1
|
Hu W, Gong W, Yang F, Cheng R, Zhang G, Gan L, Zhu Y, Qin W, Gao Y, Li X, Liu J. Dual GIP and GLP-1 receptor agonist tirzepatide alleviates hepatic steatosis and modulates gut microbiota and bile acid metabolism in diabetic mice. Int Immunopharmacol 2025; 147:113937. [PMID: 39752752 DOI: 10.1016/j.intimp.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 01/29/2025]
Abstract
Tirzepatide is a dual agonist of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptors and is a promising therapeutic option for type 2 diabetes mellitus (T2DM). Nevertheless, its effect and underlying mechanism on hepatic steatosis remain ambiguous. Herein, we explored the impact of tirzepatide on improving hepatic steatosis in diabetic mice, with a particular focus on the gut microbiota and bile acids (BAs) using animal models. The tirzepatide effectively reduced body weight, improved insulin resistance, decreased serum and hepatic lipid levels, and mitigated liver injury. Compared to semaglutide, tirzepatide exhibited superior efficacy in reducing hepatic lipid accumulation. 16S rRNA gene sequencing and targeted metabolomics of BAs revealed that tirzepatide ameliorated gut microbiota dysbiosis and BAs metabolism in diabetic mice. Notably, tirzepatide observably increased the abundance of beneficial genera such as Akkermansia, elevated the ratio of farnesoid X receptor (FXR) antagonists (glycoursodeoxycholic acid: GUDCA, β-muricholic acid: β-MCA, hyodeoxycholic acid: HDCA, ursodeoxycholic acid: UDCA) to natural agonists (cholic acid: CA, lithocholic acid: LCA, chenodeoxycholic acid: CDCA, glycocholic acid: GCA, taurodeoxycholic acid: TDCA), and reduced FXR expression in intestinal tissues. In conclusion, tirzepatide attenuated hepatic steatosis in diabetic mice and regulated the gut microbiota and BAs metabolism, which may help to provide a novel therapeutic approach and therapeutic target for metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Weiting Hu
- Department of Clinical Medicine, The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China; Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Wenyu Gong
- Department of Clinical Medicine, The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China
| | - Fan Yang
- The First Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China
| | - Rui Cheng
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Gerong Zhang
- Department of Clinical Medicine, The Second Clinical Medical College, Shanxi Medical University, Taiyuan 030000, China
| | - Lu Gan
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yikun Zhu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Weiwei Qin
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Ying Gao
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Xing Li
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China.
| | - Jing Liu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China.
| |
Collapse
|
2
|
Li H, Niu L, Wang M, Liu C, Wang Y, Su Y, Yang Y. Mechanism investigation of anti-NAFLD of Shugan Yipi Granule based on network pharmacology analysis and experimental verification. Heliyon 2024; 10:e35491. [PMID: 39170438 PMCID: PMC11336705 DOI: 10.1016/j.heliyon.2024.e35491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
As a classical traditional Chinese patent medicine, Shugan Yipi Granule is widely used in China to treat non-alcoholic fatty liver disease (NAFLD) recently. Our previous study confirmed that Shugan Yipi Granule are effective in NAFLD. However, its underlying mechanism is still unknown. This study aims to investigate the mechanism of Shugan Yipi Granule on NAFLD based on network pharmacology prediction, liquid chromatography-mass spectrometry (LC-MS) analysis and in vitro verification. We obtained the active ingredients and targets of Shugan Yipi Granule and NAFLD from 6 traditional Chinese medicine databases, and the crucial components and targets screened by protein-protein interaction (PPI) network were used for molecular docking. Plasma metabolomics of NAFLD patients treated with Shugan Yipi Granule for one month was analyzed using LC-MS methods and MetaboAnalyst 4.0 to obtain significant differential metabolites and pathways. Finally, free fatty acid (FFA) induced HepG2 cells were treated with different concentrations of quercetin and kaempferol, then oil red o (ORO) and triglyceride (TG) level were tested to verify the lipid deposition of the cell. Network pharmacology analysis showed that the main active ingredients of Shugan Yipi Granule include quercetin, kaempferol and other 58 ones, as well as 188 potential targets. PI3K/Akt signaling pathway was found to be the most relevant pathway for the treatment of NAFLD. Non-targeted metabolomics showed that quercetin and kaempferol were significantly up-regulated differential metabolites and were involved in metabolic pathways such as thyroid hormone signaling. In vitro results showed that quercetin, kaempferol were effective in reducing lipid deposition and TG content by inhibiting cellular fatty acid uptake. Ultimately, with the network pharmacology and serum metabolomics analysis, quercetin and kaempferol were found to be the important active ingredients and significantly up-regulated differential metabolites of Shugan Yipi Granule against NAFLD, which we inferred that they may regulate NAFLD through PI3K/Akt signaling pathway and thyroid hormone metabolism pathway. The in vitro experiment verification results showed that quercetin and kaempferol attenuated the lipid accumulation and TG content by inhibiting the fatty acid uptake in the FFA-induced HepG2 cell. Current study provides the necessary experimental basis for subsequent in-depth mechanism research.
Collapse
Affiliation(s)
- Hairong Li
- West China Second University Hospital, Sichuan University, Chengdu, 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
- Guangdong Pharmaceutical University, Xiaoguwei street, Panyu District, Guangzhou, 510006, China
| | - lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiling Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Xia Road, Yuexiu District, Guangzhou, 510006, China
| | - Chunmei Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Xia Road, Yuexiu District, Guangzhou, 510006, China
| | - Yunlong Wang
- Academic Department, Giant Praise (HK) Pharmaceutical Group Limited, Changchun, 130033, China
| | - Yu Su
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Xia Road, Yuexiu District, Guangzhou, 510006, China
| | - Yubin Yang
- West China Second University Hospital, Sichuan University, Chengdu, 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| |
Collapse
|
3
|
Qi W, Fang Z, Luo C, Hong H, Long Y, Dai Z, Liu J, Zeng Y, Zhou T, Xia Y, Yang X, Gao G. The critical role of BTRC in hepatic steatosis as an ATGL E3 ligase. J Mol Cell Biol 2024; 15:mjad064. [PMID: 37873692 PMCID: PMC10993717 DOI: 10.1093/jmcb/mjad064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/26/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is one of the commonest causes of liver dysfunction. Adipose triglyceride lipase (ATGL) is closely related to lipid turnover and hepatic steatosis as the speed-limited triacylglycerol lipase in liver lipolysis. However, the expression and regulation of ATGL in NAFLD remain unclear. Herein, our results showed that ATGL protein levels were decreased in the liver tissues of high-fat diet (HFD)-fed mice, naturally obese mice, and cholangioma/hepatic carcinoma patients with hepatic steatosis, as well as in the oleic acid-induced hepatic steatosis cell model, while ATGL mRNA levels were not changed. ATGL protein was mainly degraded through the proteasome pathway in hepatocytes. Beta-transducin repeat containing (BTRC) was upregulated and negatively correlated with the decreased ATGL level in these hepatic steatosis models. Consequently, BTRC was identified as the E3 ligase for ATGL through predominant ubiquitination at the lysine 135 residue. Moreover, adenovirus-mediated knockdown of BTRC ameliorated steatosis in HFD-fed mouse livers and oleic acid-treated liver cells via upregulating the ATGL level. Taken together, BTRC plays a crucial role in hepatic steatosis as a new ATGL E3 ligase and may serve as a potential therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenzhen Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chuanghua Luo
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Honghai Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510006, China
| | - Yanlan Long
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiyu Dai
- Department of Internal Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Junxi Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongcheng Zeng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510006, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou 510080, China
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Dou C, Zhu H, Xie X, Huang C, Cao C. Integrated Pharmaco-Bioinformatics Approaches and Experimental Verification To Explore the Effect of Britanin on Nonalcoholic Fatty Liver Disease. ACS OMEGA 2024; 9:8274-8286. [PMID: 38405493 PMCID: PMC10882692 DOI: 10.1021/acsomega.3c08968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent global liver disorder, posing substantial health risks. Britanin, a bioactive sesquiterpene lactone extracted from Inula japonica, has demonstrated antidiabetic, hypolipidemic, and hepatoprotective attributes. Nonetheless, the precise impact of Britanin on NAFLD and the intricate biological mechanisms underpinning this interaction remain unexplored. We integrated computer-aided methods to unearth shared biological targets and signaling pathways associated with both Britanin and NAFLD. A network was constructed by compiling putative targets associated with Britanin and NAFLD, followed by a stringent screening of key targets and mechanisms through protein-protein interaction analysis along with GO and KEGG pathway enrichment analyses. Molecular docking was integrated as an evaluation tool, culminating in the identification of HO-1 as the pivotal therapeutic target, showcasing a satisfactory binding affinity. The primary mechanism was ascribed to biological processes and pathways linked to oxidative stress, as evidenced by the outcomes of enrichment analyses. Of these, the AMPK/SREBP1c pathway assumed centrality in this mechanism. Furthermore, in vivo experiments substantiated that Britanin effectively curtailed NAFLD development by ameliorating liver injury, modulating hyperlipidemia and hepatic lipid accumulation, and alleviating oxidative stress and apoptosis. In summary, this study demonstrates the potential of Britanin as a promising therapeutic drug against NAFLD.
Collapse
Affiliation(s)
- Chengyun Dou
- Department
of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical
School, University of South China, Hengyang, Hunan Province 421001, China
| | - Hongbo Zhu
- Department
of Medical Oncology, the First Affiliated Hospital, Hengyang Medical
School, University of South China, Hengyang, Hunan Province 421001, China
| | - Xia Xie
- Department
of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical
School, University of South China, Hengyang, Hunan Province 421001, China
| | - Cuiqin Huang
- Department
of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Chuangjie Cao
- Department
of Pathology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| |
Collapse
|
5
|
Chaudhury T, Brodosi L, Marchesini G, Mitra SK, Petroni ML. NAFLD, the hepatic manifestation of the metabolic syndrome. METABOLIC SYNDROME 2024:279-291. [DOI: 10.1016/b978-0-323-85732-1.00055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Ni Y, Qian L, Siliceo SL, Long X, Nychas E, Liu Y, Ismaiah MJ, Leung H, Zhang L, Gao Q, Wu Q, Zhang Y, Jia X, Liu S, Yuan R, Zhou L, Wang X, Li Q, Zhao Y, El-Nezami H, Xu A, Xu G, Li H, Panagiotou G, Jia W. Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metab 2023; 35:1530-1547.e8. [PMID: 37673036 DOI: 10.1016/j.cmet.2023.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/22/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic dysfunction for which effective interventions are lacking. To investigate the effects of resistant starch (RS) as a microbiota-directed dietary supplement for NAFLD treatment, we coupled a 4-month randomized placebo-controlled clinical trial in individuals with NAFLD (ChiCTR-IOR-15007519) with metagenomics and metabolomics analysis. Relative to the control (n = 97), the RS intervention (n = 99) resulted in a 9.08% absolute reduction of intrahepatic triglyceride content (IHTC), which was 5.89% after adjusting for weight loss. Serum branched-chain amino acids (BCAAs) and gut microbial species, in particular Bacteroides stercoris, significantly correlated with IHTC and liver enzymes and were reduced by RS. Multi-omics integrative analyses revealed the interplay among gut microbiota changes, BCAA availability, and hepatic steatosis, with causality supported by fecal microbiota transplantation and monocolonization in mice. Thus, RS dietary supplementation might be a strategy for managing NAFLD by altering gut microbiota composition and functionality.
Collapse
Affiliation(s)
- Yueqiong Ni
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Lingling Qian
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sara Leal Siliceo
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Xiaoxue Long
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Emmanouil Nychas
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Marsena Jasiel Ismaiah
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 70211, Finland; School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Howell Leung
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Lei Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qiongmei Gao
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qian Wu
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ying Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xi Jia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuangbo Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rui Yuan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hani El-Nezami
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 70211, Finland; School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Huating Li
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany; Department of Medicine, The University of Hong Kong, Hong Kong, China; Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany.
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
7
|
Shen S, Huang H, Wang J, Tang Z, Shen C, Xu C. Positive Association Between the Chinese Visceral Adiposity Index and Nonalcoholic Fatty Liver Disease in Lean Adults. Dig Dis Sci 2023; 68:656-664. [PMID: 36512267 DOI: 10.1007/s10620-022-07787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Chinese visceral adiposity index (CVAI) is a novel indicator that precisely evaluates visceral obesity and has been shown to be significantly associated with nonalcoholic fatty liver disease (NAFLD) in the general population. However, the relationship between CVAI and NAFLD in lean adults remains unclear. AIMS This study aimed to explore the association of CVAI with NAFLD in a lean population and evaluate the diagnostic capability of CVAI for lean NAFLD. METHODS A cross-sectional study was conducted among 9,607 lean adults (body mass index < 24 kg/m2), who underwent their annual health examinations at the First Affiliated Hospital, Zhejiang University School of Medicine in 2021. NAFLD was determined by ultrasonography to the exclusion of other known etiologies. RESULTS The prevalence of NAFLD was 16.4% in this lean population. CVAI values were significantly higher in participants with NAFLD than those without NAFLD and the CVAI quartile was positively associated with the prevalence of NAFLD, which was 0.4%, 6.0%, 19.4%, and 39.8% among the participants with CVAI in quartile 1 to 4, respectively (P for trend < 0.001). Logistic regression analysis found that CVAI was positively associated with the risk of NAFLD (adjusted odds ratio: 1.025, 95% confidence interval: 1.021-1.028; P < 0.001). Furthermore, CVAI had a significantly higher area under curve value for detecting NAFLD than other visceral obesity indices. CONCLUSION Our study showed that CVAI was positively associated with the prevalence and risk of NAFLD in lean adults, and CVAI showed the highest diagnostic ability for lean NAFLD.
Collapse
Affiliation(s)
- Shuxia Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, China
| | - Hangkai Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, China
| | - Jinghua Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, China
| | - Zexi Tang
- School of Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chao Shen
- Health Management Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Zhejiang Provincial Clinical Research Center for Digestive Diseases, Hangzhou, China.
| |
Collapse
|
8
|
Braude M, Roberts S, Majeed A, Lubel J, Prompen J, Dev A, Sievert W, Bloom S, Gow P, Kemp W. Liver stiffness (Fibroscan®) is a predictor of all-cause mortality in people with non-alcoholic fatty liver disease. Liver Int 2023; 43:90-99. [PMID: 36050821 PMCID: PMC10086842 DOI: 10.1111/liv.15415] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Progressive liver fibrosis related to non-alcoholic fatty liver disease (NAFLD) is associated with all-cause and liver-related mortality. We assessed vibration-controlled transient elastography (VCTE) as a predictor of mortality. METHOD Data from patients who underwent VCTE for NAFLD at four large health services in Victoria, Australia between the years 2008 and 2019 were linked to state-wide data registries. Cause of death (COD) and predictors of all-cause mortality were subsequently analysed using descriptive statistics and Cox-proportional regression analysis. RESULTS Of 7079 VCTE records submitted for data linkage, 6341 were matched via data registry linkage. There were 217 deaths over a 22 653 person-year follow-up. COD included malignancies other than hepatocellular carcinoma (HCC) (18.0%, n = 39), sepsis (16.1%, n = 35), decompensated liver disease (15.2%, n = 33), cardiac disease (15.2%, n = 33) and HCC 6.0% (n = 13). Controlled attenuation parameter (CAP) was not associated with mortality in univariable analysis (HR = 1.00, CI 1.0-1.0, p = .488). Increased liver stiffness measurement (LSM) (HR 1.02 per kiloPascal, CI 1.01-1.03, p < .001), Charlson comorbidity index (CCI) (HR 1.32 for each point, CI 1.27-1.38, p < .001) and age (HR 1.05 per annum, CI 1.03-1.07, p < .001) were each associated with higher rates of all-cause mortality in multivariable analysis. LSM ≥10 kPa suggestive of compensated advanced chronic liver disease (cACLD) was associated with mortality in multivariable analysis (HR 2.31, CI 1.73-3.09, p < .001). CONCLUSION VCTE LSM, in addition to age and CCI, is independently associated with increased all-cause mortality in a large cohort with NAFLD.
Collapse
Affiliation(s)
- Michael Braude
- Gastroenterology and Hepatology, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Stuart Roberts
- Gastroenterology and Hepatology, Alfred Health, Melbourne, Victoria, Australia.,Monash Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Ammar Majeed
- Gastroenterology and Hepatology, Alfred Health, Melbourne, Victoria, Australia.,Monash Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - John Lubel
- Gastroenterology and Hepatology, Alfred Health, Melbourne, Victoria, Australia.,Monash Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Jirayut Prompen
- Gastroenterology and Hepatology, Alfred Health, Melbourne, Victoria, Australia
| | - Anouk Dev
- Gastroenterology and Hepatology, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - William Sievert
- Gastroenterology and Hepatology, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Stephen Bloom
- Monash Central Clinical School, Monash University, Clayton, Victoria, Australia.,Gastroenterology and Hepatology, Eastern Health, Box Hill, Victoria, Australia
| | - Paul Gow
- Gastroenterology, Austin Health, Heidelberg, Victoria, Australia.,Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - William Kemp
- Gastroenterology and Hepatology, Alfred Health, Melbourne, Victoria, Australia.,Monash Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Huang X, Yuan Z, Liu X, Wang Z, Lu J, Wu L, Lin X, Zhang Y, Pi W, Cai D, Chu F, Wang P, Lei H. Integrative multi-omics unravels the amelioration effects of Zanthoxylum bungeanum Maxim. on non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154576. [PMID: 36610127 DOI: 10.1016/j.phymed.2022.154576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The effect of Zanthoxylum bungeanum Maxim. (ZBM) on anti-obesity, lipid-lowering and liver protection has been identified, but the effect on the development of NAFLD induced by high-fat diet remains unclear. PURPOSE To evaluate the alleviation effect of ZBM on NAFLD in vivo and explore the mechanisms by analyzing the liver transcriptome, microbiota and fecal metabolites. METHODS NAFLD model was induced in C57BL/6J mice by feeding with high-fat diet (HFD). The potential mechanism of ZBM in improving NAFLD was studied by liver transcriptome analysis, real-time PCR, immunofluorescence, 16s rRNA sequencing and non-targeted metabonomics. RESULTS ZBM has alleviation effects on HFD-induced NAFLD. The liver transcriptome, real-time PCR and immunofluorescence analysis showed that ZBM could efficiently regulate fatty acid and cholesterol metabolism. The 16S rRNA sequencing and LC-MS based metabonomic demonstrated that ZBM could rebalance gut microbiota dysbiosis and regulate metabolic profiles in HFD-induced NAFLD mice. Spearman correlation analysis revealed a strong correlation between gut microbiota and biochemical, pathological indexes and differential metabolic biomarkers. CONCLUSION ZBM ameliorates HFD-induced NAFLD by regulating fatty acid and cholesterol metabolism, gut microbiota and metabolic profile.
Collapse
Affiliation(s)
- Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaojing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Linying Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fuhao Chu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
10
|
Simon TG, Roelstraete B, Hagström H, Sundström J, Ludvigsson JF. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: results from a nationwide histology cohort. Gut 2022; 71:1867-1875. [PMID: 34489307 DOI: 10.1136/gutjnl-2021-325724] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Some data suggest a positive association between non-alcoholic fatty liver disease (NAFLD) and incident major adverse cardiovascular events (MACEs). However, data are lacking from large cohorts with liver histology, which remains the gold standard for staging NAFLD severity. DESIGN This population-based cohort included all Swedish adults with histologically confirmed NAFLD and without cardiovascular disease (CVD) at baseline (1966-2016, n=10 422). NAFLD was defined from prospectively recorded histopathology and categorised as simple steatosis, non-fibrotic steatohepatitis, non-cirrhotic fibrosis and cirrhosis. Patients with NAFLD were matched to ≤5 population controls without NAFLD or CVD, by age, sex, calendar year and county (n=46 517). Using Cox proportional hazards modelling, we calculated multivariable adjusted HRs (aHRs) and 95% CIs for MACE outcomes (ie, ischaemic heart disease (IHD), stroke, congestive heart failure (CHF) or cardiovascular (CV) mortality). RESULTS Over a median of 13.6 years, incident MACE was confirmed in 2850 patients with NAFLD and 10 648 controls. Patients with NAFLD had higher incidence of MACE than controls (24.3 vs 16.0/1000 person-years (PY); difference=8.3/1000 PY; aHR 1.63, 95% CI 1.56 to 1.70), including higher rates of IHD (difference=4.2/1000 PY; aHR 1.64, 95% CI 1.54 to 1.75), CHF (difference=3.3/1000 PY; aHR 1.75, 95% CI 1.63 to 1.87), stroke (difference=2.4/1000 PY; aHR 1.58, 95% CI 1.46 to 1.71) and CV mortality (difference=1.2/1000 PY; aHR 1.37, 95% CI 1.27 to 1.48). Rates of incident MACE increased progressively with worsening NAFLD severity (ptrend=0.02), with the highest incidence observed with cirrhosis (difference vs controls=27.2/1000 PY; aHR 2.15, 95% CI 1.77 to 2.61). CONCLUSION Compared with matched population controls, patients with biopsy-proven NAFLD had significantly higher incidence of MACE, including IHD, stroke, CHF and CV mortality. Excess risk was evident across all stages of NAFLD and increased with worsening disease severity.
Collapse
Affiliation(s)
- Tracey G Simon
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bjorn Roelstraete
- Medical Epidemiology and Biostatistics, Karolinska Institute, Stockhom, Sweden
| | - Hannes Hagström
- Center for Digestive Diseases, Division of Hepatology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas F Ludvigsson
- Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pediatrics, Orebro University Hospital, Orebro, Sweden
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
11
|
Xu J, Piao C, Qu Y, Liu T, Peng Y, Li Q, Zhao X, Li P, Wu X, Fan Y, Chen B, Yang J. Efficacy and mechanism of Jiedu Tongluo Tiaogan Formula in treating type 2 diabetes mellitus combined with non-alcoholic fatty liver disease: Study protocol for a parallel-armed, randomized controlled trial. Front Pharmacol 2022; 13:924021. [PMID: 36034810 PMCID: PMC9411737 DOI: 10.3389/fphar.2022.924021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The incidence of Type 2 diabetes mellitus (T2DM) combined with non-alcoholic fatty liver disease (NAFLD) has risen over the years. This comorbid condition significantly increases the probability of cirrhosis, liver cancer, and mortality compared to the disease alone. The multi-targeted, holistic treatment efficacy of traditional Chinese medicine (TCM) plays a vital role in the treatment of T2DM and NAFLD. Jiedu Tongluo Tiaogan Formula (JTTF), based on TCM theory, is widely used in clinical treatment, and its effectiveness in lowering glucose, regulating lipids, improving insulin resistance, and its pathways of action have been demonstrated in previous studies. However, the mechanism of this formula has not been investigated from a metabolomics perspective. Moreover, high-quality clinical studies on T2DM combined with NAFLD are lacking. Therefore, we aim to conduct a clinical trial to investigate the clinical efficacy, safety, and possible pathways of JTTF in the treatment of T2DM combined with NAFLD using metabolomics techniques. Methods: A total of 98 participants will be recruited to this clinical trial and randomly assigned to either a treatment group (JTTF + conventional basic treatment) or control group (conventional basic treatment) in a 1:1 ratio. Both groups will have received the same lifestyle interventions in the preceding 12 weeks. The primary outcome will be change in visceral fat area and total score on the TCM syndromes efficacy score scale. The secondary outcome will include changes in ultrasound steatosis grade, fibrosis 4 score (FIB-4), metabolic parameters, anthropometric parameters, visceral fat area. In addition, serum and urine samples collected at baseline and at the end of 12 weeks of treatment will be sequentially tested for untargeted and targeted metabolomics. Discussion: This study will evaluate the efficacy and safety of JTTF, as well as investigate the differential metabolites and possible mechanisms of JTTF treatment in T2DM combined with NAFLD. We hypothesize that patients will benefit from JTTF, which may provide strong evidence for the clinical use of JTTF in the treatment of T2DM and NAFLD, leading to the possibility of further mechanistic exploration. Clinical Trial Registration: This clinical trial has been registered in China Clinical Trial Registry (ChiCTR 2100051174).
Collapse
Affiliation(s)
- Jinghan Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunli Piao
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
- *Correspondence: Chunli Piao,
| | - Yue Qu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianjiao Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuting Peng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Li
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Xiaohua Zhao
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Pei Li
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Xuemin Wu
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Yawen Fan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Binqin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Yang
- Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
12
|
Li B, Su R, Yan H, Liu J, Gao C, Li X, Wang C. Immunological risk factors for nonalcoholic fatty liver disease in patients with psoriatic arthritis: New predictive nomograms and natural killer cells. Front Immunol 2022; 13:907729. [PMID: 35935983 PMCID: PMC9355654 DOI: 10.3389/fimmu.2022.907729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/27/2022] [Indexed: 01/22/2023] Open
Abstract
Objective To search for the immunological risk factors of Psoriatic arthritis (PsA) combined with nonalcoholic fatty liver disease (NAFLD), development and assessment of predictive nomograms for NAFLD risk in patients with PsA, and to further explore the correlation between risk factors and dyslipidemia. Methds A total of 127 patients with PsA (46 with NAFLD and 81 without NAFLD) were included in this retrospective study. The clinical and serological parameters of the patients were collected. The percentage and the absolute number of lymphocytes and CD4+T cells were determined by Flow cytometry. Univariate and multivariate binary logistic regression analysis was used to screen independent risk factors of PsA complicated with NAFLD in the model population, and a nomogram prediction model was developed and assessed. Results (1) Univariate and multivariate logistic regression analysis of the modeling population showed that the percentage of peripheral blood T helper 1 cells (Th1%) (OR=1.12, P=0.001), body mass index (BMI) (OR=1.22, P=0.005) and triglycerides (TG) (OR=4.78, P=0.003) were independent risk factors for NAFLD in patients with PsA, which were incorporated and established a nomogram prediction model. The model has good discrimination and calibration, and also has certain clinical application value. (2) The number of peripheral blood NK cells in PsA patients was significantly positively correlated with serum triglyceride (TG) (r=0.489, P<0.001), cholesterol (CHOL) (r=0.314, P=0.003) and low-density lipoprotein (LDL) (r=0.362, P=0.001) levels. Conclusions Our study shows that the novel NAFLD nomogram could assess the risk of NAFLD in PsA patients with good efficiency. In addition, peripheral blood NK cell levels may be associated with dyslipidemia in patients with PsA.
Collapse
Affiliation(s)
- Baochen Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yan
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Juanjuan Liu
- Department of General Medicine, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Liu H, Li X, Han X, Zhang Y, Gu Y, Sun L, Han J, Tu Y, Bao Y, Bai W, Yu H. Simple surrogate equations to predict controlled attenuation parameter values for screening non-alcoholic fatty liver disease in a Chinese population. Front Med (Lausanne) 2022; 9:894895. [PMID: 35935792 PMCID: PMC9355088 DOI: 10.3389/fmed.2022.894895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveNon-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease. The controlled attenuation parameter (CAP) obtained by FibroScan reflects the level of liver steatosis in patients with obesity. Our study aimed to construct a simple equation to predict the CAP, to facilitate the screening and monitoring of patients at high risk for NAFLD.MethodsA total of 272 subjects were randomly divided into derivation and validation cohorts at a ratio of 1:2. The derivation set was used for constructing a multiple linear regression model; the validation set was used to verify the validity of the model.ResultsSeveral variables strongly correlated with the CAP were used to construct the following equation for predicting CAP values:CAP1 = 2.4 × BMI + 10.5 × TG+ 3.6 × NC + 10.3 × CP +31.0, where BMI is body mass index, TG is triglyceride, NC is neck circumference and CP is C-peptide. The CAP1 model had an R2 of 0.764 and adjusted R2 of 0.753. It was then simplified to derive CAP2 included only simple anthropometric parameters: CAP2 = 3.5 × BMI + 4.2 × NC + 20.3 (R2 = 0.696, adjusted R2 = 0.689). The data were well fitted by both models. In the verification group, the predicted (CAP1 and CAP2) values were compared to the actual CAP values. For the CAP1 equation, R2 = 0.653, adjusted R2 = 0.651. For the CAP2 equation, R2 = 0.625, adjusted R2 = 0.623. The intra-class correlation coefficient (ICC) values were 0.781 for CAP1 and 0.716 for CAP2 (p < 0.001). The actual CAP and the predicted CAP also showed good agreement in Bland-Altman plot.ConclusionThe equations for predicting the CAP value comprise easily accessible variables, and showed good stability and predictive power. Thus, they can be used as simple surrogate tools for early screening and follow-up of NAFLD in the Chinese population.
Collapse
Affiliation(s)
- Hanying Liu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Xiao Li
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Xiaodong Han
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yan Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Yanting Gu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Lianjie Sun
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yinfang Tu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
- *Correspondence: Wenkun Bai,
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
- Haoyong Yu,
| |
Collapse
|
14
|
Leung H, Long X, Ni Y, Qian L, Nychas E, Siliceo SL, Pohl D, Hanhineva K, Liu Y, Xu A, Nielsen HB, Belda E, Clément K, Loomba R, Li H, Jia W, Panagiotou G. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci Transl Med 2022; 14:eabk0855. [PMID: 35675435 PMCID: PMC9746350 DOI: 10.1126/scitranslmed.abk0855] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing body of evidence suggests interplay between the gut microbiota and the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the role of the gut microbiome in early detection of NAFLD is unclear. Prospective studies are necessary for identifying reliable, microbiome markers for early NAFLD. We evaluated 2487 individuals in a community-based cohort who were followed up 4.6 years after initial clinical examination and biospecimen sampling. Metagenomic and metabolomic characterizations using stool and serum samples taken at baseline were performed for 90 participants who progressed to NAFLD and 90 controls who remained NAFLD free at the follow-up visit. Cases and controls were matched for gender, age, body mass index (BMI) at baseline and follow-up, and 4-year BMI change. Machine learning models integrating baseline microbial signatures (14 features) correctly classified participants (auROCs of 0.72 to 0.80) based on their NAFLD status and liver fat accumulation at the 4-year follow up, outperforming other prognostic clinical models (auROCs of 0.58 to 0.60). We confirmed the biological relevance of the microbiome features by testing their diagnostic ability in four external NAFLD case-control cohorts examined by biopsy or magnetic resonance spectroscopy, from Asia, Europe, and the United States. Our findings raise the possibility of using gut microbiota for early clinical warning of NAFLD development.
Collapse
Affiliation(s)
- Howell Leung
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Xiaoxue Long
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China
| | - Yueqiong Ni
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany.,Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China.,Corresponding author. (Y.N.); (H.L.); (W.J.); (G.P.)
| | - Lingling Qian
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China
| | - Emmanouil Nychas
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Sara Leal Siliceo
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Dennis Pohl
- Clinical Microbiomics, Fruebjergvej 3, 2100 Copenhagen, Denmark.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Kati Hanhineva
- Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20014 Turku, Finland.,Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland
| | - Yan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.,Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.,Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | | | - Eugeni Belda
- Sorbonne Université, INSERM, NutriOmics Research Unit, Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, NutriOmics Research Unit, Nutrition Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France
| | - Rohit Loomba
- NAFLD Research Center, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China.,Corresponding author. (Y.N.); (H.L.); (W.J.); (G.P.)
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, 200233 Shanghai, China.,Corresponding author. (Y.N.); (H.L.); (W.J.); (G.P.)
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany.,The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.,Department of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Corresponding author. (Y.N.); (H.L.); (W.J.); (G.P.)
| |
Collapse
|
15
|
Thévenot T, Vendeville S, Weil D, Akkouche L, Calame P, Canivet CM, Vanlemmens C, Richou C, Cervoni JP, Seronde MF, Di Martino V, Boursier J. Systematic screening for advanced liver fibrosis in patients with coronary artery disease: The CORONASH study. PLoS One 2022; 17:e0266965. [PMID: 35617294 PMCID: PMC9135299 DOI: 10.1371/journal.pone.0266965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Although coronary artery disease (CAD) and advanced liver fibrosis (AdLF) are commonly associated in patients with non-alcoholic fatty liver disease (NAFLD), the prevalence of AdLF and the diagnostic performance of non-invasive fibrosis tests (NITs) in CAD patients remains unknown. We aimed to prospectively screen for AdLF in patients with documented CAD using NITs and Fibroscan. High and intermediate zones of NITs were combined to define AdLF. AdLF was suspected whenever APRI ≥ 0.5, Forns index ≥ 4.2, NAFLD fibrosis score (NFS) ≥ -1.455/0.12 for age </≥ 65 yrs), Fib4 (≥ 1.30/2.0 for age </≥ 65 yrs) and eLIFT≥ 8. A presumed AdLF assessed by Fibroscan ≥ 8 kPa was the primary outcome measure. Results were given on the basis of intent-to-diagnose liver stiffness ≥ 8 kPa. Among 189 patients (age 60±7years), 10 (5.3%) had a Fibroscan ≥ 8 kPa, of whom 5 underwent liver biopsy (F3/F4: n = 3; no fibrosis: n = 2). AdLF was suspected in 31% of cases using eLIFT (specificity, Sp 70%), 85% with Forns (Sp 16%), 38% with NFS (Sp 63%), 25% with Fib4 (Sp 74%), and 10% with APRI (Sp 91%). In 149 patients “at-risk” of NAFLD (i.e., elevated ALT or diabetes or hypertriglyceridemia or BMI ≥25 kg/m2), AdLF ranged between 10% (APRI) to 84% (Forns). In this subgroup, the most efficient NITs to predict Fibroscan ≥ 8 kPa were eLIFT (Se 60%, Sp 70%) and NFS (Se 70%, Sp 60%). Finally, in CAD patients with risk factors for NAFLD, NFS or the more user-friendly eLIFT are the most attractive first-line biochemical NITs to discriminate good candidates for Fibroscan.
Collapse
Affiliation(s)
- Thierry Thévenot
- Department of Hepatology, University Hospital Jean Minjoz, Besançon, France
- * E-mail:
| | - Sophie Vendeville
- Department of Hepatology, University Hospital Jean Minjoz, Besançon, France
| | - Delphine Weil
- Department of Hepatology, University Hospital Jean Minjoz, Besançon, France
| | - Linda Akkouche
- Department of Cardiology, University Hospital Jean Minjoz, Besançon, France
| | - Paul Calame
- Department of Radiology, University Hospital Jean Minjoz, Besançon, France
| | - Clémence M. Canivet
- Hepato-Gastroenterology Department, Angers University Hospital, Angers, France
| | - Claire Vanlemmens
- Department of Hepatology, University Hospital Jean Minjoz, Besançon, France
| | - Carine Richou
- Department of Hepatology, University Hospital Jean Minjoz, Besançon, France
| | - Jean-Paul Cervoni
- Department of Hepatology, University Hospital Jean Minjoz, Besançon, France
| | | | - Vincent Di Martino
- Department of Hepatology, University Hospital Jean Minjoz, Besançon, France
| | - Jérôme Boursier
- Hepato-Gastroenterology Department, Angers University Hospital, Angers, France
| |
Collapse
|
16
|
Explore the Mechanism of Astragalus mongholicus Bunge against Nonalcoholic Fatty Liver Disease Based on Network Pharmacology and Experimental Verification. Gastroenterol Res Pract 2022; 2022:4745042. [PMID: 35422858 PMCID: PMC9005278 DOI: 10.1155/2022/4745042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Objective Astragalus mongholicus Bunge [Fabaceae] (AMB), a traditional Chinese medicine (TCM), has been widely used to treat liver diseases in the clinic. However, the efficacy and mechanism of AMB in the treatment of nonalcoholic fatty liver disease (NAFLD) remain unclear. The purpose of this study was to systematically investigate the active components and mechanisms of AMB against NAFLD based on network pharmacology, molecular docking, and experimental verification. Methods First, the bioactive components and relevant targets of AMB were screened from the Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database, and NAFLD-related targets were obtained from the GeneCards database. Then, the AMB-NAFLD protein target interaction network was built by the STRING database. GO and KEGG pathway enrichment analyses were performed using the DAVID database. The component targets were visualized using Cytoscape software. Finally, molecular docking and experiments were used to verify the results of network pharmacological prediction. Results Network pharmacology predicted that quercetin may be the main active component in AMB, and the TNF and MAPK signaling pathways may be the key targets of AMB against NAFLD. Molecular docking validation results demonstrated that quercetin, as the main active component of AMB, had the highest binding affinity with TNF. Furthermore, quercetin played a distinct role in alleviating NAFLD through in vitro experiments. Quercetin upregulated the phosphorylation levels of AMPK and inhibited the expression of p-MAPK and TNF-α. In addition, we further discovered that quercetin could increase ACC phosphorylation and CPT1α expression in PA-induced HepG2 cells. Conclusions Our results indicated that quercetin, as the main active component in AMB, exerts an anti-NAFLD effect by regulating the AMPK/MAPK/TNF-α and AMPK/ACC/CPT1α signaling pathways to inhibit inflammation and alleviate lipid accumulation.
Collapse
|
17
|
Liu Z, Suo C, Zhao R, Yuan H, Jin L, Zhang T, Chen X. Genetic predisposition, lifestyle risk, and obesity associate with the progression of nonalcoholic fatty liver disease. Dig Liver Dis 2021; 53:1435-1442. [PMID: 34348882 DOI: 10.1016/j.dld.2021.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is prevalent worldwide. We aim to identify the factors promoting NAFLD progression. METHODS UK Biobank study participants were diagnosed for whether NAFLD presented at baseline. Cox regression model was used to examine the association of risk factors with incident diseases (significant liver diseases [SLDs], type 2 diabetes [T2D], cardiovascular diseases [CVDs], chronic kidney diseases [CKDs], and cancers) among NAFLD cases. RESULTS Of 78 283 individuals, 35 159 (44.9%) were females, and the mean (SD) age was 57.56 (7.90) years. Compared with participants had both low genetic and lifestyle risk, individuals with both high genetic and lifestyle risk had a hazard ratio of 1.64 (95% CI 1.32-2.03) for SLDs, 1.16 (1.08-1.24) for T2D, 1.25 (1.13-1.37) for CVDs, 1.33 (1.18-1.49) for CKDs, and 1.13 (1.05-1.22) for cancers. Compared with participants who were non-obese and had low genetic risk, those with obesity and high genetic risk had an 75% (95% CI 38-123%), 147% (128-167%), 46% (33-61%), and 76% (56-99%) increased risk for developing SLDs, T2D, CVDs, and CKDs, respectively. The population-attributable fractions suggested that lifestyle risk and obesity contributed more to the progression of NAFLD than genetic risk. CONCLUSION Adhering to a healthy lifestyle and avoiding obesity are important to prevent NAFLD progression.
Collapse
Affiliation(s)
- Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China; Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Renjia Zhao
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China; Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Shanghai, China; Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| |
Collapse
|
18
|
Wei X, Hou W, Liang J, Fang P, Dou B, Wang Z, Sai J, Xu T, Ma C, Zhang Q, Cheng F, Wang X, Wang Q. Network Pharmacology-Based Analysis on the Potential Biological Mechanisms of Sinisan Against Non-Alcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:693701. [PMID: 34512330 PMCID: PMC8430321 DOI: 10.3389/fphar.2021.693701] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in China. Sinisan (SNS) is a traditional Chinese medicine formula that has been widely used in treating chronic liver diseases, including NAFLD. However, its underlying biological mechanisms are still unclear. In this study, we employed a network pharmacology approach consisting of overlapped terms- (genes or pathway terms-) based analysis, protein-protein interaction (PPI) network-based analysis, and PPI clusters identification. Unlike the previous network pharmacology study, we used the shortest path length-based network proximity algorithm to evaluate the efficacy of SNS against NAFLD. And we also used random walk with restart (RWR) algorithm and Community Cluster (Glay) algorithm to identify important targets and clusters. The screening results showed that the mean shortest path length between genes of SNS and NAFLD was significantly smaller than degree-matched random ones. Six PPI clusters were identified and ten hub targets were obtained, including STAT3, CTNNB1, MAPK1, MAPK3, AGT, NQO1, TOP2A, FDFT1, ALDH4A1, and KCNH2. The experimental study indicated that SNS reduced hyperlipidemia, liver steatosis, and inflammation. Most importantly, JAK2/STAT3 signal was inhibited by SNS treatment and was recognized as the most important signal considering the network pharmacology part. This study provides a systems perspective to study the relationship between Chinese medicines and diseases and helps to discover potential mechanisms by which SNS ameliorates NAFLD.
Collapse
Affiliation(s)
- Xiaoyi Wei
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Weixin Hou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiajun Liang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peng Fang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Bo Dou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zisong Wang
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiayang Sai
- Department of Oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Venniyoor A, Al Farsi AA, Al Bahrani B. The Troubling Link Between Non-alcoholic Fatty Liver Disease (NAFLD) and Extrahepatic Cancers (EHC). Cureus 2021; 13:e17320. [PMID: 34557366 PMCID: PMC8449927 DOI: 10.7759/cureus.17320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a fast-spreading epidemic across the globe and has serious implications far beyond that of a "benign" liver condition. It is usually an outcome of ectopic fat storage due to chronic positive energy balance leading to obesity and is associated with multiple health problems. While association with cardiovascular disease and hepatocellular cancer is well recognized, it is becoming clear the NAFLD carries with it an increased risk of cancers of extrahepatic tissues. Studies have reported a higher risk for cancers of the colon, breast, prostate, lung, and pancreas. Fatty liver is associated with increased mortality; there is an urgent need to understand that fatty liver is not always benign, and not always associated with obesity. It is, however, a reversible condition and early recognition and intervention can alter its natural history and associated complications.
Collapse
Affiliation(s)
- Ajit Venniyoor
- Medical Oncology, National Oncology Center, The Royal Hospital, Muscat, OMN
| | | | | |
Collapse
|
20
|
Zheng KI, Sun DQ, Jin Y, Zhu PW, Zheng MH. Clinical utility of the MAFLD definition. J Hepatol 2021; 74:989-991. [PMID: 33347953 DOI: 10.1016/j.jhep.2020.12.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Kenneth I Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan-Qin Sun
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China; Department of Nephrology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yi Jin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Wu Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|