology, hepatology, and pancreatology, to help clinicians utilize AI in the near future.
Collapse
Affiliation(s)
- Akihiko Oka
- Department of Internal Medicine II, Faculty of Medicine, Shimane University, Izumo 693-8501, Shimane, Japan; (N.I.); (S.I.)
| | | | | |
Collapse
|
38
|
Pecere S, Milluzzo SM, Esposito G, Dilaghi E, Telese A, Eusebi LH. Applications of Artificial Intelligence for the Diagnosis of Gastrointestinal Diseases. Diagnostics (Basel) 2021; 11:diagnostics11091575. [PMID: 34573917 PMCID: PMC8469485 DOI: 10.3390/diagnostics11091575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
The development of convolutional neural networks has achieved impressive advances of machine learning in recent years, leading to an increasing use of artificial intelligence (AI) in the field of gastrointestinal (GI) diseases. AI networks have been trained to differentiate benign from malignant lesions, analyze endoscopic and radiological GI images, and assess histological diagnoses, obtaining excellent results and high overall diagnostic accuracy. Nevertheless, there data are lacking on side effects of AI in the gastroenterology field, and high-quality studies comparing the performance of AI networks to health care professionals are still limited. Thus, large, controlled trials in real-time clinical settings are warranted to assess the role of AI in daily clinical practice. This narrative review gives an overview of some of the most relevant potential applications of AI for gastrointestinal diseases, highlighting advantages and main limitations and providing considerations for future development.
Collapse
Affiliation(s)
- Silvia Pecere
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00135 Rome, Italy;
- Center for Endoscopic Research Therapeutics and Training (CERTT), Catholic University, 00168 Rome, Italy
- Correspondence: (S.P.); (L.H.E.)
| | - Sebastian Manuel Milluzzo
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00135 Rome, Italy;
- Fondazione Poliambulanza Istituto Ospedaliero, 25121 Brescia, Italy
| | - Gianluca Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00168 Rome, Italy; (G.E.); (E.D.)
| | - Emanuele Dilaghi
- Department of Medical-Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00168 Rome, Italy; (G.E.); (E.D.)
| | - Andrea Telese
- Department of Gastroenterology, University College London Hospital (UCLH), London NW1 2AF, UK;
| | - Leonardo Henry Eusebi
- Division of Gastroenterology and Endoscopy, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40121 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40121 Bologna, Italy
- Correspondence: (S.P.); (L.H.E.)
| |
Collapse
|
39
|
Song YQ, Mao XL, Zhou XB, He SQ, Chen YH, Zhang LH, Xu SW, Yan LL, Tang SP, Ye LP, Li SW. Use of Artificial Intelligence to Improve the Quality Control of Gastrointestinal Endoscopy. Front Med (Lausanne) 2021; 8:709347. [PMID: 34368199 PMCID: PMC8339701 DOI: 10.3389/fmed.2021.709347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022] Open
Abstract
With the rapid development of science and technology, artificial intelligence (AI) systems are becoming ubiquitous, and their utility in gastroenteroscopy is beginning to be recognized. Digestive endoscopy is a conventional and reliable method of examining and diagnosing digestive tract diseases. However, with the increase in the number and types of endoscopy, problems such as a lack of skilled endoscopists and difference in the professional skill of doctors with different degrees of experience have become increasingly apparent. Most studies thus far have focused on using computers to detect and diagnose lesions, but improving the quality of endoscopic examination process itself is the basis for improving the detection rate and correctly diagnosing diseases. In the present study, we mainly reviewed the role of AI in monitoring systems, mainly through the endoscopic examination time, reducing the blind spot rate, improving the success rate for detecting high-risk lesions, evaluating intestinal preparation, increasing the detection rate of polyps, automatically collecting maps and writing reports. AI can even perform quality control evaluations for endoscopists, improve the detection rate of endoscopic lesions and reduce the burden on endoscopists.
Collapse
Affiliation(s)
- Ya-Qi Song
- Taizhou Hospital, Zhejiang University, Linhai, China
| | - Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-Bin Zhou
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Sai-Qin He
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya-Hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Li-Hui Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-Wen Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ling-Ling Yan
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shen-Ping Tang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Li-Ping Ye
- Taizhou Hospital, Zhejiang University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
40
|
Visaggi P, Barberio B, Ghisa M, Ribolsi M, Savarino V, Fassan M, Valmasoni M, Marchi S, de Bortoli N, Savarino E. Modern Diagnosis of Early Esophageal Cancer: From Blood Biomarkers to Advanced Endoscopy and Artificial Intelligence. Cancers (Basel) 2021; 13:3162. [PMID: 34202763 PMCID: PMC8268190 DOI: 10.3390/cancers13133162] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer and the sixth cause of cancer death worldwide. Histologically, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) account for up to 90% and 20% of all ECs, respectively. Clinical symptoms such as dysphagia, odynophagia, and bolus impaction occur late in the natural history of the disease, and the diagnosis is often delayed. The prognosis of ESCC and EAC is poor in advanced stages, being survival rates less than 20% at five years. However, when the diagnosis is achieved early, curative treatment is possible, and survival exceeds 80%. For these reasons, mass screening strategies for EC are highly desirable, and several options are currently under investigation. Blood biomarkers offer an inexpensive, non-invasive screening strategy for cancers, and novel technologies have allowed the identification of candidate markers for EC. The esophagus is easily accessible via endoscopy, and endoscopic imaging represents the gold standard for cancer surveillance. However, lesion recognition during endoscopic procedures is hampered by interobserver variability. To fill this gap, artificial intelligence (AI) has recently been explored and provided encouraging results. In this review, we provide a summary of currently available options to achieve early diagnosis of EC, focusing on blood biomarkers, advanced endoscopy, and AI.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (P.V.); (S.M.); (N.d.B.)
| | - Brigida Barberio
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35121 Padua, Italy; (B.B.); (M.G.)
| | - Matteo Ghisa
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35121 Padua, Italy; (B.B.); (M.G.)
| | - Mentore Ribolsi
- Department of Digestive Diseases, Campus Bio Medico University of Rome, 00128 Roma, Italy;
| | - Vincenzo Savarino
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16143 Genoa, Italy;
| | - Matteo Fassan
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy;
| | - Michele Valmasoni
- Department of Surgical, Oncological and Gastroenterological Sciences, Center for Esophageal Disease, University of Padova, 35124 Padova, Italy;
| | - Santino Marchi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (P.V.); (S.M.); (N.d.B.)
| | - Nicola de Bortoli
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (P.V.); (S.M.); (N.d.B.)
| | - Edoardo Savarino
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35121 Padua, Italy; (B.B.); (M.G.)
| |
Collapse
|
41
|
Meta-analyses of machine learning in endoscopy: stacking apples and oranges. Gastrointest Endosc 2021; 93:1016-1018. [PMID: 33715876 DOI: 10.1016/j.gie.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
|
42
|
Barrett esophagus: What to expect from Artificial Intelligence? Best Pract Res Clin Gastroenterol 2021; 52-53:101726. [PMID: 34172253 DOI: 10.1016/j.bpg.2021.101726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
The evaluation and assessment of Barrett's esophagus is challenging for both expert and nonexpert endoscopists. However, the early diagnosis of cancer in Barrett's esophagus is crucial for its prognosis, and could save costs. Pre-clinical and clinical studies on the application of Artificial Intelligence (AI) in Barrett's esophagus have shown promising results. In this review, we focus on the current challenges and future perspectives of implementing AI systems in the management of patients with Barrett's esophagus.
Collapse
|
43
|
van der Putten J, van der Sommen F. AIM in Barrett’s Esophagus. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Sinonquel P, Bisschops R. Striving for quality improvement: can artificial intelligence help? Best Pract Res Clin Gastroenterol 2020; 52-53:101722. [PMID: 34172249 DOI: 10.1016/j.bpg.2020.101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is of keen interest for global health development as potential support for current human shortcomings. Gastrointestinal (GI) endoscopy is an excellent substrate for AI, since it holds the genuine potential to improve quality in GI endoscopy and overall patient care by improving detection and diagnosis guiding the endoscopists in performing endoscopy to the highest quality standards. The possibility of large data acquisitioning to refine algorithms makes implementation of AI into daily practice a potential reality. With the start of a new era adopting deep learning, large amounts of data can easily be processed, resulting in better diagnostic performances. In the upper gastrointestinal tract, research currently focusses on the detection and characterization of neoplasia, including Barrett's, squamous cell and gastric carcinoma, with an increasing amount of AI studies demonstrating the potential and benefit of AI-augmented endoscopy. Deep learning applied to small bowel video capsule endoscopy also appears to enhance pathology detection and reduce capsule reading time. In the colon, multiple prospective trials including five randomized trials, showed a consistent improvement in polyp and adenoma detection rates, one of the main quality indicators in endoscopy. There are however potential additional roles for AI to assist in quality improvement of endoscopic procedures, training and therapeutic decision making. Further large-scale, multicenter validation trials are required before AI-augmented diagnostic gastrointestinal endoscopy can be integrated into our routine clinical practice.
Collapse
Affiliation(s)
- P Sinonquel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Translational Research in Gastrointestinal Diseases (TARGID), Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - R Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Translational Research in Gastrointestinal Diseases (TARGID), Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
45
|
Antonelli G, Badalamenti M, Hassan C, Repici A. Impact of artificial intelligence on colorectal polyp detection. Best Pract Res Clin Gastroenterol 2020; 52-53:101713. [PMID: 34172246 DOI: 10.1016/j.bpg.2020.101713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023]
Abstract
Since colonoscopy and polypectomy were introduced, Colorectal Cancer (CRC) incidence and mortality decreased significantly. Although we have entered the era of quality measurement and improvement, literature shows that a considerable amount of colorectal neoplasia is still missed by colonoscopists up to 25%, leading to an high rate of interval colorectal cancer that account for nearly 10% of all diagnosed CRC. Two main reasons have been recognised: recognition failure and mucosal exposure. For this purpose, Artificial Intelligence (AI) systems have been recently developed that identify a "hot" area during the endoscopic examination. In retrospective studies, where the systems are tested with a batch of unknown images, deep learning systems have shown very good performances, with high levels of accuracy. Of course, this setting may not reflect actual clinical practice where different pitfalls can occur, like suboptimal bowel preparation or poor examination technique. For this reason, a number of randomised clinical trials have recently been published where AI was tested in real time during endoscopic examinations. We present here an overview on recent literature addressing the performance of Computer Assisted Detection (CADe) of colorectal polyps in colonoscopy.
Collapse
Affiliation(s)
- Giulio Antonelli
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Matteo Badalamenti
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, 20089, Italy.
| | - Cesare Hassan
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Alessandro Repici
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, 20089, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| |
Collapse
|