1
|
Zhong YL, Xu CQ, Li J, Liang ZQ, Wang MM, Ma C, Jia CL, Cao YB, Chen J. Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156620. [PMID: 40068296 DOI: 10.1016/j.phymed.2025.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis. PURPOSE This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved. STUDY DESIGN This is a narrative review that integrates findings from various studies on mitochondrial dynamics and metabolism in macrophages, their interactions with the endoplasmic reticulum (ER) and Golgi apparatus, and their implications for CVDs. The review also considers the potential therapeutic effects of pharmacological agents on these pathways. METHODS The review utilizes a comprehensive literature search to identify relevant studies on mitochondrial dynamics and metabolism in macrophages, their role in CVDs, and the effects of pharmacological agents on these pathways. The selected studies are analyzed and synthesized to provide insights into the complex relationships between mitochondria, the ER, and Golgi apparatus, and their implications for macrophage function and fate. RESULTS The review reveals that mitochondrial metabolism intertwines with cellular architecture and function, particularly through its intricate interactions with the ER and Golgi apparatus. Mitochondrial-associated membranes (MAMs) facilitate Ca2+ transfer from the ER to mitochondria, maintaining mitochondrial homeostasis during ER stress. The Golgi apparatus transports proteins crucial for inflammatory signaling, contributing to immune responses. Inflammation-induced metabolic reprogramming in macrophages, characterized by a shift from oxidative phosphorylation to glycolysis, underscores the multifaceted role of mitochondrial metabolism in regulating immune cell polarization and inflammatory outcomes. Notably, mitochondrial dysfunction, marked by heightened reactive oxygen species generation, fuels inflammatory cascades and promotes cell death, exacerbating CVD pathology. However, pharmacological agents such as Metformin, Nitazoxanide, and Galanin emerge as potential therapeutic modulators of these pathways, offering avenues for mitigating CVD progression. CONCLUSION This review highlights mitochondrial dynamics and metabolism in macrophage inflammation and cell death in CVDs, suggesting therapeutic targets to improve macrophage resilience and reduce pathology, with new pharmacological agents offering treatment opportunities.
Collapse
Affiliation(s)
- Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Miao-Miao Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
2
|
Zhao ZH, Gu LJ, Zhang XG, Wang ZB, Ou XH, Sun QY. Single-cell and spatial transcriptomes reveal the impact of maternal low protein diet on follicular cell composition and ovarian micro-environment in the offspring. J Nutr Biochem 2025; 136:109789. [PMID: 39490908 DOI: 10.1016/j.jnutbio.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Maternal low protein diet around pregnancy reduces the primordial follicles in offspring ovary. Resolving cellular and molecular mechanisms associated with low protein diet is therefore urgently needed for the guidance of dietary interventions. Here, we utilized single-cell and spatial RNA-seq to create transcriptomic atlases of offspring ovaries from maternal low protein diet mice. Analysis of cell type specific low protein diet associated transcriptional changes revealed increased unfolded protein and decreased oxidative phosphorylation defense as a hallmark of low protein diet effects. Altered pathways included hedgehog signaling in granulosa cells, BMP signaling in theca cells and PTN signaling in early theca cells. Notably, the disordered follicular cell function and ovarian microenvironment may closely corelated with decreased follicular number and quality. Collectively, our findings depict the transcriptomic atlases of the offspring ovary derived from maternal low protein diet group and provide candidate molecular mechanisms underlying the complex ovarian cell changes conferred by low protein diet.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Guohui Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Hong Ou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Guo G, Zhang Z, Zhang J, Wang D, Xu S, Liu G, Gao Y, Mei J, Yan Z, Zhao R, Wang M, Li T, Bu X. Predicting recurrent glioblastoma clinical outcome to immune checkpoint inhibition and low-dose bevacizumab with tumor in situ fluid circulating tumor DNA analysis. Cancer Immunol Immunother 2024; 73:193. [PMID: 39105794 PMCID: PMC11303371 DOI: 10.1007/s00262-024-03774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Most recurrent glioblastoma (rGBM) patients do not benefit from immune checkpoint inhibition, emphasizing the necessity for response biomarkers. This study evaluates whether tumor in situ fluid (TISF) circulating tumor DNA (ctDNA) could serve as a biomarker for response to low-dose bevacizumab (Bev) plus anti-PD-1 therapy in rGBM patients, aiming to enhance systemic responses to immunotherapy. METHODS In this phase II trial, 32 GBM patients with first recurrence after standard therapy were enrolled and then received tislelizumab plus low-dose Bev each cycle. TISF samples were analyzed for ctDNA using a 551-gene panel before each treatment. RESULTS The median progression-free survival (mPFS) and overall survival (mOS) were 8.2 months (95% CI, 5.2-11.1) and 14.3 months (95% CI, 6.5-22.1), respectively. The 12-month OS was 43.8%, and the objective response rate was 56.3%. Patients with more than 20% reduction in the mutant allele fraction and tumor mutational burden after treatment were significantly associated with better prognosis compared to baseline TISF-ctDNA. Among detectable gene mutations, patients with MUC16 mutation, EGFR mutation & amplification, SRSF2 amplification, and H3F3B amplification were significantly associated with worse prognosis. CONCLUSIONS Low-dose Bev plus anti-PD-1 therapy significantly improves OS in rGBM patients, offering guiding significance for future individualized treatment strategies. TISF-ctDNA can monitor rGBM patients' response to combination therapy and guide treatment. CLINICAL TRIAL REGISTRATION This trial is registered with ClinicalTrials.gov, NCT05540275.
Collapse
Affiliation(s)
- Guangzhong Guo
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ziyue Zhang
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiubing Zhang
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dayang Wang
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Sensen Xu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Guanzheng Liu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yushuai Gao
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jie Mei
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhaoyue Yan
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ruijiao Zhao
- Department of Pathology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Radiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Tianxiao Li
- Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, China
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Xingyao Bu
- Department of Neurosurgery, Juha International Center for Neurosurgery, Glioma Clinical Diagnosis and Treatment Center of Henan Province, Glioma Engineering Research Center for Precision Diagnosis and Treatment of Henan Province, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
4
|
Reith JD. Histones and their practical application in bone tumors: Do I always need them? Hum Pathol 2024; 147:92-100. [PMID: 38307341 DOI: 10.1016/j.humpath.2024.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Historically, the diagnosis of giant cell-rich neoplasms arising in bone has been challenging owing to overlapping clinical and radiographic findings resulting in the difficult separation of several neoplasms, particularly when biopsy material is limited. However, with the discovery of the driver histone mutations in giant cell tumor of bone (GCTB) and chondroblastoma, as well as USP6 rearrangements in aneurysmal bone cyst, pathologists now have objective ancillary tools to aid in the separation of several histologically similar giant cell-rich neoplasms. Furthermore, the recognition of histone mutations has allowed pathologists to revisit several entities, such as "malignant chondroblastoma," and furthered our understanding of phenomena such as "aneurysmal bone cyst-like change," formerly recognized as "secondary aneurysmal bone cyst." Herein, the evolution of testing for histone mutations in bone tumors is considered; the sensitivity and specificity of the histone antibodies is reviewed; and a practical guide for the use of these ancillary tests is offered.
Collapse
Affiliation(s)
- John D Reith
- Department of Pathology, L25, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| |
Collapse
|
5
|
Salgado I, Prado Montes de Oca E, Chairez I, Figueroa-Yáñez L, Pereira-Santana A, Rivera Chávez A, Velázquez-Fernandez JB, Alvarado Parra T, Vallejo A. Deep Learning Techniques to Characterize the RPS28P7 Pseudogene and the Metazoa- SRP Gene as Drug Potential Targets in Pancreatic Cancer Patients. Biomedicines 2024; 12:395. [PMID: 38397997 PMCID: PMC11154313 DOI: 10.3390/biomedicines12020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 02/25/2024] Open
Abstract
The molecular explanation about why some pancreatic cancer (PaCa) patients die early and others die later is poorly understood. This study aimed to discover potential novel markers and drug targets that could be useful to stratify and extend expected survival in prospective early-death patients. We deployed a deep learning algorithm and analyzed the gene copy number, gene expression, and protein expression data of death versus alive PaCa patients from the GDC cohort. The genes with higher relative amplification (copy number >4 times in the dead compared with the alive group) were EWSR1, FLT3, GPC3, HIF1A, HLF, and MEN1. The most highly up-regulated genes (>8.5-fold change) in the death group were RPL30, RPL37, RPS28P7, RPS11, Metazoa_SRP, CAPNS1, FN1, H3-3B, LCN2, and OAZ1. None of their corresponding proteins were up or down-regulated in the death group. The mRNA of the RPS28P7 pseudogene could act as ceRNA sponging the miRNA that was originally directed to the parental gene RPS28. We propose RPS28P7 mRNA as the most druggable target that can be modulated with small molecules or the RNA technology approach. These markers could be added as criteria to patient stratification in future PaCa drug trials, but further validation in the target populations is encouraged.
Collapse
Affiliation(s)
- Iván Salgado
- Medical Robotics and Biosignals Laboratory, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional (IPN), Mexico City 07700, Mexico;
| | - Ernesto Prado Montes de Oca
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico; (A.R.C.); (T.A.P.)
| | - Isaac Chairez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Jalisco, Mexico;
| | - Luis Figueroa-Yáñez
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (L.F.-Y.); (A.P.-S.)
| | - Alejandro Pereira-Santana
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (L.F.-Y.); (A.P.-S.)
| | - Andrés Rivera Chávez
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico; (A.R.C.); (T.A.P.)
| | | | - Teresa Alvarado Parra
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico; (A.R.C.); (T.A.P.)
| | - Adriana Vallejo
- Unidad de Biotecnología Médica y Farmacéutica, CONACYT-Centro de Investigación y Asistencia en Tecnologia y Diseño del Estado de Jalisco AC, Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| |
Collapse
|
6
|
Salgado I, Prado Montes de Oca E, Chairez I, Figueroa-Yáñez L, Pereira-Santana A, Rivera Chávez A, Velázquez-Fernandez JB, Alvarado Parra T, Vallejo A. Deep Learning Techniques to Characterize the RPS28P7 Pseudogene and the Metazoa-SRP Gene as Drug Potential Targets in Pancreatic Cancer Patients. Biomedicines 2024; 12:395. [DOI: https:/doi.org/10.3390/biomedicines12020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
The molecular explanation about why some pancreatic cancer (PaCa) patients die early and others die later is poorly understood. This study aimed to discover potential novel markers and drug targets that could be useful to stratify and extend expected survival in prospective early-death patients. We deployed a deep learning algorithm and analyzed the gene copy number, gene expression, and protein expression data of death versus alive PaCa patients from the GDC cohort. The genes with higher relative amplification (copy number >4 times in the dead compared with the alive group) were EWSR1, FLT3, GPC3, HIF1A, HLF, and MEN1. The most highly up-regulated genes (>8.5-fold change) in the death group were RPL30, RPL37, RPS28P7, RPS11, Metazoa_SRP, CAPNS1, FN1, H3−3B, LCN2, and OAZ1. None of their corresponding proteins were up or down-regulated in the death group. The mRNA of the RPS28P7 pseudogene could act as ceRNA sponging the miRNA that was originally directed to the parental gene RPS28. We propose RPS28P7 mRNA as the most druggable target that can be modulated with small molecules or the RNA technology approach. These markers could be added as criteria to patient stratification in future PaCa drug trials, but further validation in the target populations is encouraged.
Collapse
Affiliation(s)
- Iván Salgado
- Medical Robotics and Biosignals Laboratory, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional (IPN), Mexico City 07700, Mexico
| | - Ernesto Prado Montes de Oca
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico
| | - Isaac Chairez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Jalisco, Mexico
| | - Luis Figueroa-Yáñez
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico
| | - Alejandro Pereira-Santana
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara 44270, Jalisco, Mexico
| | - Andrés Rivera Chávez
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico
| | | | - Teresa Alvarado Parra
- Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico
| | - Adriana Vallejo
- Unidad de Biotecnología Médica y Farmacéutica, CONACYT-Centro de Investigación y Asistencia en Tecnologia y Diseño del Estado de Jalisco AC, Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| |
Collapse
|
7
|
Nazem A, Lavezo J, Abdullaev Z, Aldape K, Quezado M, Cimino PJ, Pratt DW, Jenkins RB, Ida CM. Diffuse hemispheric glioma with H3-3B G34R mutation: Expanding the spectrum of histone H3 genes in diffuse hemispheric glioma, H3 G34-mutant. J Neuropathol Exp Neurol 2023; 83:58-60. [PMID: 37878797 PMCID: PMC11032700 DOI: 10.1093/jnen/nlad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Affiliation(s)
- Amir Nazem
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan Lavezo
- Department of Pathology, Texas Tech University Health Sciences Center of El Paso, El Paso, Texas, USA
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Patrick Joseph Cimino
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Drew W Pratt
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Cristiane M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
9
|
Deng L, Zeng J, Qiu JF, Yang LH, Ma J. Adult granulosa cell tumor of the testis with malignant tendency: A case report with genetic analysis using high-throughput sequencing. Medicine (Baltimore) 2023; 102:e34523. [PMID: 37565864 PMCID: PMC10419672 DOI: 10.1097/md.0000000000034523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The adult granulosa cell tumor of the testis is a rare sex-cord/stromal tumor, with a potentiality for late recurrence and metastasis. Because of its rarity, this tumor is poorly understood, particularly in terms of its molecular features. As a result, it is necessary to register each occurrence in order to study the evolution of this rare malignancy and develop therapeutic strategies. METHODS A 50-year-old man discovered a painless right testicular mass unexpectedly, and the mass steadily expanded for 2 months. Ultrasonography showed a 5.2 cm × 4.0 cm × 3.6 cm mass in the right testicle. A right radical orchiectomy was performed on September 7, 2016. The pathologic diagnosis was a testicular adult granulosa cell tumor. The post-computed tomography scans and bone scintigraphy ruled out distant metastases. A high-throughput sequencing of 520 cancer-related genes revealed FOXL2 C134W, CDKN2A E87Gfs*24, TP53 S183*, TERT c.-124C > T, and H3F3A K28R mutations in this case. Because the patient stated he would be unable to return to the hospital for a follow-up appointment on time, he elected to have 4 cycles of adjuvant chemotherapy BEP (bleomycin, etoposide, and cisplatin) after the right radical orchiectomy. RESULTS The patient has not had a clinical recurrence or metastasis in 6 years. CONCLUSION Surgery together with adjuvant chemotherapy may be useful treatment options for these individuals with malignant tendencies who are unable to visit the hospital for a follow-up appointment on time. Adult testicular granulosa cell tumors have a relatively complex genetic profile; their etiology is linked to a number of common driver genes, including TERT, CDKN2A, TP53, and H3F3A.
Collapse
Affiliation(s)
- Lili Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Jingjing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Jin Feng Qiu
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Li Hua Yang
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Jie Ma
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
10
|
Tal A, Aguilera JD, Bren I, Strauss C, Schlesinger S. Differential effect of histone H3.3 depletion on retroviral repression in embryonic stem cells. Clin Epigenetics 2023; 15:83. [PMID: 37170146 PMCID: PMC10176700 DOI: 10.1186/s13148-023-01499-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Integration of retroviruses into the host genome can impair the genomic and epigenomic integrity of the cell. As a defense mechanism, epigenetic modifications on the proviral DNA repress retroviral sequences in mouse embryonic stem cells (ESC). Here, we focus on the histone 3 variant H3.3, which is abundant in active transcription zones, as well as centromeres and heterochromatinized repeat elements, e.g., endogenous retroviruses (ERV). RESULTS To understand the involvement of H3.3 in the epigenetic silencing of retroviral sequences in ESC, we depleted the H3.3 genes in ESC and transduced the cells with GFP-labeled MLV pseudovirus. This led to altered retroviral repression and reduced Trim28 recruitment, which consequently led to a loss of heterochromatinization in proviral sequences. Interestingly, we show that H3.3 depletion has a differential effect depending on which of the two genes coding for H3.3, H3f3a or H3f3b, are knocked out. Depletion of H3f3a resulted in a transient upregulation of incoming retroviral expression and ERVs, while the depletion of H3f3b did not have the same effect and repression was maintained. However, the depletion of both genes resulted in a stable activation of the retroviral promoter. These findings suggest that H3.3 is important for regulating retroviral gene expression in mouse ESC and provide evidence for a distinct function of the two H3.3 genes in this regulation. Furthermore, we show that Trim28 is needed for depositing H3.3 in retroviral sequences, suggesting a functional interaction between Trim28 recruitment and H3.3 loading. CONCLUSIONS Identifying the molecular mechanisms by which H3.3 and Trim28 interact and regulate retroviral gene expression could provide a deeper understanding of the fundamental processes involved in retroviral silencing and the general regulation of gene expression, thus providing new answers to a central question of stem cell biology.
Collapse
Affiliation(s)
- Ayellet Tal
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jose David Aguilera
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Igor Bren
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Carmit Strauss
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sharon Schlesinger
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
11
|
Whiwon L, Salma S, Daniel A, Stephanie L, Marc C, Cherith S, Abby T, Angela S, Robin H, Yvonne B. Patient-facing digital tools for delivering genetic services: a systematic review. J Med Genet 2023; 60:1-10. [PMID: 36137613 DOI: 10.1136/jmg-2022-109085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023]
Abstract
This study systematically reviewed the literature on the impact of digital genetics tools on patient care and system efficiencies. MEDLINE and Embase were searched for articles published between January 2010 and March 2021. Studies evaluating the use of patient-facing digital tools in the context of genetic service delivery were included. Two reviewers screened and extracted patient-reported and system-focused outcomes from each study. Data were synthesised using a descriptive approach. Of 3226 unique studies identified, 87 were included. A total of 70 unique digital tools were identified. As a result of using digital tools, 84% of studies reported a positive outcome in at least one of the following patient outcomes: knowledge, psychosocial well-being, behavioural/management changes, family communication, decision-making or level of engagement. Digital tools improved workflow and efficiency for providers and reduced the amount of time they needed to spend with patients. However, we identified a misalignment between study purpose and patient-reported outcomes measured and a lack of tools that encompass the entire genetic counselling and testing trajectory. Given increased demand for genetic services and the shift towards virtual care, this review provides evidence that digital tools can be used to efficiently deliver patient-centred care. Future research should prioritise development, evaluation and implementation of digital tools that can support the entire patient trajectory across a range of clinical settings. PROSPERO registration numberCRD42020202862.
Collapse
Affiliation(s)
- Lee Whiwon
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Shickh Salma
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Assamad Daniel
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Luca Stephanie
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Clausen Marc
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Somerville Cherith
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Tafler Abby
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Shaw Angela
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Hayeems Robin
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Bombard Yvonne
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Diaz M, Rana S, Silva Correia CE, Reiner AS, Lin AL, Miller AM, Graham MS, Chudsky S, Bale TA, Rosenblum M, Karajannis MA, Pentsova E. Leptomeningeal disease in histone-mutant gliomas. Neurooncol Adv 2023; 5:vdad068. [PMID: 37346983 PMCID: PMC10281361 DOI: 10.1093/noajnl/vdad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Background The 2016 WHO classification described a subtype of midline gliomas harboring histone 3 (H3) K27M alterations, and the 2021 edition added a new subtype of hemispheric diffuse gliomas with H3 G34R/V mutations. The incidence and clinical behavior of leptomeningeal disease (LMD) in these patients is not well defined. Methods Retrospective study of patients with H3-altered gliomas diagnosed from 01/2012 to 08/2021; histone mutations were identified through next-generation sequencing (NGS) of tumor biopsy and/or cerebrospinal fluid (CSF). Results We identified 42 patients harboring H3 mutations (K27M mutations in 33 patients, G34R/V in 8, and both in one). Median age was 21 (4-70); 27 were male. LMD was diagnosed in 21/42 (50%) patients, corresponding to a 3-year cumulative incidence of 44.7% (95% confidence interval (CI): 26.1%-63.4%) for the K27-mutant group and a 1-year cumulative incidence of 37.5% in the G34-mutant group (95% CI: 0.01%-74.4%; no events after 1 year). Median time from tumor diagnosis to LMD was 12.9 months for H3-K27 patients and 5.6 months for H3-G34 patients. H3 mutation was detected in CSF in all patients with LMD who had NGS (8 H3-K27-mutant patients). In the H3-K27-mutant group, modeled risk of death was increased in patients who developed LMD (hazard ratio: 7.37, 95% CI: 2.98-18.23, P < .0001). Conclusions In our cohort, 50% of patients developed LMD. Although further studies are needed, CSF ctDNA characterization may aid in identifying molecular tumor profiles in glioma patients with LMD, and neuroaxis imaging and CSF NGS should be considered for early LMD detection.
Collapse
Affiliation(s)
- Maria Diaz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Satshil Rana
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L Lin
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra M Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maya S Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sofia Chudsky
- Office of Professional Development, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Elena Pentsova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|